
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Erika M. Palmieri,
National Cancer Institute at Frederick
(NIH), United States

REVIEWED BY

Federico Virga,
Spanish National Centre for Cardiovascular
Research, Spain
Chunye Zhang,
University of Missouri, United States

*CORRESPONDENCE

Fawaz Alzaid

fawaz.alzaid@dasmaninstitute.org;

fawaz.alzaid@inserm.fr

RECEIVED 28 March 2023

ACCEPTED 31 May 2023
PUBLISHED 12 June 2023

CITATION

Alabdulaali B, Al-rashed F, Al-Onaizi M,
Kandari A, Razafiarison J, Tonui D,
Williams MR, Blériot C, Ahmad R and
Alzaid F (2023) Macrophages and the
development and progression of non-
alcoholic fatty liver disease.
Front. Immunol. 14:1195699.
doi: 10.3389/fimmu.2023.1195699

COPYRIGHT

© 2023 Alabdulaali, Al-rashed, Al-Onaizi,
Kandari, Razafiarison, Tonui, Williams, Blériot,
Ahmad and Alzaid. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 12 June 2023

DOI 10.3389/fimmu.2023.1195699
Macrophages and the
development and progression of
non-alcoholic fatty liver disease

Bader Alabdulaali 1,2, Fatema Al-rashed1,
Mohammed Al-Onaizi3,1, Anwar Kandari 1,2,
Joanna Razafiarison4, Dorothy Tonui4, Michayla R. Williams1,
Camille Blériot4,5, Rasheed Ahmad1 and Fawaz Alzaid1,4*

1Dasman Diabetes Institute, Kuwait City, Kuwait, 2Ministry of Health, Kuwait City, Kuwait, 3Department
of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait, 4INSERM UMR-S1151, CNRS
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The liver is the site of first pass metabolism, detoxifying and metabolizing blood

arriving from the hepatic portal vein and hepatic artery. It is made up of multiple

cell types, including macrophages. These are either bona fide tissue-resident

Kupffer cells (KC) of embryonic origin, or differentiated from circulating

monocytes. KCs are the primary immune cells populating the liver under

steady state. Liver macrophages interact with hepatocytes, hepatic stellate

cells, and liver sinusoidal endothelial cells to maintain homeostasis, however

they are also key contributors to disease progression. Generally tolerogenic, they

physiologically phagocytose foreign particles and debris from portal circulation

and participate in red blood cell clearance. However as immune cells, they retain

the capacity to raise an alarm to recruit other immune cells. Their aberrant

function leads to the development of non-alcoholic fatty liver disease (NAFLD).

NAFLD refers to a spectrum of conditions ranging from benign steatosis of the

liver to steatohepatitis and cirrhosis. In NAFLD, the multiple hit hypothesis

proposes that simultaneous influences from the gut and adipose tissue (AT)

generate hepatic fat deposition and that inflammation plays a key role in disease

progression. KCs initiate the inflammatory response as resident immune

effectors, they signal to neighbouring cells and recruit monocytes that

differentiated into recruited macrophages in situ. Recruited macrophages are

central to amplifying the inflammatory response and causing progression of

NAFLD to its fibro-inflammatory stages. Given their phagocytic capacity and their

being instrumental in maintaining tissue homeostasis, KCs and recruited

macrophages are fast-becoming target cell types for therapeutic intervention.

We review the literature in the field on the roles of these cells in the development

and progression of NAFLD, the characteristics of patients with NAFLD, animal

models used in research, as well as the emerging questions. These include the

gut-liver-brain axis, which when disrupted can contribute to decline in function,

and a discussion on therapeutic strategies that act on the macrophage-

inflammatory axis.
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1 Introduction

1.1 Normal physiology and function
of the liver

Among its many functions, the liver detoxifies and metabolizes

components in blood arriving from the hepatic portal vein and hepatic

artery, stores glycogen, secretes bile to aid digestion, and produces

cholesterol as well as major plasma proteins such as albumin and

fibronectin. These synthetic and secretory capacities make the liver the

largest gland in the human body (1). Anatomically, the liver is in the

upper right abdomen, beneath the right hemidiaphragm, and it is

protected by the rib cage. It is separated by visible fissures, the most

prominent of which is the umbilical fissure, which is lined by the

falciform ligament. Such divisions allow identification of different lobes,

for example, the large right lobe and a smaller left lobe (2, 3). The right

lobe is further divided into a quadrate lobe and a caudate lobe; these are

functional sections where the gallbladder and the inferior vena cava

reside (4, 5) (Figure 1A).
1.2 Tissue architecture and cellular
composition of the liver

To carry out its specialized functions, the liver is made up of a variety

of cell types organized in lobular structures. One lobule is roughly

hexagonal in shape and formed around the central vein with portal triads
Frontiers in Immunology 02
that demarcate the six corners of each lobule containing bile ducts,

sinusoids, branches of the hepatic portal vein, and the hepatic artery

(Figure 1B). Within its lobular structure are several cell types that

cooperate to carry out physiological functions and maintain

homeostasis in the tissue microenvironment. The different cell types

can be generally divided into parenchymal cells, hepatocytes, and non-

parenchymal cells which include hepatic stellate cells (HSC), Kupffer cells

(KC), and liver sinusoidal endothelial cells (LSEC) (6) (Figure 1C). These

cells carry out essential functions in the liver (Table 1) and are crucial in

responding to injury (7).

Focusing on the immune compartment, KCs are themain immune

cells that populate the liver in steady state. They extensively interact

with hepatocytes, HSCs, and LSECs. They can stimulate leukocyte

chemotaxis and adherence and produce cytokines that influence their

activation (10, 11). KCs phagocytose foreign particles and

microorganisms in portal circulation coming from the gut (12).

These cells are the first line to defense against pathogens, they

remove abnormal cells and cellular debris, participate in recycling

erythrocytes, and their signaling can dictate inflammation and the

immune response (13). KCs also contribute to liver disease when they

are dysfunctional (14), this is discussed in more detail below.
1.3 Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) refers to a

spectrum of conditions affecting the liver. These range from
A

C

B

FIGURE 1

Liver Anatomy, lobular structure, and cell types. (A) anatomic location of the liver. (B) Lobular structure of the liver. (C) Cell types in the liver:
hepatocytes, Hepatic stellate cell, Kupffer cell, and Liver sinusoidal endothelial cells. Created with BioRender.com.
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benign steatosis to steatohepatitis (NASH), fibrosis, and cirrhosis.

Importantly, NASH and fibrosis often occur simultaneously and

are the last reversible steps of the condition. At the stage of

cirrhosis, liver function is impaired, and patients are at high risk

of developing hepatocellular carcinoma (HCC). Liver

transplantation is the only possible intervention strategy at or

beyond the stage of cirrhosis. Many individuals have the early

stages of NAFLD, benign ectopic lipid storage in the form of

steatosis, without any signs or symptoms; this is because the

presence of fat in the form of simple steatosis does not cause

damage to the liver (15–17) (Figure 2A). NAFLD and its

progressive form NASH have similar risk factors, including

overweight or obesity, insulin resistance, high levels of fats,

particularly triglycerides, and hyperglycemia, indicating

prediabetes or type 2 diabetes (T2D) (17).

The excessive increase of free fatty acids and triglycerides

increases lipid oxidation and the production of reactive oxygen

species (ROS) and lipotoxicity. This causes cellular damage and

the secretion of cytokines, triggering KC activation and the

recruitment of monocytes and other immune cells from the

circulation. Ensuing hepatocyte apoptosis and HSC activation

results in the deposition of extracellular matrix, which can lead to

fibrosis if excessive (Figure 2B). At this stage, there is obvious

persistent scar tissue in the liver and in the blood vessels around

the liver. Nonetheless, the liver may still work well, and treating

the cause of the inflammation may inhibit further development or

even partially reverse the damage (18). However, when the

replacement of normal liver tissue by fibrous septa exceeds a

certain point, this develops into cirrhosis, the late stage of

NAFLD. At this stage, there is extensive scarring and loss of

function. Symptoms will include variceal bleeding, ascites,

fatigue, and jaundice (19, 20). As a result, the liver stops

functioning, urgent medical care and liver transplant surgery

may be required.
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2 NAFLD clinical manifestation
and epidemiology

The majority of patients diagnosed with NAFLD are

asymptomatic, and this may remain silent until it has developed

into cirrhosis (21). Right upper quadrant pain and fatigue are the

most noted symptoms among NAFLD patients. Individuals may

also have liver fat, based on an imaging assessment or evidence of

echogenic liver on ultrasound (22). Serum alanine aminotransferase

(ALT) is typically higher than serum aspartate aminotransferase

(AST) in liver-related serum tests, indicating hepatocellular stress

(23). When advanced fibrosis, cirrhosis, and portal hypertension

develop, platelet count gradually declines over time (24).

Globally, almost one billion individuals are diagnosed with

NAFLD (25). South America and the Middle East have the

highest prevalence, whereas Africa has the lowest (15). In non-

obese individuals, the rate is around 10%-30% across Eastern and

Western countries (21). There are also differences in gender and

ethnic groups in the occurrence of NAFLD in non-obese

individuals; for example, the prevalence of NAFLD is much lower

in non-obese South Asian women than in non-obese South Asian

men (22). Interestingly, NAFLD prevalence in women rises with

age, yet does not change with age in men (26). There are several risk

factors associated with NAFLD, including primary risk factors

related to insulin resistance and metabolic conditions such as

T2D, obesity, and dyslipidemia. Secondary risk factors are related

to the use of certain medications (corticosteroids, tamoxifen, and

amiodarone), metabolically acquired or congenital alterations,

surgical operations, and nutritional changes (16). In terms of

diagnosis, NAFLD is diagnosed by imaging or by histological

assessment of a liver biopsy showing a minimum infiltration of

5% of hepatocytes with steatosis in patients who drink little or no

alcohol. Additionally, no other causes of hepatic steatosis are

identified, such as Wilson’s disease or drugs such as steroids (27).
TABLE 1 Major cell type distribution in the liver and their known functions.

Cell type Population
frequency

(%)

Functions Location

Hepatocytes 60-80%
of total liver cell
population

Metabolism of protein, steroids, fats, bile secretion, sugar storage and xenobiotic metabolism. Hepatic
parenchyma

Hepatic stellate
cells (HSC)

5-8%
of non-
parenchymal
cells

Storage for fat and vitamin A, control and turnover of extracellular matrix components and secretion of
growth factors.

Space of
Disse

Kupffer cells (KC)
(macrophages)

33.3%
of non-
parenchymal
cells

Role in phagocytosis, cytokines responsible for inflammatory response and liver regeneration (such as TNF-a,
IL-1b), prostaglandin E2 (PGE2), antigen processing and iron metabolism.

Sinusoidal
lumen

Liver sinusoidal
endothelial cells
(LSEC)

50%
of non-
parenchymal
cells

Filtration and transport of nutrients from blood, lipid metabolism, adhesion molecules for leukocytes, nitric
oxide production, modulating vascular tone, presenting antigens, endocytosis, cytokine secretion, eicosanoid
release.

Sinusoidal
lining
fr
Table based on (7–9).
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3 Insulin resistance, liver immunity
and inflammation in NAFLD

3.1 Insulin resistance

Insulin resistance can in part be attributed to abnormal hepatic

insulin processing; this would otherwise physiologically regulate

glucose and lipid metabolism. The liver produces glucose using

glycogen; this happens with the use of glucogenic precursors in the

presence of a high glucagon-to-insulin ratio during a fasting period

(28). During the fed state, reductions in glucagon and raised insulin

levels signal the liver to raise glucose uptake, cease glucose

production, and store the remaining nutrients as glycogen and

lipids (29). In pathological conditions of insulin resistance, insulin

fails to regulate liver metabolism, resulting in excessive glucose

production alongside increased lipid synthesis (30); consequently,

NAFLD is associated with insulin-resistance (31).

In obese individuals with T2D and NAFLD, dyslipidemia and

hyperinsulinemia are more severe than in individuals without

NAFLD (32). Insulin resistance develops in overweight or obese

individuals when insulin action on its target tissues is compromised.

Excess fatty acids, due to lifestyle factors as well as lipogenesis,

accumulate in peripheral tissues such as the liver and AT, which

play key roles in lipid storage, synthesis, and metabolism (33).

Whilst independently affected by insulin resistance, significant
Frontiers in Immunology 04
crosstalk also occurs between the liver and AT, this crosstalk has

been reported to influence the liver’s immune compartment.

Indeed, it has been demonstrated that transplanting donor

visceral AT (vAT) from obese mice increased high cholesterol

diet (HCD)-induced liver macrophage content, worsening liver

damage, compared to mice receiving transplants from lean

donors. Adipose tissue macrophage (ATM) depletion prior to

vAT transplantation abrogated this effect. On normal chow diets,

vAT transplantation increased circulating and hepatic neutrophil

numbers in obese-transplanted mice, similarly ATM depletion prior

to vAT transplantation reversed this effect (34). Microarray analysis

of sorted CD11c+ and CD11c− macrophages isolated from donor

adipose tissue showed that obesity increased expression of genes

involved in chemotaxis from CD11c+ ATMs. CD11c+ ATMs are

known to increase in proportion in obese and insulin resistant

conditions (34). These findings indicate that secreted molecules

from ATMs act in an endocrine manner and can affect the liver’s

immune compartment, influencing susceptibility to, and

progression of, NAFLD.

AT also secretes adipokines, a special class of cytokine-like

messenger molecules, such as leptin and adiponectin (35).

Adiponectin regulates lipid accumulation both in the liver and in

AT by inhibiting fatty acid oxidation (36). Moreover, it controls

glucose homeostasis through regulating hepatic insulin sensitivity

(37). Individuals with NAFLD have lower serum adiponectin levels
A

B

FIGURE 2

NAFLD progression and cell-to-cell signaling. (A) Development and progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic
steatohepatitis (NASH) and advanced fibrosis. NAFLD can develop into NASH, liver cirrhosis and/or hepatocellular carcinoma (HCC) due to several
factors. (B) Kupffer cells (KCs) recognize imbalances in homeostasis. Their consequent signaling allows the activation of HSCs, contributing to
apoptosis and phagocytosis of damaged cells. Early infiltration and differentiation of monocytes contributes to inflammation. KC- and macrophage-
derived cytokines induce HSC activation. HSCs will deposit extracellular matrix to create fibrous septa. Created with BioRender.com.
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than the healthy population (38). Hypoadiponectinemia promotes

chronic inflammation of the liver that results from dysregulation of

fatty acid metabolism associated with insulin resistance (39).

Therefore, maintaining the adiponectin level in individuals with

NAFLD may prevent progression to NASH. In contrast, leptin

levels have been reported to be higher in individuals with NAFLD,

and higher levels of circulating leptin are associated with increased

disease severity (40). However, in vivo studies do not support a

causal association since ob/ob mice that lack leptin and develop

hyperphagic obesity have severe steatosis (41). Administration of

leptin reverses the obese phenotype and improves steatosis. Hence,

leptin may play multiple roles in NAFLD (42).
3.2 The liver’s immune compartment:
macrophages in physiology

KCs are the dominant immune population in the liver; they are

bona fide resident macrophages that stem from the yolk sac and

thus have an embryonic origin (43). KCs are self-renewing and are

phenotypically distinct from monocyte-derived macrophages that

can infiltrate the liver during disease (44). Monocyte-derived

macrophages differentiate in situ from circulating monocytes, and

thus they originate from bone marrow hematopoiesis (45). Under

healthy conditions, rodent models have between 20 and 40

macrophages for every 100 hepatocytes in the liver, making it the

organ with the highest proportion of tissue macrophages compared

to other tissues. This supports a functional role in homeostasis and

normal physiology of the liver (46). They perform a number of

tasks, including clearance of metabolic waste and cellular debris

(46), regulation of iron homeostasis via red blood cell phagocytosis

and iron recycling (47), maintenance of cholesterol homeostasis

(48), maintenance of immune tolerance (49), and promotion of

antimicrobial defense (50).

Once thought to be a homogenous population, recent studies

reveal the heterogeneity of liver macrophages, beyond their origin,

and evidence continues to accumulate to indicate that certain

subpopulations are necessary in maintaining different aspects of

homeostasis. Liver macrophage heterogeneity is increasingly

deconvoluted with the emergence of precision sorting, single-

cell/-nucleus RNA sequencing (scRNA-seq), and macrophage

targeting technologies (51). For example, one study demonstrated

that there are distinct populations of liver macrophages that

function in an inflammatory and non-inflammatory or regulatory

manner (52) Another study reported that diet-induced

steatohepatitis impairs differentiation of myeloid cells in the liver

and bone marrow (53). The diversity and subtypes of liver

macrophages are further discussed in a dedicated section below,

here we focus on the physiological distinction and roles of

liver macrophages.

Interestingly, liver macrophages constitute a separate immune

surveillance niche and form a cellular network distinct from those

in the hepatic capsule (54). The capsular macrophages are

phenotypically and developmentally different from KCs. They

arise from circulating monocytes and express the macrophage

markers F4/80 and CD64 yet are negative for the canonical
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resident macrophage markers Clec4F and T-cell immunoglobulin

mucin domain containing 4(Tim4) (55). In addition, they can

express markers also associated with dendritic cells or M1-like

polarization, such as CD11c and MHCII. These cells sense bacteria

in the peritoneum and promote neutrophil recruitment to restrict

peritoneal bacteria spread to the liver (44). KCs on the other hand

are prone to exposure to nutrients and microbial products in the

blood rising from portal circulation. KCs encounter this rich venous

blood and blood rich in insulin and oxygen from the hepatic artery

in sinusoids (56). Mice deficient in KCs have weakened survival

following infection with Listeria monocytogenes, indicating that KCs

plays an important role in the control of bloodborne bacteria.

Because of their high exposure to microbial products and

nutrient-rich blood, KCs are generally tolerogenic and promote

immune tolerance in the liver microenvironment (57). This is

achieved by the expression of regulatory or anti-inflammatory

molecules like interleukin-10 and prostaglandins, such signaling is

important in maintaining immune tolerance and can also promote

the differentiation of regulatory T cells (57) (Figure 2B).
3.3 Liver macrophages in NAFLD
development

Although KCs are generally tolerogenic, they retain the capacity

to raise an alarm following the detection of danger signals from

neighboring cells. KCs will sense disturbances in homeostasis from

lipotoxic hepatocytes and endothelial cells; their subsequent

signaling places them at the center of an intense cellular crosstalk

(Figure 2B). This crosstalk allows the recruitment of other immune

cells, the activation of HSCs, and the induction of apoptosis and

phagocytosis of damaged cells. NAFLD is characterized by an early

infiltration of monocytes; these monocytes differentiate into

macrophages in situ and contribute to the inflammatory response.

KC and other macrophage-derived cytokines can target HSCs.

TNFa, IL-1b and TGFb can all induce HSC activation. In turn,

HSCs up-regulate several ligands, like CCL2, which are able to

attract and regulate the activity of macrophages and other immune

cells in NASH (57). Fibrosis progression is largely mediated by liver

macrophage-HSC crosstalk (58). Once activated, HSCs will deposit

extracellular matrix to create fibrous septa. Thus, macrophages

amplify inflammation, support fibrogenic phenotypes and

facilitate the survival of HSCs through the chemokines and

cytokines they release (57–59). The initial inflammatory hit is key

in the progression of the disease (60). KCs can also influence

inflammation by binding of bacterial products in the liver’s portal

vein. Activation of macrophages is also accompanied by the

generation of malondialdehyde because of oxidative stress within

the liver. However, KC ablation decreased steatosis and insulin

resistance in the liver supporting the notion that KCs can also drive

the development of early NAFLD (61). Indeed, an increase in CD68

+ cells has been reported in biopsies from patients with NASH

compared to those with steatosis (62). In animal studies, high-fat

diet (HFD) and methionine-choline-deficient (MCD) diet-fed mice

have more liver macrophages that produce pro-inflammatory

cytokines (63). In addition, mice fed a MCD diet produced these
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inflammatory mediators at a higher level after 4 weeks and

decreased later, suggesting that the release of these mediators may

specifically contribute to progression and that macrophages may

play different roles once NASH is established (64). Furthermore,

clodronate injections, which deplete phagocytes, decrease steatosis

and NASH severity (65). In the absence of KCs, fatty acid oxidation

genes and peroxisome proliferator-activated receptor (PPAR)

expression were increased in the liver. This mechanism was

reported to be dependent on interleukin-1b-mediated suppression

of PPAR-a (66, 67). Further, Zhang et al (68) demonstrated that

p38a expression is increased in biopsies of patients with NAFLD,

relative to control individuals. The importance of macrophage

expression of p38a was demonstrated using macrophage-specific

knockouts, in which mice deficient for p38a developed less severe

liver disease and insulin resistance upon multiple dietary models of

NAFLD and NASH. Hence, progression to steatohepatitis is

promoted in a p38-dependent manner; p38a promotes

macrophage polarization and proinflammatory cytokine

release (57).
3.4 Macrophage subtyping: origin,
heterogeneity, and polarization

Liver macrophages can be categorized in multiple ways, for

example, based on their origin, their polarization states, their

functional specificities, or the expression of phenotypic markers.

These ways of categorizing liver macrophages are a subject of
Frontiers in Immunology 06
continuous debate, with new categories being continuously

proposed as we learn more about population and subpopulation

specificities. When origin is used, broadly speaking, liver

macrophages are grouped into resident and recruited cells,

resident cells being KCs, that are embryonically derived, and

recruited macrophages differentiate from monocytes that

originate from bone marrow hematopoiesis (69) (Figure 3A). In

mice, KCs are distinguishable by their variable expression of typical

macrophage markers as F4/80hi, CD68+, and CD11bint cells,

alongside specific liver resident markers Tim4 and Clec4F (70).

Recruited macrophages will not carry the latter to markers, and

their monocyte progenitors are Cx3cr1+, CD11b+, Ly6c+, and CC-

chemokine receptor 2 (CCR2+) (43). CCR2 in particular plays an

important role as it regulates the recruitment of monocytes and

macrophages. Genetic deficiency of Ccr2 in mice fed a HFD

reduced their food intake and decreased their development of

obesity compared to wild-type mice. Ccr2 deficiency led to a

decrease in AT macrophage content and inflammatory profiles, a

substantial rise in adiponectin expression, decreased severity of

hepatic steatosis and improved insulin sensitivity in obese mice. An

antagonist of CCR2 was found to have significant effects in

enhancing insulin sensitivity and lowering macrophages number

in adipose tissue in obese mice. In obesity and its related metabolic

consequences, CCR2 plays a role in recruiting monocytes to tissues

under metabolic stress, sustaining and amplifying inflammation in

AT and the liver, and promoting insulin resistance (71).

Polarization state can also be used to classify macrophages, it

refers to a final stage of differentiation that macrophages reach in
A B

FIGURE 3

Classification and origins of liver macrophages. (A) Based on origin, macrophages can be classified into two subgroups. One originates from the yolk
sac (Embryonic origin) and another derives from circulating monocytes that have hematopoietic origins. (B) There are two populations of liver
resident Kupffer cells (KCs), including KC1s which are CD206 low and Endothelial cell-Selective Adhesion Molecule (ESAM) negative; and KC2s which
are CD206high and ESAM+. KC1s express the KC markers: colony-stimulating factor-1 receptor (Csf1r), T-cell immunoglobulin and mucin domain
containing 4 (Tim4), C-type lectin domain family 4 member F (Clec4F), and F4/80. In contrast, The KC2 express the markers: CD36, lymphatic vessel
endothelial hyaluronan receptor-1 (LYVE1), ESAM, and CD206. Recruited macrophages can be classified based on polarity into M1 and M2. M1
macrophages are canonically inducible by lipopolysaccharide (LPS) and interferon-g (IFN-g), whereas interleukin (IL)-4 and IL-13 can induce M2
polarization. M1 macrophages secrete pro-inflammatory cytokines, such as IL-1b and tumor necrosis factor-a (TNF-a). Whereas, M2 macrophages
primarily produce anti-inflammatory factors, such as IL-10 and transforming growth factor-b (TGF-b). In between these extremes are a number of
intermediate phenotypes, and M2 macrophages can be further categorized into M2a, M2b, M2c, and M2d subtypes. Created with BioRender.com.
frontiersin.org
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response to signals from their immediate environment. Such signals

include cytokines, growth factors, exosomes, fatty acids, or various

PAMPs and DAMPs. Historically, macrophage polarization states

were designated as either M1 or M2 (72). This M1-M2 classification

is now considered outdated, macrophages in-fact exhibit enormous

diversity, they can adopt intermediate phenotypes that lay on a

sliding scale, where M1 and M2 are extremes (Figure 3B). When

considering phenotypic extremes, M1 macrophages are

proinflammatory, releasing an elevated level of proinflammatory

cytokines and generating reactive oxygen species, which stimulate

inflammatory responses (57, 59). M1 macrophages are activated by

GM-CSF, TNF-a, and IFN-g (73) and are involved in triggering the

Th1 response via the production of cytokines, including TNF-a
(74). They are fueled via glycolysis, which has been directly linked

to IL-1b production (75). On the other hand, M2 macrophages

express molecules that play anti-inflammatory and reparative roles

(76). Furthermore, M2 macrophages utilize oxidative metabolism to

fuel their functions (75). M2 macrophages are induced by IL-13 or

IL-4 (77). They produce polyamines, ornithine, and arginase-1 and

induce a Th2 response, promoting immune tolerance and tissue

repair (78). M2 macrophages have been found to be protective in

the context of inflammatory and metabolic disease, such as insulin

resistance; however, they can play deleterious roles in certain

conditions with extensive tissue remodeling, such as

atherosclerosis and cancer (79). M2 macrophages can be further

categorized into four subtypes based on the stimuli and activated

transcriptional states: alternatively activated macrophages

stimulated by IL-13 or IL-4 (M2a), type 2 macrophages activated

via IL-10 or IL-1RA (M2b), deactivated macrophages stimulated via

IL-10 or glucocorticoids (M2c), and M2-like macrophages induced

by adenosines or IL-6 (M2d) (79). The canonical transcriptional

regulators for M1-like and M2-like polarizations are respectively

IRF5, NFkb, STAT1 and IRF4, PPARG, and other members of the

STAT and SMAD families of transcription factors (80, 81). In terms

of phenotypic identification of these subtypes, both M1-like and

M2-like macrophages will express typical macrophage markers

(e.g., CD68), in addition to CD11c or CD206 to denote

polarization as M1 or M2, respectively (75, 77). Double positivity

has been reported for these two markers, as well as associating other

functional markers to denote subpopulations (82). Depending on

stimulus and context, other markers have been employed to denote

M1-like and M2-like polarization. These include CD40, CD86 and

high expression of MHC-II for M1-like macrophages, and Dectin-1,

CD36 and CD163 for M2-like macrophages (76, 83). The most

robust phenotyping strategies should include a combination of

appropriate surface markers and the use of intracellular markers

that indicate function, i.e., transcription factors responsive to the

condition studied.

Using the M1-M2 model, not only are the two extremes

functionally distinct, they are also distinct in terms of their

cellular metabolic profiles (84). The activation of M1

macrophages leads to the induction of aerobic glycolysis that

generates ATP and lactate (85, 86). The pentose phosphate

pathway (PPP), that branches from the early stages of glycolysis,

is also induced under the same conditions, by IFN-g or LPS, and

produces NADPH and substrates for nucleotide synthesis (87).
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Additionally, the M1 phenotype is regulated by carbohydrate

kinase-like protein (CARKL), implicated in the catalysis of

sedoheptulose-7-phosphate (88). CARKL is involved in the

metabolic control of pro-inflammatory immune responses by

causing a redox shift in M1 macrophages. Consequently,

stimulation of an M1-like state by LPS inhibits CARKL and leads

to generation of NADH and GSH, while the stimulation of an M2-

like state positively regulates CARKL (88). In terms of fatty acid

oxidation and oxidative metabolism, IL-4 triggers STAT-6, which

results in increased mitochondrial respiration (89, 90). M2

activation facilitates the entrance of pyruvate into the Krebs cycle,

supporting the Electron Transport Chain (ETC) and providing the

energy required for the remodeling and repair of tissues (84). The

activation of M1 macrophages results in increased glycolysis, which

aids in microbicidal activity and the management of hypoxia that

occurs within the microenvironment of the tissue (91). Glucose, in

the cytosol, is converted into L-lactate by glycolysis, in which

hexokinase (HK), 6-phosphofructokinase 1 (PFK1) and pyruvate

kinase (PK) are key enzymes. During glycolysis, glucose-6-

phosphate can be propelled to PPP pathway promoting pentose

NADPH and phosphate production. Pentose phosphates are used

for the synthesis of amnio acid and nucleotide, while NADPH

contributes to the production of ROS and NO (92, 93). Pyruvate is

stimulated to lactate in hypoxic conditions, while decarboxylated

into acetyl-CoA in the mitochondria in normoxic conditions. Here,

acetyl-CoA goes into the TCA cycle, bringing reducing agents to the

ETC to generate energy. The TCA metabolite, Citrate, participates

in fatty acid synthesis when exported to the cytoplasm, this process

can support membrane such functions as membrane synthesis (94).

Two breakpoints in M1 macrophages cause the generation of

itaconate and the increase of succinate, decreasing pH and

stabilizing HIF-1a. HIF-1a results in upregulation of glycolysis

and M1-like functions via GLUT1 expression and IL-1b

production (84). What’s more, the production of NO inhibits the

ETC. Nonetheless, M2 macrophages can acquire sufficient ATP

from the ETC and via the TCA cycle (95).

Beyond the above standard classifications, new subpopulations

of macrophages are constantly being discovered, they can

functionally lay along the M1-M2 spectrum or have significant

phenotypic differences from previously described populations. For

example, the recently described functionally distinct KC1 and KC2

populations (96) or Trem2+ lipid-associated macrophage (LAM)

(97, 98). The more abundant KC1s are identifiable by their low

expression of CD206 and are endothelial cell-selective adhesion

molecule negative (ESAM-), whereas KC2s highly express CD206,

ESAM, CD36 and the lymphatic vessel endothelial hyaluronan

receptor-1 (LYVE1) (52). LAMs were first described in adipose

tissue, they enhance the degradation and processing of lipids via

lipoprotein lipase (Lpl), fatty acid transporter Cd36, and fatty acid

binding proteins 4 and 5 (Fabp4, Fabp5) (99). LAMs have also been

described in other lipid-rich environments such as in

atherosclerotic plaques, here LAM expression of Spp1 and Cd9 is

correlated with lesion calcification and a downregulation of pro-

inflammatory genes (79). With regards to NAFLD, LAMs can

localize to fibrotic areas, macrophage aggregates or to hepatic

crown-like structures (hCLS) (100, 101), and have been reported
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to mitigate liver fibrosis (100). Daemen et al (101) revealed a

number of LAM specificities, that they express Trem2, Cd63, Cd9

and Gpmnb; and that they are recruited through Ccr2. Their failure

to accumulate in the liver of Ccr2-deficient mice increases liver

fibrosis upon high-fat, high-sucrose feeding, indicating that they

play an important role in tissue remodeling (101). Interestingly,

Trem2 that is expressed on LAMs also exists in a soluble form, and

levels in plasma reflect recruitment and expansion of LAMs in the

liver (98) (Figure 3B).

Whilst significant progress has been made in deciphering the

heterogeneity of liver macrophages, under physiological and

pathophysiological conditions, most of these studies have been

carried out in murine models. More recently, several resources

have been developed using novel single cell or single nucleus

sequencing to translate findings to humans and shed light on

conserved subsets and population features in liver macrophages

from human biopsies (e.g., www.livercellatlas.org) (102–104).

Thanks to these studies that expand the knowledgebase on

human liver macrophages, the translatability of findings from

murine studies is increasing with time.
4 Macrophage lipid processing
in NAFLD

The multiple hit hypothesis, which postulates that simultaneous

influences from the gut and adipose tissue produce hepatic fat

deposition and inflammation (105, 106), has gained widespread

acceptance. Monocytes, recruited and resident macrophages are

involved in influencing hepatic lipid accumulation and in triggering

inflammation that takes place in NAFLD (107, 108). The role of

macrophages in lipid processing is an area of active research, where

questions address both cellular metabolism of microenvironmental

lipids, as well as macrophage efferent signaling that can influence

tissue and systemic lipid homeostasis (109, 110). In a study by

Rivera et al (110), it was reported that the depletion of KCs

abolished fat accumulation in the liver and delayed the

development of NASH induced by an MCD diet. This

observation goes hand-in-hand with reduced inflammatory

burden (110). This observation was found to be associated with a

reduction in two receptors: CD36 and the toll-like receptor 2

(TLR2). This observation is further supported by the requirement

of TLR2-dependent fatty acid uptake of diacylated lipoproteins by

CD36 for lipid trafficking (67, 99, 110, 111). The innate immune

signaling system mediated by Toll-like receptors (TLRs) is

implicated in the progression of NASH. However, combination of

TLR2 and palmitic acid is required for inflammasome activation,

which results in NASH progression. To induce NASH in wild-type

(WT) and TLR2-deficient mice, a choline-deficient amino acid-

defined (CDAA) deficient diet was fed for 22-weeks. After the

recipient mice were lethally irradiated, bone marrow transplanted-

TLR2 chimerism was generated. WT mice were treated with TLR2

ligands and/or palmitic acid to stimulate their KCs and HSCs. In

response to a CDAA diet, WT mice exhibited severe steatohepatitis

and liver fibrosis. Conversely, mice lacking TLR2 did not progress
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to NASH. Although KCs and HSCs both respond to TLR2 ligands,

TLR2 bone marrow chimeric mice demonstrated that KCs play a

greater role in the TLR2-mediated progression of NASH than HSCs

(112). Conversely, the impact of lipid accumulation in KCs is not

always an unwanted outcome. Indeed, in work presented by Leroux

and colleagues, it was argued that the upregulation of triglyceride

storage in KCs from HFD-fed mice is triggered as part of a normal

immune response. In HFD-fed mice, lipidomic and RT-qPCR

analysis revealed that KCs become lipid-laden and up-regulate

lipogenesis genes Dgat1 and Scd1 (100, 113, 114). This

upregulation is associated with a functional adaptation, that is

lipid-laden KCs are primed to recruit lymphocytes more

efficiently (CD4+ T cells and B cells in their investigation), of

note this adaptation is reversible with the inhibition of lipogenesis.

In addition, it was discovered that systemic cholesterol levels

influence cellular cholesterol homeostasis in lipid-laden KCs

(100). During hypercholesterolemia, macrophage cholesterol

efflux is impaired, this drives their polarization towards a

proinflammatory phenotype (115, 116). The association is strong

between dietary cholesterol intake and hepatic cholesterol in the

development of NASH in both human and animal models. A study

by Bieghs et al (91), showed that the deletion of Cd36 and

macrophage scavenger receptor 1 (Msr1) in low-density

lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice attenuates

liver inflammation, indicating involvement of the cholesterol

uptake pathway (117). This is supported by large scale

epidemiological studies, where dietary cholesterol consumption

was independently associated with the development of NASH and

cirrhosis (118, 119). It has also been shown that the beginning of

hypercholesterolemia might affect membrane fluidity, which, in

turn, can cause changes in phagocytic capacity, a process known to

be disrupted in murine models of NASH (115, 119–121). It is

speculated that the KCs scavenged free cholesterol (including

crystals), cholesterol esters, and triglycerides from the remaining

big lipid droplets of dying hepatocytes. Naturally, KCs will

hydrolyze cholesterol esters and TG before oxidizing the liberated

fatty acids. However, in the case of free cholesterol, it cannot be

further metabolized, causing it to be retained in KCs, leading to

transformation into foam cells, stimulating inflammatory and

fibrotic pathways that cause NAFLD to progress to NASH.

Together, these observations provide insight into the importance

of KCs in participating in the underlying mechanism of hepatic

lipid accumulation and inflammation.
5 Perspectives: murine modelling of
NAFLD and steps in replicating the
two-hit model

There is a wide range of mouse models for investigating the

pathogenesis of NAFLD. Agreed standards in the use of these

models would be valuable to enable valid interpretations and

comparisons between the many studies being carried out (122).

Furthermore, given that the mechanisms for the development of

NAFLD in humans are still not fully defined, it follows that it is
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highly unlikely that the mechanistically ideal mouse model has been

developed. An ideal model for this multi-organ, systemic disease

would closely replicate the features of the human disease within a

predictable time frame while also showing that its use in potential

treatment trials is translatable to the human condition. With echoes

of Knudson’s two-hit hypothesis for cancer in the early 1970s,

James et al (123) proposed a similar concept for NAFLD, with

important factors in disease progression being both steatosis and

inflammation, and neither alone being sufficient to lead to NAFLD.

It is also entirely possible that NAFLD is reached via multiple

pathways even though the endpoint definitive features of the disease

are similar; this also means that multiple mouse models may be

valid for studying different aspects of NAFLD. Here we briefly

discuss the main approaches and the features recapitulated by

different models (Table 2). Characteristics of NALFD progression

in humans fall into three broad categories: firstly, metabolic

syndrome (obesity, hyperglycemia, insulin resistance, T2D);

secondly, specific liver features (steatosis, hepatocyte ballooning,

lobular inflammation, liver fibrosis); and, thirdly, wider systemic

inflammatory disease (including adipose tissue inflammation,

intestinal inflammation with intestinal barrier dysfunction, and

alterations to gut microbiota) (122). Mouse models of NAFLD

used in research to date also fall into three common categories, or

combinations thereof: dietary, chemical, and genetic. Notably, most

models use the C57Bl6 strain because of the propensity of this strain

to develop metabolic and inflammatory disease, and several features
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of NAFLD compared with other strains. Although, the same

amount of fibrosis and severity of NASH do not always

spontaneously arise in these mice as occurs in human disease

(124). In terms of methodology, it would be most ideal to be able

to show disease progression during an ongoing study, at multiple

timepoints. There is also no standard agreed-upon pathological

progression in terms of liver histology in mice as it relates to human

NAFLD, though at least one has been suggested (118, 125). Thus,

progress has been made with murine models but the field’s

translatability to humans is still under active investigation (126).
5.1 Dietary models

Among the dietary models, a common approach has been to use

diets deficient in one or more nutrients. The MCD diet has been

adopted for some studies and has the advantage of inducing NASH

within a few weeks, but it fails to model the human disease in terms

of its often-concomitant obesity. Animals on this diet lose weight,

but they still develop hepatic insulin resistance (127). A

modification of this diet, the choline-deficient-L-amino-acid-

defined (CDAA) diet, overcomes the weight loss issue with the

MCD diet; though NASH develops later (20-22 weeks), the diet still

elicits limited metabolic syndrome-like characteristics compared to

NAFLD in humans (128–131). The established atherogenic diet has

also been investigated for its usefulness in NAFLD mouse models:
TABLE 2 Comparison of different rodent models of NAFLD.

Obesity Insulin resistance Steatosis Fibrosis NASH

Dietary models

MCD No Hepatic IR only Yes Yes Yes

CDAA No No Yes Yes Yes

HFD Yes Yes Yes No No

HFHS (inc. fructose/glucose/sucrose) Yes Yes Yes Some Some

Chemical/pharmacological

STZ + HFD Yes Yes Yes Yes Yes

CCL4 No No Yes Yes Yes

Paracetamol No No Yes Yes Yes

Genetic models

ob/ob mice Yes Yes Yes No No

db/db mice Yes Yes Yes No No

PTEN knockout mice No No Yes Yes Yes

SREBP-1c transgenic mice Weight loss Yes Yes Yes Yes

KK-Ay/a mice Yes Yes Yes No No

PPAR-a knockout mice No No Yes No No

AOX knockout mice No No Yes No Yes (transient)

CD36 knockout mice No Hepatic IR only Yes No Yes

ApoE knockout mice No No Yes No No
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the diet induces steatosis, inflammation, and other histological

features of NASH and NAFLD in the mouse liver but does not

cause weight gain or insulin resistance (132, 133). Also, simply

adding fructose to water was found to result in steatosis, increased

weight, and hyperglycemia, though no definitive NASH (134). More

commonly used currently are high-fat diets (HFD), which can vary

widely in the amounts and types of fat used. These generally induce

steatosis and inflammation to a lesser degree than in mice fed an

MCD diet. However, they have the advantage of inducing a

metabolic syndrome-like pathology that is more similar in profile

to human NAFLD, with obesity, insulin resistance, and

hyperglycemia (135). Modifications of the HFD, including a

combination with fructose (High Fat High Fructose Diet) or

sucrose (High Fat High Sucrose Diet) added, either to water or

food, result in a phenotype more closely resembling human

NAFLD, but not the full extent of liver damage (136, 137). Mice

on other HFD variations, the High Fat High Cholesterol Diet (111)

and the American Lifestyle Induced Obesity Syndrome (ALIOS)

diet which is rich in trans fats (138), also showed additional NAFLD

compared with mice on a typical HFD. A large disparity exists

between individuals in terms of evolution from NAFLD to NASH,

and between mouse strains used for in vivomodelling. In one study,

an MCD diet was used to induce NASH in C57Bl6/J and Balb/c

mice, which exhibit very different responses in terms of innate and

adaptive immune responses.C57Bl6/J mice that are more prone to

Th1 and M1-like responses, showed more steatosis and lobular

inflammation following 4 weeks on the MCD diet than Balb/c mice,

which are more prone to Th2 and M2-like responses. Accordingly,

neither the Th1/Th2 bias nor IL-4 (interleukin 4) or GATA-3

expression in the liver of either strain is significantly modified by

MCD feeding (indicating that innate immune polarization plays a

more important role). As a result of MCD feeding, liver mRNA

expression of macrophage activation markers M1 (iNOS), MLD

(inducible NO synthase), and MCD (CXC chemokine ligand 10)

were significantly higher in C57BL6/J mice, however, M2

polarization markers IL-10 and MGL-1 (macrophage galactose-

type C-type lectin-1) remained the same. In addition, C57Bl6/J mice

fed MCD had a higher level of circulating IL-12 than Balb/c mice

fed MCD. Compared with mice fed MCD, macrophages isolated

from the livers of C57Bl6/J mice expressed significantly more M1

markers (139).

As well as dietary fat, the form, content and delivery of sugar

can be manipulated to influence susceptibility to NAFLD and a

NASH-like phenotypes in rodents (140). The considerations have

been whether sugar should be delivered in the form of glucose,

fructose or sucrose (or in combination), and whether this is

provided as part of the solid diet or in drinking water. There are

mechanistic advantages and practical considerations for each of

these options, for example quantity consumed or calories per gram

are easier to control when incorporated into solid food. Fructose

alone making up to 60% (w/v) of drinking water can reliably induce

steatosis, when fructose is combined with glucose in a solid diet

(30% w/v of each), this also results in steatosis (140). Interestingly,

when prolonged the 60% (w/v) fructose in drinking water can

induce fibrosis, and the same concentration in a solid diet (kcal/w)

can induce inflammation and fibrosis. Up to 50% (w/v) sucrose in
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drinking water, can induce inflammation and fibrosis. In studies of

these diet, fructose-supplemented drinking water causes steatosis

after 8 weeks, and leads to a significant rise in body weight, and

glucose and plasma triglyceride levels (141). Moreover, intestinal

bacterial overgrowth is detected after 8 weeks of treatment along

with high levels of endotoxin in the portal blood and activation of

KCs (134). However, weight gain, followed by development of fat

deposits in the abdomen, is not essentially prognostic of steatosis. It

has been revealed that fructose causes greater fat accumulation in

the liver than sucrose and glucose, despite of the weight gain from

glucose and sucrose (142).
5.2 Chemical/pharmacological models

Among the chemical mouse models of NAFLD is the well-used

streptozotocin induction of T2D. A low dose of intraperitoneal or

subcutaneous streptozotocin shortly after birth leads to

inflammation and the destruction of pancreatic islets; when

combined with a HFD, animals progress quickly through

steatosis, NASH, and increased fibrosis to hepatocellular

carcinoma (HCC) around 20 weeks of age (143). The use of

carbon tetrachloride (CCl4) in multiple IP doses leads to

significant but reversible fibrosis (144); when combined with

HFD steatosis, NASH and increasing fibrosis are seen (145);

however, the systemic metabolic aspects of NAFLD are absent

(146). One-time administration of diethylnitrosamine (DEN) has

been used to model HCC; when combined with a HFD, animals do

gain weight and develop NASH, as well as some other aspects of the

metabolic syndrome associated with NAFLD (147). In each case,

the value of toxicity or drug-induced NASH is questionable because

it most likely doesn’t parallel the progression of the disease in

humans and the mechanisms leading to fibrogenesis may be

completely independent.
5.3 Genetic models

Leptin is an adipokine that centrally controls appetite. The

leptin knockout mice, Lepob/Lepob (ob/ob), are obese, insulin

resistant, and hyperglycemic, and show some degree of steatosis.

Likewise, leptin receptor knockout mice, Leprdb/Leprdb (db/db),

have a similar phenotype to ob/ob, and in both cases, an additional

stimulus is required for the development of NASH. Several groups

have explored the combination of genetic models with dietary or

chemical stimulus to induce NAFLD with varying degrees of

success (148–151). Mice with a mutation in Alms1, which

encodes a protein involved in control of satiety via the

hypothalamus, also require a dietary stimulus (HFD) to induce

symptoms similar to NAFLD, with the lipid profile not mirroring

the human disease (152). Sterol regulatory element-binding protein

(SREBP-1c) transgenic mice also develop insulin resistance and

steatosis (123). Better for examining the metabolic syndrome are

the established atherosclerosis models such as ApoE-/- mice

(apolipoprotein E deficient) and Ldlr-/- mice (LDL receptor

deficient); these animals are predisposed to hypercholesterolemia,
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atherosclerosis, and obesity, and on a HFD or Western diet will also

develop NAFLD/NASH (153).
6 Perspectives: emerging roles of the
gut-liver-brain axis

Gut-liver axis refers to the relationship between the gut and

liver at the proximal anatomical and physiological level. Bile acids

(BA) produced from the liver are secreted into the duodenum to aid

in lipid metabolism and bacterial homeostasis. Products of ileal

absorption are then transported back to the liver via portal

circulation. As such, the liver and the gut are always in contact

with each other. Playing an important role in regulating this contact

are the KCs and hepatic dendritic cells (DCs) that line sinusoids to

filter and remove gut-derived microorganisms, microbial products

and microbe-associated molecular patterns (MAMPs) from portal

circulation (154).

Similar to the liver, the intestine has its own set of macrophages,

mainly in the lamina propria (LP). Intestinal macrophages are most

abundant in the colon due to the higher microbial load.

Macrophages are constantly replenished in the LP because of

extravasated Ly6Clo CX3CR1hi MHCII+ monocytes that develop

into mature Ly6Clo CX3CR1int macrophages. LP macrophages are

highly phagocytic and typically remain unresponsive towards

harmless bacteria and food antigens. They play an important role

in the induction of oral tolerance by sampling the gut lumen and

presenting antigens to DCs during the induction process. Related

self-renewing macrophage are also found near intestinal neurons

and blood vessels. Under the LP, macrophages associated with

neurons express genes typically enriched in microglia, the

specialized central nervous system (CNS) macrophages. As a

result, these genes may be essential for maintaining a healthy

local neuronal population in a manner similar to microglia in the

CNS (154).

The contact of peripheral macrophages with neurons has led to

a growing field of research aiming to elucidate the effects of the gut-

liver-brain axis in health and disease. The gut-liver-brain axis is

complex with several regulators such as the intestinal barrier, gut-

vasculature barrier, blood-brain barrier, and the immune system.

The gut-brain axis is involved in modulating several physiological

and homeostatic functions (155, 156). Namely, the CNS regulates

gut function through the hypothalamic-pituitary-adrenal axis

(HPA) and the autonomic nervous system. Moreover, the gut also

alters CNS function through microbiota-derived molecules, gut

hormones, and neurotransmitters (Figure 4A). These molecules

enter the CNS via the enteric nervous system, vagus nerve, or the

immune system.

Gut-liver interaction is regulated by enterohepatic circulation,

and a disruption of this axis has been suggested to contribute to

NAFLD, which itself has been associated with lower cognitive

performance. This suggests a link between abnormal liver

metabolism and neurodegenerative diseases, including

Alzheimer’s disease (AD) (157–159). Physiologically, circulating

Amyloid b peptides (Ab) are detoxified by the liver. A key feature in
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AD is the accumulation of Ab plaques and defective clearance by

the liver through lipoprotein receptor-related protein 1 (LRP1)

(160). In healthy conditions, insulin promotes LRP1 translocation

to the cell membrane in hepatocytes favoring Ab clearance (161).

Low hepatic expression of LRP1 is observed in patients with liver

diseases, accompanied with high levels of circulating Ab, suggesting
impaired LRP1-mediated clearance of Ab (160). Insulin resistance

impairs LRP1 translocation, contributing to its functional

impairment in clearing Ab (161). In one study by Więckowska-

Gacek et al. (162), long-term feeding of Western diet in mutant

amyloid protein precursor (APP) AD mice, which express mutant

human APP with the Swedish mutation, accelerated the rate of

several abnormalities in the brain, compared to normal diet fed APP

AD mice. Interestingly, in the same study, liver damage in Western

diet fed mice was correlated with the deposition of Ab in the brain

(162). Indeed, evidence shows that diets high in simple sugars, salt,

cholesterol, saturated fatty acids, trans fatty acids and low in fiber

and mono- and polyunsaturated fatty acids, as in the Western diet,

impair Ab clearance in the periphery by the liver through increased

activity of the receptor for advanced glycation end-products

(RAGE) (8, 159, 163). Moreover, mice fed a Western diet exhibit

impairments in the blood-brain-barrier (BBB), which has been

shown to trigger oxidative stress, leading to enhanced activity of

b-secretase and g-secretase, which promote the generation of Ab
peptides (9, 162). Hypercholesterolemia has also been proposed to

play a major role in the progression of neurodegenerative diseases

(164) (Figure 4B). Elevated levels of cytochrome P450 CYP27A1

and CYP7A1 isoforms in hepatocytes during NAFLD underlie the

conversion of serum cholesterol into 27-hydroxycholesterol, which

crosses freely through the BBB (116, 165, 166). High levels of 27-

hydroxycholesterol in the brain leads to oxidative stress and the

development of AD pathology (165, 167–169). Both dyslipidemia

and the systemic inflammation, that often follows, are major

candidate contributors to neuroinflammation and compromised

cognitive function.
A B

FIGURE 4

Emerging roles of the gut-liver-brain axis. (A) Barriers and signals
between the gut, the liver and the brain. NT, neurotransmitters; ANS,
autonomic nervous system; HPA, hypothalamic-pituitary-adrenal.
(B) NAFLD and its comorbidities contribute to central nervous
system (CNS) dysfunction. Created with BioRender.com.
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Evidence also shows that the hepatic branch of the vagus nerve,

which serves as a major connection between the liver and CNS,

plays a pivotal role in the progression of liver cirrhosis, and

influences the gut microbiome (145, 146). Another key player in

the liver-brain axis is the brain-derived neurotrophic factor (BDNF)

(170, 171). In the brain, BDNF plays several roles including, but not

limited to regulating synaptic plasticity, neuroinflammation, and

neurogenesis (172–175). Furthermore, BDNF can also modulate

insulin signaling and liver disease in animal models of cirrhosis and

alcohol-induced liver disease (176–178). Interestingly, experiments

show that mice with cirrhosis have high levels of the BDNF in the

liver, and hepatic vagotomy levels were found to be significantly

reduced in the liver but increased in the brain. While these studies

clearly indicate that BDNF plays a role in liver and brain diseases,

further studies are warranted to elucidate its downstream effects in

the CNS and periphery. A common mechanism leading to

disruption at the gut, liver or brain levels is inflammation. This

inflammation is caused by macrophages that reside in each

compartment. The most plausible starting points for

dysregulation of the gut-liver-brain-axis are either at the level of

the intestine or in the liver itself. These two tissues are populated by

specialized macrophages very susceptible to encountering bacteria

or bacterial products, they are also strongly affected by metabolic

stress and insulin resistance at a very early stage. Subsequent

inflammatory signaling may act in an endocrine manner, similar

to crosstalk from AT, to influence microglia in the CNS or induce

hyper-responsiveness of circulating monocytes, making them more

likely to cross the BBB and contribute to neuroinflammation. Other

potential mechanisms linking these systems is microbiome-

mediated signaling via bacterial metabolites or other products,

that can act at the level of each organ; or actions of nerve-

associated macrophages (NAM). The study of peripheral NAMs

is in its infancy, they have been identified in a limited number of

organs and have been attributed physiological roles in few

conditions. One relevant example is the role for NAMs in adipose

tissue, these have been described to regulate catecholamine release

from sympathetic nerves that populate the tissue. Nerve-interactive

macrophages have also been identified in the liver and are known to

induce neuropathy and promote insulin resistance, however their

mechanisms of activation remain unknown (179). In the context of

alcohol-associated liver disease however, KCs have been

demonstrated to respond to gut-derived catecholamines with

hepatoprotective outcomes (180).

7 Concluding remarks, therapeutic
and technological innovations
in NAFLD

NAFLD has become one of the most common liver diseases

worldwide. Its complicated pathogenesis is related to disorders such

as obesity, insulin resistance, T2D, and hypertension. All these

conditions carry the risk of initiating or aggravating the

development of steatosis, fibrosis, cirrhosis, and hepatocellular

carcinoma. Oxidative stress and changes in chemokines,

adipokines, and anti- or pro-inflammatory cytokines are key
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factors in the development of NAFLD. KCs and monocyte-

derived macrophages are phagocytes in the liver that execute

several metabolic and immune-related functions under

homeostasis and in disease. Macrophages play a vital role at all

stages of NAFLD and contribute to pathology. Therefore, targeting

liver macrophages is promising as a therapeutic avenue. Focusing

on macrophages to treat NAFLD in its early stages may be an ideal

method to reduce the damage or likelihood of progressing to the

later stages of NASH. Also, further interpretation of the crosstalk

between macrophages and other immune cells similarly remains a

promising area of exploration, as it will not only improve our

understanding of NAFLD pathogenesis but also help us discover

novel circulating biomarkers or therapeutic interventions for

NAFLD (181). As such, additional studies are required to further

investigate the function of specific macrophage subpopulations and

their specific markers or receptors in NAFLD progression and

target them for treatment (182).

Regulating macrophage subpopulation abundance, or their

specific functions, is an area of active research. To meet this

research need, in-depth mechanistic studies at the transcriptional

or epigenetic levels must be carried out. Epigenetic regulation plays

an important role in dictating macrophage fate. Targeting

transcriptional machinery, via transcription factor activity or

epigenetic modifications is another encouraging strategy (183).

Carotenoids, for example, are also promising anti-inflammatory

and antioxidant molecules; in preclinical studies, they impede

inflammation, steatosis, and fibrosis. However, there is no clinical

evidence to date that carotenoids have beneficial effects against

NAFLD in patients. Further studies are warranted to demonstrate

the potential role of carotenoids, or carotenoid-related molecules, in

the prevention and treatment of NAFLD (184).

Inflammation and fibrosis resulting from NASH have also been

associated with galectin-3 proteins. Galectin-3 proteins are

members of a family of glycoproteins that bind to galactose-

containing oligosaccharides. Their expression on macrophages

suppresses the pro-inflammatory phenotype and upregulates

expression of type-2 molecules, such as TGFb (185). Pre-clinical

outcomes of a galectin-3 inhibitor, the GR-MD-02, indicated its

success in reversing NASH with cirrhosis, supporting clinical

development trials in future that target advanced fibrosis/cirrhosis

with NASH. GR-MD-02 is derived from a natural plant compound

that contains galactose residues and binds to galectin-3 (186).

Another strategy targeting macrophages has been use of a dual

inhibitor of CCR2 and CCR5, Cenicriviroc. Cenicriviroc acts by

decreasing recruitment of pro-inflammatory macrophages in mice

with liver fibrosis (187). Cenicriviroc was proven effective in a phase

II clinical trial (NCT02217475) of NASH patients with liver fibrosis.

Fibrosis was ameliorated in patients who were administered 150 mg

of Cenicriviroc for 2 years, with a good safety profile (188).

However, a phase III trial (NCT03028740) with the same

compound, in individuals with advanced fibrosis and cirrhosis,

was terminated due to lack of efficacy (189). Therefore, a strategy

targeting CCR2/CCR5 may only be effective in early stages of

NASH, but not in advanced fibrosis or cirrhosis.

Other targetable molecules include those secreted from

macrophages, that may have paracrine or endocrine effects. For
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example, enhanced production of IP-10 and MCP-1 by the

intrahepatic KCs can trigger the development of NASH. In

addition, silencing of TNFa in myeloid cells abrogated the

production of these chemokines and prevented the development

of NASH. Thus, Inhibition of TNFa might delineate a novel

therapeutic target in NASH. Therefore, blockade of TNFa might

represent a novel therapeutic target in NASH with the potential to

limit tissue injury and possibly prevent the progression to severe

liver disease (190). With a low-dose dexamethasone conjugate,

selective anti-CD163 targeting of KCs inhibited fructose-induced

steatohepatitis in rats without systemic side effects. Therefore,

CD163 positive macrophages could be a potential therapeutic

target to inhibit the progression of further liver damage in NASH

patients (191). Targeting specific KC subsets, like the recently

identified KC2s may also be an avenue for future intervention.

The CD206hi ESAM+ KC2 regulate liver metabolism in the obese

murine model of obesity by expressing the fatty acid transporter

CD36. Silencing CD36 improves glucose homeostasis and based on

a mechanism that improves oxidative stress in KC2 cells. In obesity,

the reduction of oxidative stress in KCs has been shown to enhance

liver metabolism and reduce ROS levels within the liver. As such,

strategies that affect KC2 metabolic function can be considered for

the regulation of liver metabolic diseases (52).

Innovative technological developments and studies in

appropriate preclinical models will further help elucidate the

complex pathophysiology of NAFLD and the roles of

macrophages. Further basic and clinical research is essential for

better understanding the molecular mechanisms by which the

chemokine system mediates hepatic and adipose inflammation, as

well as their interaction in the progression of NAFLD (192). To

improve the status of patients with NAFLD, combination

approaches are required that include lifestyle modifications

personally tailored to the patient’s disease drivers (obesity, T2D)

as well as specific pharmacological interventions that target

influential pathways (193). Furthermore, classifying patients at

specific disease stages might provide a more individualized

treatment strategy, which could improve treatment responses. In
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conclusion, combinational treatment approaches could lead to

beneficial effects. Specifically, combining anti-inflammatory and

metabolic approaches is a promising strategy for future clinical

studies (194).
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