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Head and neck squamous cell carcinomas (HNSCCs) refers to a group of highly

malignant and pathogenically complex tumors. Traditional treatment methods

include surgery, radiotherapy, and chemotherapy. However, with advancements

in genetics, molecular medicine, and nanotherapy, more effective and safer

treatments have been developed. Nanotherapy, in particular, has the potential to

be an alternative therapeutic option for HNSCC patients, given its advantageous

targeting capabilities, low toxicity and modifiability. Recent research has

highlighted the important role of the tumor microenvironment (TME) in the

development of HNSCC. The TME is composed of various cellular components,

such as fibroblasts, vascular endothelial cells, and immune cells, as well as non-

cellular agents such as cytokines, chemokines, growth factors, extracellular

matrix (ECM), and extracellular vesicles (EVs). These components greatly

influence the prognosis and therapeutic efficacy of HNSCC, making the TME a

potential target for treatment using nanotherapy. By regulating angiogenesis,

immune response, tumor metastasis and other factors, nanotherapy can

potentially alleviate HNSCC symptoms. This review aims to summarize and

discuss the application of nanotherapy that targets HNSCC’s TME. We highlight

the therapeutic value of nanotherapy for HNSCC patients.

KEYWORDS
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a neoplastic disease that is

prevalent worldwide and is on the rise (1). A vast majority-over 60% of HNSCC patients

are diagnosed at III or IV tumor stages, and around 10% of patients have distant metastases

(2). The consumption of alcohol and tobacco are recognized risk factors for HNSCC,

however, some recent studies have revealed a strong association between human
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1189323/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1189323/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1189323/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1189323/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1189323&domain=pdf&date_stamp=2023-05-24
mailto:417585093@qq.com
mailto:amy198905@163.com
https://doi.org/10.3389/fimmu.2023.1189323
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1189323
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2023.1189323
papillomavirus (HPV) infection and HNSCC (3). Currently,

comprehensive therapy with the combination of chemotherapy,

radiation, and surgery are available for HNSCC (4). Nonetheless,

the 5-year survival rate of HNSCC patients remains unsatisfactory

due to various reasons, including late stage detection, the likelihood

of recurrence, severe side effects, and resistance to medication (5, 6).

The interaction between tumor cells and their tumor

microenvironment (TME) plays a pivotal role in the progression

of malignancy and the poorer prognoses of patients, as has been

well-documented (7). Therefore, the potential mechanism under

the high rate of metastasis and recurrence of HNSCC is likely

attributed to the crosstalk between the tumor cells and TME (8).

The TME comprises various types of cells that include tumor

associated fibroblasts, vascular endothelial cells (EC), adipocytes,

mesenchymal stem cells (MSCs), and immune related cells, and

diverse non-cellular components such as cytokines, chemokines, the

extracellular matrix (ECM), and extracellular vesicles (EVs), as

illustrated in Figure 1 (7, 9, 10). As it is well-established that

TME plays key roles in HNSCC progression and treatment

resistance, targeting the constituents of TME for therapeutic

benefits in HNSCC patients is gaining increased attention (11).

Nanotechnology has emerged as a promising area of research

in various fields, including medicine and oncology, which has led

to significant advancements in the diagnosis and treatment of

cancer (12). Owing to the parallel expansion of biotechnology and

nanomedicine, nanotherapy is perceived as a novel therapeutic

approach for the management of different types of cancers (13). In

particular, nanotherapy has exhibited immense potential for the

treatment of head and neck squamous cell carcinoma (HNSCC)

by augmenting the efficacy of radiotherapy, chemotherapy and

immunotherapy through the incorporation of multiple drugs

and/or molecules (12, 14). This review aims to provide a

comprehensive overview of the current developments in

nanotherapy targeting the tumor microenvironment (TME) in

HNSCC, emphasizing the therapeutic benefits of these

novel interventions.
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Nanotherapy in HNSCC

HNSCC therapeutic options traditionally comprise surgery,

chemotherapy, radiotherapy, and combinations thereof. Surgical

resection is particularly effective in treating carcinoma in situ or

early-stage cancer, with chemotherapy presently regarded as the

standard treatment scheme (15). However, surgery is not

recommended for patients with late-stage or those with widely

distant metastasis. Chemotherapy is also subject to limitations,

including non-specific targeting, cytotoxicity, short half-life, poor

solubility, drug resistance, and undesirable side effects (16).

Consequently, the development of a drug delivery system capable

of precisely targeting the tumor region is urgently needed. In recent

years, nanotechnology has emerged as a promising area in medicine

and oncology, with nanotherapy being extensively studied in

cancer. Nanotherapy has several significant advantages, including

accuracy, safety, modifiability, and biocompatibility, which may

potentially address the limitations of conventional therapies (17,

18). Nanoparticles are defined as particles with nanometer size,

superparamagnetic behavior, high surface-to-volume ratio, and

unique fluorescence properties (19), Among the most widely

researched nanoparticles in the medical field are liposomes,

polymeric nanoparticles (PNPs), monoclonal antibody

nanoparticles, metallic nanoparticles, among others, which can be

employed for drug delivery and release (20, 21).

Recent years have seen numerous proposed nanotherapies for

the treatment of head and neck squamous cell carcinoma (HNSCC)

(Figure 2). Dihydroartemisinin (DHA) is one such therapy, but its

poor solubility and short half-life in blood has limited its efficacy

against HNSCC (22). To address these limitations, a magnetic

dihydroartemisinin nano-liposome was designed and constructed

to enhance the targeted delivery and bioavailability of DHA. The

efficacy of this liposome was confirmed via in vitro and in vivo

assays, demonstrating its potential to suppress tumor growth (23).

Paclitaxel (PTX) is another chemotherapeutic drug widely used to

treat locally advanced HNSCC (24), but its clinical use has been
FIGURE 1

The tumor microenvironment of HNSCC contains various cellular components, including tumor cells, immune related cells, stromal cells and some
non-cellular components, such as cytokines, chemokines, EVs, ECM and the hypoxia environment.
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limited by severe side effects (25). To improve its therapeutic value,

a polymeric nanodrug system was developed to target the

transmission of PTX. This system displayed higher efficacy and

fewer adverse reactions than free PTX in a HNSCC mouse

xenograft model (26). Future research is required to provide more

extensive evidence of the application of PTX-NPs in HNSCC

patients. Additionally, zinc oxide-based (ZnO) nanoparticles

(NPs) have been shown to have anti-tumor properties (27–29),

with the ability to inhibit the viability of HNSCC cells (30).

However, current studies have only been conducted at the cellular

level, and further animal studies and clinical assays are necessary

to fully determine the therapeutic value of ZnO-NPs for

HNSCC patients.
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Nanotherapy targeting TME in HNSCC

Several nanotherapies have demonstrated effectiveness in

enhancing the prognosis of tumor patients through targeting

TME components, in addition to acting against tumor cells (31).

Targeting TME presents significant therapeutic advantages

compared to direct cancer cell targeting. This is due, in part, to

the unstable genome of cancer cells, predisposing them to drug

resistance, while TME-associated non-cancer cell genomes are

generally more stable and susceptive (7). Consequently, an

increasing number of studies have investigated the targeting of

TME components in nanotherapies, including those designed for

HNSCC treatment (see Figure 3) (32, 33).
FIGURE 2

The available approaches of nanotherapy for HNSCC. A variety of nanoparticles, including liposome, metal particle, polymeric nanoparticle, micelle
and magenic particles, are used for the treatment of HNSCC by carrying protein/peptide, antibodies, drugs, molecules and siRNA. These
nanoparticles may function by enhancing the radiotherapy, combining photothermal therapy, inducing immune therapy, and accurately delivering
agents to TME.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1189323
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1189323
Nanotherapy antagonizes
angiogenesis in HNSCC

Angiogenesis is a biological process that plays a crucial role in

the formation of new blood vessels, enabling the delivery of oxygen

and nutrients to all parts of the body. In the case of a tumor,

angiogenesis is activated to support the rapid growth of cancer cells

by developing an abundant vascular network in the tumor

microenvironment (TME) (34). Recent evidence has shown that

angiogenesis is a hallmark of aggressive cancers and plays a pivotal

role in driving the malignant transition of tumors (35). Although

anti-angiogenic drugs have been developed to prevent the
Frontiers in Immunology 04
formation of new blood vessels or break down existing vessels by

targeting endothelial receptors and angiogenic-related cytokines,

the clinical trials analyzing 38 studies found no significant benefit of

angiogenesis inhibitors in patients with head and neck squamous

cell carcinoma (HNSCC) (36, 37). Moreover, angiogenesis

inhibitors were associated with unexpected toxicity. Nevertheless,

nanoparticles loaded with angiogenesis inhibitors have shown great

efficacy and safety in HNSCC patients (Table 1). A hybrid-

nanoparticle (QAuNP) formulated with quinacrine and gold

effectively attenuated angiogenesis, metastasis, and cancer stem

cell proliferation in oral cancer (38). The therapeutic mechanism

was associated with the modulation of the cytokine profile in the
FIGURE 3

Illustration of nanotherapy targeting TME in HNSCC. Nanoparticles were injected intravascular or intratumor and subsequently induced the anti-
angiogenesis (with quinacrine, PTX, VEGF siRNA, VEGF transcriptional repressor, GD16 peptide and resveratrol as the core agents), immune response
(with imiquimod, dasatinib and oxaliplatin, aPD-1, and IL-1a and cetuximad as the critical agents), and the remodeling of hypoxia and ECM (with
cisplatin and metformin, HIF-1a siRNA and DOX and ICG) in the TME.
TABLE 1 Nanotherapies applied to antagonize angiogenesis in HNSCC.

Nanocarriers Agent Name Mechanism of action Ref

Polymer based nanoparticles Paclitaxel PTX-NPs Decreasing angiogenesis markers (Factor VIII, CD31, and CD34) (26)

Gold Nanoparticles Quinacrine QAuNP Modulation the cytokine profile in TME via p53/p21 signaling pathway (38)

Liposomes VEGF siRNA LCP-NPs siRNA-mediated VEGF gene silencing (39)

Gold Nanoparticles hyperthermia GNR Improved endocytosis of oncolytic Ad, transgene expression, viral replication (40)

Peptide conjugated nanoparticles Paclitaxel GD16-PTX-NP Target the angiogenic marker Dll4 (41)

Polymer based nanoparticles Resveratrol Res-Nano Decreased of angiogenic markers (MMPs, iNOS, VEGF-A, etc.) (42)
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TME via the p53/p21 signaling pathway. The results suggest that

nanotherapy could be a potential strategy to counteract

angiogenesis in HNSCC. Paclitaxel (PTX) has been recognized as

an effective chemotherapeutic agent for HNSCC, but its clinical

utility is limited by side effects. To overcome this obstacle, a

polymeric nanocarrier system (PTX-NPs) was developed for the

delivery of PTX. In an HNSCC cancer model, PTX-NPs

significantly inhibited tumor growth, possibly by regulating cell

viability, angiogenesis, and oxidative stress. Notably, the expression

of angiogenesis markers, such as Factor VIII, CD31, and CD34, was

markedly reduced (26). Further research is warranted to evaluate

the efficacy and safety of PTX-NPs in human subjects.

The process of angiogenesis is intricately regulated by a plethora

of stimulators and inhibitors that influence the viability of

endothelial cells. Of particular significance is the irregular

expression of vascular endothelial growth factor (VEGF), which

plays a pivotal role in the formation of blood vessels within the

tumor microenvironment (TME) (43). Targeting the VEGF

pathway has been identified as a promising technique for treating

a range of cancers, such as renal cell carcinoma (44), gastric cancer

(45), liver cancer (46) and HNSCC (47). Nonetheless, the

administration of anti-VEGF inhibitors can result in adverse

effects, such as hypertension, proteinuria, and insufficient

therapeutic responses (48). To surmount these issues, Lecaros

(39) employed lipid-calcium-phosphate nanoparticles (LCP-NPs)

to transport VEGF siRNA, and noted that photodynamic therapy

(PDT) in combination with LCP-NPs-VEGF siRNA exhibited

effective anti-tumor effects in HNSCC by impeding angiogenesis.

Gold nanorod (GNR)-mediated plasmonic photothermal therapy

can stimulate mild hyperthermia (40), thereby catalyzing the uptake

and subsequent gene expression of oncolytic adenovirus (Ad) in

HNSCC cells (49). Remarkably, the combination of oncolytic Ad

expressing VEGF transcriptional repressor and GNR led to strong

tumor repression in HNSCC.

The formation of vascular networks in the tumor

microenvironment (TME) involves various factors, including but

not limited to Vascular Endothelial Growth Factor (VEGF),

Platelet-Derived Growth Factor (PDGF-B), Interleukin-8 (IL-8),

Delta-like Ligand 4 (Dll4), and the Transforming Growth Factor

(TGF-b) families (50, 51). Notably, Dll4 is highly expressed on the

surface of tumor vascular endothelial cells as a ligand of the Notch

receptor. Numerous investigations have reported that interventions

in the Dll4-Notch signaling pathway lead to tumor growth

inhibition (51–53). A recent study demonstrated that GD16-PTX-

NP, a nanotherapy drug delivery system consisting of nanoparticles

carrying paclitaxel conjugated with GD16 peptide, targeted Dll4 in

human head and neck squamous cell carcinoma (HNSCC) FaDu

xenograft mice. This nanodrug delivery system non-toxically and

steadily released drugs, with a favorable long-circulating

characteristic in vivo. Therefore, this study highlights the efficacy

of Dll4-targeted nanodrug therapy in treating HNSCC (41).

Resveratrol has been widely investigated for its anti-tumor

properties, specifically its anti-inflammatory, anti-metastatic and

anti-angiogenic effects. However, its clinical use is restricted due to

its short lifespan and poor pharmacokinetic profile (54). To address

these limitations, Pradhan et al. (42) developed a nanoscale
Frontiers in Immunology 05
formulation of Resveratrol, termed Res-Nano, which exhibits

promising results against metastasis and angiogenesis through

the targeted modulation of tumor-associated macrophages in

HNSCC. Nonetheless, further elucidation of the biochemical

mechanisms mediating the effects of Res-Nano at the molecular

level is necessary.
Nanotherapy on improving blood
vessel functions

There are currently several nanotherapies being tested in

clinical trials as potential treatments for head and neck squamous

cell carcinoma (NHSCC) (55–57). These nanotherapies use

nanoparticles that can target cancer cells and deliver anti-cancer

drugs directly to them. One type of nanotherapy being tested is

called Abraxane, which uses albumin nanoparticles to deliver

chemotherapy drug paclitaxel (58). Another type is BIND-014,

which uses polymer nanoparticles to deliver chemotherapy drug

docetaxel (57). These nanotherapies have shown promising results

so far, with some patients experiencing complete remission or

significant tumor reduction (56–58). The dosages used in these

trials vary depending on the specific therapy being tested, but they

are generally well-tolerated by patients with manageable side effects

(55, 58). Overall, the use of nanotherapies in treating NHSCC shows

great promise as a potential new approach to cancer treatment

(55, 59).
Nanotherapy induces
immune response

The tumor microenvironment (TME) plays a crucial role in

promoting the growth of tumor cells by inducing severe

immunosuppression through the close interaction between

immune and tumor cells, as evidenced by a growing number of

studies (60, 61), Although immunotherapy has shown promising

results in combating tumors, its clinical application is currently

limited by the risk of eliciting destructive autoimmunity (62).

However, the emergence of nanotechnology has provided a

potential avenue for safer, more targeted and effective cancer

immunotherapy, owing to its tunable biodistribution, excellent

biocompatibility, immunogenicity, precise targeting, and

controlled drug release properties (63). Hence, an increasing

trend is observed to leverage nanotherapy as an approach to

improve the immune response of tumors by targeting the TME in

head and neck squamous cell carcinoma (HNSCC), as summarized

in Table 2 (69).
Immune cells

In the context of tumor microenvironment (TME), the

pathogenesis of head and neck squamous cell carcinoma

(HNSCC) is influenced by the composition and frequency of
frontiersin.org
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immune cells, including dendritic cells (DCs), T and B cells, natural

killer (NK) cells, tumor-associated macrophages (TAM), and

eosinophils. Manipulation of these immune cells provides a

promising avenue for HNSCC treatment (74, 75). Monocytes

recruited to the tumor site in TME undergo differentiation into

TAM via diverse signaling pathways (76, 77). Macrophages exhibit

M1 or M2 polarization and activation markers whereby M1

macrophages mainly induce an inflammatory response, while M2

macrophages exert an anti-inflammatory effect (78). TAMs are

commonly recognized as M2 macrophages due to their

involvement in the suppression of local immunity and promotion

of tumor growth in TME. Remarkably, Wu et al. (64) developed a

physiologically responsive nanocomposite hydrogel that undergoes

temperature-dependent in-situ gelation and starts degradation in

TME to promote the switch from M2-to-M1 macrophages. This

action activates T cells and attenuates tumor growth and metastasis

in HNSCC. Nevertheless, optimal dosing for this nanoparticle in

large animal models and clinical trials remains an area of interest

for further inquiry. Src, a proto-oncogene, has been found to be

aberrantly activated in multiple malignant tumors, including

HNSCC (79). Dasatinib, which is a specific inhibitor of Src, has

synergism in combination with chemotherapy, as well as

outstanding immunomodulatory effects in HNSCC models (80).

Recently, a pH-responsive nanoparticle (PDO NP) was synthesized

by incorporating a molecular agent comprised of dasatinib and

oxaliplatin into the amphiphilic block copolymer iPDPA. The

resulting PDO NP demonstrated anti-tumor efficacy by activating

T cell anti-tumor immune response and promoting the generation

of memory T cells as well as boosting T-cell cytotoxicity in HNSCC
Frontiers in Immunology 06
(65). Combining chemotherapy with TME-pH-responsive

nanotherapy can offer an improved immunotherapeutic approach

for HNSCC.
Immune checkpoints

Immunotherapy has emerged as a critical therapeutic strategy

for the treatment of tumors in recent years. Among the various

immunotherapies, immune checkpoint blockade (ICB) is a

monoclonal antibody-based therapy that blocks the interaction

between immune checkpoints expressed on the surface of

immune cells and their ligands present on tumor cells (81). The

primary targets for ICB are cytotoxic T lymphocyte-associated

antigen 4 (CTLA-4), programmed cell death 1 (PD-1), and

programmed cell death 1 ligand 1 (PD-L1), which have received

significant attention (82). In the tumor microenvironment (TME),

the PD-1/PD-L1 axis is mainly responsible for the interactions

between immune and tumor cells (83).

The biological distribution and bioactivity of immunotherapy

antibodies, such as PD-1 targeting antibody (aPD-1), can be altered

by their binding to nanoparticles (NPs). Liposomes, dendrimers,

and polymeric NPs have been introduced as appropriate delivery

systems for immunotherapy antibodies (84, 85). The poly (ethylene

glycol)-b-poly- (lactide-co-glycolide) (PEG-PLGA) nanoparticle

exhibits significant advantages over others. Badiee and colleagues

(66) conjugated aPD-1 to PEG-PLGA NPs (aPD-1 NPs), and in a

mouse model of head and neck squamous cell carcinoma (HNSCC),

they demonstrated that aPD-1 NPs inhibited T-cell PD-1 receptors
TABLE 2 Nanotherapies induces immune response in HNSCC.

Nanoparticles Targeting Response Advantages Ref

Nanohydrogel TAMs Switch of M2-to-M1 macrophage, and activation of T cells Temperature-dependent in situ gelation. (64)

iPDPA T cells Increasing memory T cells and boosting T-cell cytotoxicity pH-responsive (65)

PEG-PLGA PD-1 Inhibition of T-cell PD-1 receptors
Improving biological distribution and bioactivity of
ICBs

(66)

AuNCs PD-1 Inhibition of T-cell PD-1 receptors Preventing the recurrence of local tumor (67)

Polyanhydride T cells
Inducing a T cell-mediated immune response with increased CD8+
T cells

Alternative fo EGFR+ patients (68)
frontiers
TABLE 3 Nanotherapies targeting non-cellular components in HNSCC.

Nanoparticles Cargoes Target Response Application Refs

CECMa Cisplatin and metformin Hypoxia
Targeting the hypoxic tumor region, and co-delivers cisplatin
and metformin

Co-delivers cisplatin and
metformin

(70)

TiO2
Ru complex and HIF-1a
siRNA

Hypoxia Silencc of HIF-1a Combined with PDT (71)

Nanohydrogel
nano DOX and nano
ICG

ECM
Sustained release nano DOX and nano ICG with the presence
of MMPs

Combined with 808nm NIR
irradiation

(72)

Extracellular
vesicle

MMP13 ECM Inducing EMT of the recipient normoxic cell
Knocking down MMP13 in
EVs

(73)
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and attenuated HNSCC cell growth. However, further studies are

required to evaluate the effectiveness of aPD-1 NPs in other solid

tumor types. Gold nanocages (AuNCs) have shown therapeutic

potential in a variety of malignant tumors due to their porous

surface and hollow interiors, tunable localized surface plasmon

resonance (LSPR) in the near-infrared (NIR) region, and

outstanding biocompatibility (86). Recently, aPD-1@AuNCs, a

nano drug delivery system that loaded aPD-1 into AuNCs,

contributed to postoperative antitumor immunity, preventing the

recurrence of local tumors in HNSCC (67, 87, 88). These findings

suggest the potential use of aPD-1@AuNCs as a therapeutic option

for postoperative HNSCC patients. Although epidermal growth

factor receptor (EGFR) is highly expressed in HNSCC, the

application of the EGFR inhibitor cetuximab did not improve the

long-term survival outcomes of HNSCC patients. Therefore, the

development of novel means to enhance the efficacy of cetuximab is

crucial. A recent study showed that the novel IL-1a-loaded
polyanhydride nanoparticles (IL-1a-NP) exhibited a synergistic

effect when combined with cetuximab by inducing a T cell-

mediated immune response, including an increase in CD8+ T

cells (68). Although IL-1a-NP has the potential to be a viable

immunotherapy for EGFR-bearing HNSCC patients, whether it can

still be therapeutically useful in HNSCC patients with EGFR

mutations requires further investigation.
Nanotherapy improves hypoxia

The hypoxic microenvironment of the tumor microenvironment

(TME) results from the combination of tumor cells’ high oxygen

consumption rates and the malfunctioning of newly formed blood

vessels (89, 90). This hypoxia environment can cause the

heterogeneity and reprogramming of tumor cells and consequently

promote the growth and metastasis of cancer (91, 92). Moreover, it

has been established that hypoxia significantly enhances tumor cells’

tolerance to conventional therapies such as chemotherapy,

radiotherapy, and photodynamic therapy (PDT) (93–95).

Additionally, hypoxia interferes with the host’s autoimmune

response leading to a reduction in the efficacy of tumor

immunotherapy (96). Thus, regulating the TME’s hypoxic

environment is crucial for preventing tumor migration, recurrence,

and improving anti-tumor therapy efficacy. Hyperbaric oxygen

inhalation is the main clinical method for the remission of hypoxia;

however, the abnormal vascular structure in the TME significantly

restricts oxygen diffusion rates and accumulation concentrations (97).

Furthermore, hyperbaric oxygen poisoning is a non-negligible side

effect. Fortunately, the development of nanotechnology has led to the

creation of nanosystems that provide new approaches for targeting

hypoxia precisely (98). The treatment of HNSCC involves the use of a

chlorin e6 (Ce6) and polyethylene glycol diamine (PEG) based nano

drug delivery system (termed CECMa NPs) (70). This system

efficiently targets the hypoxic tumor region and co-delivers

cisplatin and metformin, leading to enhanced tumor suppression

with low toxicity. Another effective treatment for HNSCC is

photodynamic therapy (PDT), which heavily relies on
Frontiers in Immunology 07
photosensitizers (PS) made from nanomaterials (99). Among these

materials, titanium dioxide (TiO2) stands out for its high levels of

compatibility with the human body and has been used as a drug

delivery system for tumor treatment (100). A recent study developed

a hypoxia-adaptive nanoparticle TiO2@Ru@siRNA by attaching a Ru

complex and a siRNA that targets hypoxia inducible factor-1a (HIF-

1a) to TiO2 NPs. Using this nanotherapeutic approach, PDT

mediated by TiO2@Ru@siRNA induced lysosomal damage when

the photocytotoxicity index (PI) was above 2000. Furthermore, HIF-

1a siRNA was released to target the HNSCC hypoxic

microenvironment that remodeled the immune microenvironment

and suppressed tumor growth (71). Clinical implementation of this

nanotherapy strategy could lead to the development of more effective

and safer HNSCC treatments (Table 3).
Nanotherapy responses to ECM

ECM is a is a non-cellular component of the tumor

microenvironment (TME) that acts as a scaffold in the tumor and

is tightly involved in the acceleration of cancer malignancy (101,

102). Additionally, the degradation of ECM is an essential

characteristic of progressing tumors (103). During this degradative

progression, the pivotal enzymes are matrix metalloproteinases

(MMPs) (104). Under normal conditions, MMPs are not activated;

however, under the TME, their activities become enhanced. By

degrading proteins of ECM, MMPs mainly contribute to the

tumorigenesis and malignancy of cancers, including head and neck

squamous cell carcinoma (HNSCC) (105, 106). To control the

release of nanodrug delivery systems precisely, several smart

nanoparticles responding to distinct stimuli have been

manufactured (107). Recently, smart drug delivery systems

responsive to MMPs have been developed and exhibited great

potential for the diagnosis and treatment of solid tumors (108). A

nano doxorubicin (DOX)-indocyanine green (ICG)-MMPs-

responsive hydrogel (NDIMH) was synthesized, which could

sustainably release nano DOX and nano ICG in the presence of

MMPs (72). The use of NDIMH, in combination with 808 nm NIR

irradiation, has demonstrated photosensitivity and antitumor effects

in HNSCC cells and xenograft models. Thus, NDIMH combined

with NIR irradiation could be a promising chemophototherapy

option for the treatment of HNSCC. However, the optimal dose

and duration of NDIMH require further exploration before clinical

application. Extracellular vesicles (EVs) are nano-sized vesicles

released by almost all cell types that participate in intercellular

communication in the TME (109). Shan et al. (73), have shown

that the hypoxic TME significantly increases the expression levels of

MMP13 in tumor-derived EVs. This increase in MMP13 expression

levels was found to be HIF-1a-dependent and induced EMT of the

recipient normoxic cell, leading to tumor invasion. Therefore,

tumor-derived EVs may act as messengers that mediate the

interaction between normoxic and hypoxic cancer cells by

delivering MMP13 and remodeling the TME of HNSCC. These

findings provide a potential therapeutic strategy for HNSCC by

downregulating the expression of MMP13 in these EVs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1189323
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1189323
Limitations of nanotherapy in clinics
and possible solutions for toxicity and
non-specific targeting

Although nanotherapies have shown tremendous potential in

preclinical studies in the context of head and neck squamous cell

carcinoma (HNSCC), translating these results to the clinic is still

challenging. Achieving selective and efficient targeting to the tumor

site while limiting off-target effects and systemic toxicity remains a

major hurdle in the clinical application of nanotherapies (110).

Toxicity and non-specific targeting are the two primary concerns

associated with the clinical application of nanotherapies in HNSCC.

Toxicity arises mainly from the intrinsic properties of nanoparticles,

which can induce immune reactions, inflammation, and unwanted

interactions with blood components. On the other hand, non-

specific targeting results in the accumulation of nanoparticles in

non-targeted tissues, which can cause tissue damage, decreased

efficacy, and off-target effects (111). To overcome these barriers,

several strategies have been proposed to enhance the specificity and

efficiency of nanotherapies in HNSCC clinics. One such strategy is

to design nanoparticles that can selectively target HNSCC cells and

avoid normal cells by exploiting various physiological and

pathological properties of the HNSCC microenvironment. Active

targeting approaches utilize various surface ligands, such as

antibodies, peptides, and aptamers, to enhance nanoparticle

accumulation in HNSCC cells through specific interactions with

receptors or proteins that are overexpressed in HNSCC tissues.

Several examples of these targeted nanotherapies are under

preclinical development for HNSCC (112).

Another approach to improve the specificity and efficacy of

nanotherapies is by optimizing nanoparticle parameters, such as

size, surface charge, and surface modification. Nanoparticle size

plays a crucial role in determining their behavior and selectivity in

vivo. Generally, smaller nanoparticles can penetrate the HNSCC

microenvironment more efficiently and accumulate in tumor tissues

through EPR effects. In addition, optimizing surface modification,

such as PEGylation, can enhance nanoparticle circulation time,

reduce opsonization, and improve targeting efficiency without

inducing significant host immune responses (113). Other

potential strategies to enhance specificity and minimize toxicity

include the development of smart nanoparticles that can respond to

specific stimuli in HNSCC tissues, such as acidity, hypoxia, and

redox reactions (114). Such stimuli-responsive nanotherapies can

accumulate and deliver drugs selectively to HNSCC tissues,

improving efficacy while reducing systemic toxicity. Finally,

developing reliable methods of characterizing nanoparticle

formulations in vitro and in vivo is also essential for advancing

nanotherapies in HNSCC. The development of standards for

characterization and quantification of nanoparticles to ensure the

safe clinical translation of the nanotherapies is critical (115).

In conclusion, nanotherapies have great potential for treating

HNSCC by improving blood vessel functions. However, several

obstacles must be overcome to translate these therapeutic strategies

from preclinical models to clinical practice. Strategies such as active

targeting, optimization of nanoparticle size and surface
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modifications, and the development of smart nanoparticles can

help address the limitations of nanotherapies in HNSCC, offering

promising avenues for the treatment of HNSCC and other cancers.
Vascular promotion effect or blood
vessel normalization

One of the critical goals of nanoparticle-based treatments for

HNSCC is to promote blood vessel normalization. The process of

blood vessel normalization aims to restore the function of

abnormal, leaky blood vessels that are generated by the tumor

microenvironment. Blood vessel normalization helps in reducing

the hypoxic and acidic environment within the tumor, and it

improves the tumor delivery of important therapeutics, such as

chemotherapy drugs, radiation, and immunotherapies (116).

Nanoparticles can promote blood vessel normalization by

improving vessel perfusion, decreasing interstitial fluid pressure,

and improving the structure and function of endothelial cells.

Moreover, nanoparticles can target the tumor vasculature by

exploiting various physiological hallmarks of tumor vessels, such

as enhanced permeability and retention effect (EPR), angiogenesis,

and the overexpression of specific receptors on the tumor vessels.

This targeting capability enables the selective accumulation of

nanotherapeutics within the tumor tissue, which can lead to

further benefits in blood vessel normalization (117).

A study by Chen et al. (118) investigated the role of a dual-

targeting liposome co-loaded with docetaxel and sorafenib in

HNSCC. The liposome was coated with cRGD, a peptide ligand

that targets integrin avb3 receptors, and a HNSCC-specific

monoclonal antibody. The study reported a significant reduction

in tumor growth and induced blood vessel normalization in

HNSCC xenograft models. Nanotherapy has been proposed as a

promising approach to improving blood vessel functions in HNSCC

by promoting vascular normalization, which can reduce tumor

hypoxia and interstitial fluid pressure, thereby enhancing drug

delivery and increasing treatment efficacy (119). Various types of

nanocarriers, such as liposomes, polymeric nanoparticles, and gold

nanoparticles, have been designed to target the tumor vasculature

and deliver drugs specifically to the tumor site (120). Recent studies

have demonstrated the effectiveness of nanotherapy in improving

blood vessel functions in HNSCC. For example, a study by Li et al.

(121) showed that the use of liposomal oxaliplatin combined with

apatinib, a VEGFR2 inhibitor, resulted in significant tumor growth

inhibition and vascular normalization in vitro and in vivo. Similarly,

Wang et al. (122) reported that gold nanostars with surface-

modified hyaluronic acid could selectively accumulate in HNSCC

tumors and induce blood vessel normalization, which led to the

enhanced efficacy of photothermal therapy. Moreover, some studies

suggest that nanotherapy can also enhance the anti-tumor immune

response by modulating the tumor microenvironment. For

instance, Zheng et al. (123) developed a dual-function

nanoplatform that can deliver programmed death-ligand 1 (PD-

L1) antibodies and tumor necrosis factor-alpha (TNF-a) siRNA to

the HNSCC tumor microenvironment. The results showed that the
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nanoplatform could promote blood vessel normalization and

induce a robust anti-tumor immune response. In conclusion,

nanotherapy has shown great potential in improving blood vessel

functions in HNSCC, primarily by promoting vascular

normalization and enhancing drug delivery. The use of innovative

nanoplatforms that can target the tumor vasculature and modulate

the tumor microenvironment may further increase treatment

efficacy and improve patient outcomes.
Conclusions and perspectives

In recent decades, the clinical treatment modalities for patients

with head and neck squamous cell carcinoma (HNSCC) have

largely relied on approaches that suppress the tumorigenic

activities of cancerous cells. However, due to the high degree of

tumor heterogeneity, aggressiveness, and potential for distant

metastasis, conventional therapies such as radiotherapy and

chemotherapy often yield limited clinical benefits (124). Despite

the potential utility of immunotherapy, which stimulates anti-

tumor immune responses, the objective response rate (ORR)

remains unsatisfactory (125). Thus, it is imperative to explore

strategies that minimize the toxic and side effects of traditional

therapies while enhancing the efficacy of immunotherapy. Given the

deeper understanding of the tumor microenvironment (TME) and

the progress in nanomaterial technology, nanotherapy targeting the

TME has garnered growing attention. Nanotherapeutic systems can

be custom designed to exhibit specificity for unique TME

characteristics, such as low pH, hypoxia, tumor-associated

macrophages (TAMs), and increased matrix metalloproteinases

(MMPs) expression (126–128). Additionally, nanoparticles with

loading capabilities for specific drugs and targets (129, 130) can

serve as drug carriers for chemotherapy drugs, cytotoxic agents, and

immune checkpoint inhibitors (131, 132). Such nano drug delivery

systems offer superior TME targeting, protect the efficacy of loaded

agents from premature degradation, and increase the drug

concentration at the TME site. Moreover, potential off-target

effects, side effects, and tissue toxicities associated with traditional

drug therapies can be minimized. These advantages make

nanotherapy a promising new approach for treating tumors,

including HNSCC. Furthermore, intravenous and intratumoral

injection methods are the two main approaches for administering

nanoparticles. Compared to deeper tumors, HNSCC is relatively

accessible, which provides the opportunity for repeated

intratumoral injections, thereby enhancing the therapeutic

outcome of nanotherapy for HNSCC.

Despite the extensive research reported on nanotherapy for

cancer, most studies conducted thus far have been cell and animal-

based and may not fully reflect the effects of these nanodrugs on the

human body. Additionally, research has shown that animal models,

which are primarily carcinoma in situ models, possess better

retention capacity (enhanced permeation and retention effect)

compared to humans (133). Nevertheless, research should also

focus on cancer metastasis, which is common in malignant

tumors. Hence, a comprehensive evaluation of nanotherapy is
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needed, utilizing animal models, primate models, and patient-

derived xenograft (PDX) models, since PDX models replicate

human cancer characteristics and exhibit approximately 90%

accuracy in reflecting drug response (134). Despite the large

number of related research, currently, only a few nanodrugs,

mainly liposomes and simple nanoparticles, are approved for

clinical use (135–137), while nanocarriers with more complex

structures and agents present significant challenges in clinical

transformation due to some inherent limitations and unresolved

problems. Among the most critical concerns are the potential

toxicity and side effects of nanotherapy-related nanomaterials,

which remain unresolved (138, 139). Nanoparticles can cross

physiological barriers, threatening the safety of other organs due

to their small size. Previous research has shown that nanoparticles

can cause free radicals, inducing cell injury by attacking

membranes, organelles, and DNA (140, 141). Additionally, the

potential impact of nanoparticles on normal cells and tissues

surrounding tumor cells must be considered. To overcome these

challenges, further efforts should focus on developing

nanomaterials that offer greater biocompatibility by improving

nanomaterial traits, such as size, shape, chemical modifications,

and surface charge. It is crucial to conduct clinical research to

profile the metabolism and bioavailability of nanoparticles in the

human body. Moreover, continuing to improve nanodrug targeting

is still a worthy direction of exploration to prevent the abnormal

distribution of nanoparticles in the human body. Finally, addressing

the efficient retention of nanoparticles within tumor tissues and

their delivery to draining lymph nodes are highly desirable research

directions (142).

Despite the fact that some nanoparticles can accumulate in the

tumor microenvironment (TME), the heterogeneous and complex

TME poses challenges to effective drug delivery, leading to poor

distribution of carried agents and limited efficacy of nanotherapy.

Moreover, the variable characteristics of TME among different

tumors indicate the need for individually tailored nanotherapies.

Additionally, effective nanotherapy targeting the TME must

consider the specific phenotypic changes of cancer cells or non-

tumor cells in TME to avoid harmful effects on normal cells.

Despite the absence of approved nanotherapies for clinical

practice in HNSCC (12), ongoing clinical trials evaluate the

potential of nanotherapy in treating HNSCC. In a study by Weiss

et al., 38 eligible subjects receiving a combination of nano-albumin-

paclitaxel, carboplatin, and cetuximab achieved a response rate

(RR) of 76.3% against locally advanced HNSCC, highlighting the

promising clinical value of nanodrugs. Recently, a phase I study

examined the safety of radioenhancer nanoparticles (NBTXR3)

combined with intensity-modulated radiation therapy (IMRT) in

elderly or debilitated HNSCC patients with locally advanced tumors

who were not eligible for chemoradiation (143, 144). The

intratumoral administration of NBTXR3 was feasible and

displayed a safety profile, supporting its further evaluation at the

recommended phase II dose (RP2D). Although few clinical trials

have explored the value of nanotherapy specifically targeting the

TME in HNSCC patients, its potential advantages create promising

prospects for the development of therapeutic strategies for HNSCC
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113. Xu Y., Fourniols T., Labrak Y., Préat V., Beloqui A., des Rieux A., et al. Surface
modification of lipid-based nanoparticles. ACS nano (2019) 16(5):7168–96.
doi: 10.1021/acsnano.2c02347

114. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for
imaging and therapy. Nanomedicine (2017) 12(4):333–46.114. doi: 10.2217/nnm.11.19

115. Delrish E, Jabbarvand M, Ghassemi F, Amoli FA, Atyabi F, Lashay A, et al.
Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma.
Exp eye Res (2021) 204:108423. doi: 10.1016/j.exer.2020.108423

116. Zhang YF, Wang JC, Bian DY, Zhang X, Zhang Q. Targeted delivery of RGD-
modified liposomes encapsulating both combretastatin a-4 and doxorubicin for tumor
therapy: in vitro and in vivo studies. Eur J pharmaceutics biopharmaceutics Off J
Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2010) 74(3):467–73.
doi: 10.1016/j.ejpb.2010.01.002

117. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev
Cancer (2005) 5(3):161–71. doi: 10.1038/nrc1566

118. Koonce NA, Griffin RJ, Dings RPM. Galectin-1 inhibitor OTX008 induces
tumor vessel normalization and tumor growth inhibition in human head and neck
squamous cell carcinoma models. Int J Mol Sci (2017) 18(12):2671. doi: 10.3390/
ijms18122671

119. Wu TT, Zhou SH. Nanoparticle-based targeted therapeutics in head-and-neck
cancer. Int J Med Sci (2015) 12(2):187–200. doi: 10.7150/ijms.10083
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