
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Daniel Peltier,
University of Michigan, United States

REVIEWED BY

Huidong Guo,
Peking University People’s Hospital, China
Parvathi Ranganathan,
The Ohio State University, United States

*CORRESPONDENCE

Yiouli P. Ktena

yktena1@jh.edu

RECEIVED 17 March 2023
ACCEPTED 18 May 2023

PUBLISHED 31 May 2023

CITATION

Ktena YP, Dionysiou M, Gondek LP
and Cooke KR (2023) The impact of
epigenetic modifications on allogeneic
hematopoietic stem cell transplantation.
Front. Immunol. 14:1188853.
doi: 10.3389/fimmu.2023.1188853

COPYRIGHT

© 2023 Ktena, Dionysiou, Gondek and
Cooke. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 31 May 2023

DOI 10.3389/fimmu.2023.1188853
The impact of epigenetic
modifications on allogeneic
hematopoietic stem
cell transplantation

Yiouli P. Ktena*, Margarita Dionysiou, Lukasz P. Gondek
and Kenneth R. Cooke

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University
School of Medicine, Baltimore, MD, United States
The field of epigenetics studies the complex processes that regulate gene

expression without altering the DNA sequence itself. It is well established that

epigenetic modifications are crucial to cellular homeostasis and differentiation

and play a vital role in hematopoiesis and immunity. Epigenetic marks can be

mitotically and/or meiotically heritable upon cell division, forming the basis of

cellular memory, and have the potential to be reversed between cellular fate

transitions. Hence, over the past decade, there has been increasing interest in the

role that epigenetic modifications may have on the outcomes of allogeneic

hematopoietic transplantation and growing enthusiasm in the therapeutic

potential these pathways may hold. In this brief review, we provide a basic

overview of the types of epigenetic modifications and their biological functions,

summarizing the current literature with a focus on hematopoiesis and immunity

specifically in the context of allogeneic hematopoietic stem cell transplantation.
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Introduction

Every cell in the human body carries the same genetic code, yet only a subset of genes is

actively expressed at any given time-point in any given cell, in an intricate process that is

orchestrated by epigenetics. In the Greek language, “epi” signifies on, upon, or over.

Accordingly, the field of epigenetics studies the processes that affect gene expression without

altering the DNA sequence itself, the sum of which is described as the epigenome (1, 2).

Epigenetic modifications include DNA methylation, histone modification, Chromatin

remodeling, and non-coding RNA regulation (1–3). In brief, a nucleosome, chromatin’s basic

structural unit, is comprised of negatively charged DNA packed around a positively charged

histone octamer. Chemical alterations to this complex can allow or prevent access of the

transcriptional machinery to the DNA sequence. Broadly, epigenetic regulators may be

classified as “writers”, “readers”, and “erasers”. Writers include a wide variety of enzymes

that introduce modifications on DNA and histones, including DNA methyltransferases,

histone methyltransferases, histone acetyltransferases. Readers encompass proteins with
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domains that recognize and bind specific epigenetic modifications,

such as methyl-CpG-binding proteins, histone methylation binding

proteins, and histone acetylation binding proteins. Finally, erasers

represent proteins which actively remove epigenetic marks and reverse

the effects on transcription, such as TET (ten-eleven translocation)

proteins which catalyze cytosine demethylation, histone demethylases,

and histone deacetylases (4).

Many of these changes can be mitotically and/or meiotically

heritable on nascent daughter chromatin strands upon cell division.

This results in a type of cellular memory termed epigenetic memory.

At the same time, epigenetic modifications are characterized by

plasticity in response to factors intrinsic and extrinsic to the cell,

such as environmental stimuli (5–7). Therefore, not only can these

modifications somatically be inherited after cell division and repress

target gene transcription, but they can also be reversed during

transitions between cellular fates, making them the focus of

significant scientific investigation.
Mechanisms of epigenetic
modification

DNA methylation is the most widely studied form of epigenetic

modification and generally results in gene silencing. It primarily involves

methylation of cytosine residues almost exclusively in the context of

CpG dinucleotides. CpG dinucleotides cluster in regions termed CpG

islands, where approximately 60% of human gene promoters are

located. However, tissue-specific DNA methylation and differential

methylation associated with reprogramming are mostly located in

regions adjacent to each side of a CpG island, termed shores (1–3).

Of the five known humanDNAmethyltransferases, DNMT1 is thought

to be primarily responsible for maintenance methylation, while

DNMT3A and DNMT3B are the primary de novo methyltransferases.

DNMT3L lacks enzymatic activity but interacts with other enzymes and

plays a role in maternal imprinting (8, 9).

Histone modifications, at various sites, include methylation

(which most commonly represses transcription), acetylation (usually

activating in nature), phosphorylation (which contributes to

chromatin remodeling and assists in DNA repair), ubiquitylation,

and others (1–3, 7). These modifications, along with histone variants

within nucleosomes (histones characterized by minor differences in

their amino acid sequence from their canonical counterpart) can also

result in nucleosome repositioning and chromatic remodeling, such

that transcription sites are more or less accessible to interact with

transcriptional machinery (1, 3). These chromatin markers and the

associated epigenetic signatures have shown to be reversible (1).

Lastly, non-coding RNAs (ncRNAs), particularly regulatory

ncRNAs, including microRNAs (miRNAs), long non-coding

RNAs (lncRNAs), circular RNAs (circRNAs), small interfering

RNAs (siRNAs) and piwi-interacting RNAs (piRNAs), are

transcribed (but non-translated) RNA molecules believed to fine-

tune gene expression by contributing to gene silencing. Moreover,

non-coding RNAs are known to interact with and guide chromatin-

modifying complexes to the appropriate genomic targets (1–3, 5, 7).

Notably, the aforementioned epigenetic mechanisms are
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functionally linked and interdependent, with continuous cross-

talk involving both positive and negative feedback.
Epigenetics in human development,
health, and disease

Epigenetic processes appear to have an instrumental role in

human development, health, and disease (7, 10). In the earliest

stages of embryogenesis, the epigenome is “reset”. As the zygote, in

its one cell glory, transitions from totipotency to pluripotency in the

blastocyst stage, complex epigenetically controlled mechanisms

guide each cell towards a differentiated state and limit plasticity to

maintain a fixed cell type (11, 12). Highlighting the importance of

epigenetics in embryogenesis is the fact that Dnmt3a- and/or

Dnmt3b-null mice die during gestation or shortly after birth (13).

As suggested, epigenetic dysregulation can disrupt cellular

homeostasis and has been implicated in various diseases (6, 7, 14,

15). Disorders affecting genomic imprinting can result in distinct

clinical syndromes, such as Beckwith-Wiedemann, Russell-Silver,

and Prader-Willi/Angelman syndromes (16), while germline

DNMT3A mutations can result in Tatton-Brown-Rahman

syndrome (17, 18). In the early eighties, global DNA

hypomethylation was first described in cancer. Subsequent work

revealed that focal DNA hypermethylation of tumor suppressor

genes facilitates stem-like cell behavior in the pathophysiology of

carcinogenesis (19–22). Mutations in DNMT3A (the product of

which catalyzes de novo DNA methylation), TET2 (responsible for

regulated demethylation), and ASXL1 (involved in chromatin

regulation), are the most frequently described mutations in clonal

hematopoiesis, including clonal hematopoiesis of indeterminate

potent ia l (CHIP) and myeloid malignancies such as

myeloproliferative neoplasms (MPN), myelodysplastic syndrome

(MDS), and acute myeloid leukemia (AML) (23–25). CHIP has

been recently identified as a new precursor state for myeloid

malignancies (26, 27). Specific types of histone modifications and

microRNAs have also been linked to a multitude of malignancies

(28–31). In this context, an ever-increasing number of

epigenetically targeted therapies have been developed and applied

in the care of cancer patients, whether alone or in combination with

traditional chemotherapy, targeted agents, or immunotherapy (32,

33). Epigenetic mechanisms with therapeutic potential have also

been implicated in neurodegenerative disorders (3, 34).
Epigenetic regulation of
hematopoietic stem cells, before
and after transplantation

Hematopoietic stem cells (HSCs) are characterized by self-

renewal and pluripotency, features that are of paramount

importance to the biological functions of hematopoiesis and

immunity. As multipotent progenitors arise from HSCs and

further commit to the myeloid or lymphoid lineage, epigenetic
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regulators define the major differentiation and maintenance events

(14). In particular, DNA methylation plays a crucial role in these

processes. Epigenetic factors are also associated with cellular

senescence, the inevitable cessation in proliferation that

characterizes biological aging. In HSCs, cellular aging is

associated with a relative increase in the myeloid component,

enhanced autoimmunity, accrual of DNA damage, and an

increased risk of hematologic neoplasms (35). Genome-wide

studies of HSCs show distinct differences in the epigenomic

landscape of aging cells with several regions of differential DNA

methylation having potential relevance for age-related disease (36).

Dnmt1 deletion in murine HSCs results in rapid death from

profound pancytopenia due to absence of all HSCs and

progenitors, while low-level Dnmt1 expression results in a marked

decrease of lymphoid progenitors and decreased self-renewal

capacity in serial transplantation experiments (37). Dnmt3a/

Dnmt3b-deficiency in murine HSCs leads to a decline in their

differentiation potential with accumulation of hematopoietic

progenitors in the marrow. Furthermore, Dnmt3a-null and Tet2-

null cells have a competitive expansion and survival advantage in

serial transplantation experiments (38–43). ASXL1 proteins are

epigenetic regulators that recruit chromatin modification

complexes and transcription factors; in mice, Asxl1 deficiency in

HSCs results in myelodysplasia with accumulation of hematopoietic

progenitors but decreased self-renewal, and serial transplantation of

Asxl1-null HSCs results in acceleration of a lethal myelodysplastic

disorder as compared to primary Asxl1 KO mice (44). Tet2-

deficient mice demonstrate increase hematopoietic self-renewal

and compound Asxl1 and Tet2 loss restores the Asxl1-loss related

self-renewal defect and results in more severe MDS-like features.

These findings are in accordance with the fact thatDNMT3A, TET2,

and ASXL1 mutations are some of the most common genetic

abnormalities in clonal hematopoiesis and are frequently detected,

alone or in combination, in patients with hematological

malignancies (23, 45–48).

In the post-transplant setting, allogeneic hematopoietic stem

cell transplantation (HSCT) recipients have been found to stably

maintain the donor’s global methylation status, and differences in

global methylation correlate with the evolution of mixed chimerism

(49). Moreover, donor methylation levels in the promoters of

critical genes such as IFNG and FASL correlate with the severity

of acute graft-versus-host disease (GVHD), suggesting they could

be used alongside HLA typing to optimize donor selection (49).

Apart from specific DNA methylation signatures, the “epigenetic

age” of donor HSCs appears to be cell-intrinsic, and thus remains

largely stable after transplantation in concordance with the

chronological age of the donor. As such, epigenetic age is not

influenced by the recipient’s chronological age, even decades after

transplantation (50–52). In two separate studies, patients whose

donor stem cells exhibited accelerated aging, as determined by the

“epigenetic clock”, were at higher risk of developing chronic GVHD

(53, 54). In xenogeneic murine models of HSCT, this phenomenon

is again thought to be cell-intrinsic, rather than host-

dependent (55).

Importantly, several studies have now linked donor CHIP to

HSCT outcomes. A European study identified 92 clonal mutations
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in 500 healthy donors over the age of 55; donor CHIP, especially

DNMT3A-driven CHIP, was associated with increased incidence of

chronic GVHD and decreased incidence of relapse or progression.

Subsequently, a large US-based study of over 1,700 donors over the

age of 40 further confirmed these findings. Additional data suggest

that donor DNMT3A mutations are independently associated with

improved overall survival due to reduced risk of relapse (56–58). Of

note, this phenomenon appears to be eliminated by the

administration of post-transplantation cyclophosphamide for the

prevention of GVHD, suggesting that it is at least partially mediated

by DNMT3A-mutated donor T-cells, the function of which is

altered by cyclophosphamide (58, 59). In these studies, there was

a very low risk of donor CHIP evolution to donor cell leukemia

(DCL): 2 recipients of 82 mutated grafts in the first study and 6

recipients of 388 mutated grafts in the second (56, 58, 60). No

recipients with sole mutations in DNMT3A or TET2 developed

DCL. Two smaller studies also examined the CHIP-alloreactivity

link: A single-center study found increased risk of acute GVHD but

not chronic GVHD and no differences in incidence of relapse;

notably, this study included a large number of high-risk patients,

with over half of the cohort having active disease at the time of

transplantation (61). A more recent study also failed to replicate the

results from the larger studies, likely due to the significantly limited

sample size (only 25 mutated donor products were identified, with

an unusual distribution of CHIP mutations, potentially due to

thefact that donors as young as 17 were included) (62). GVHD

following liver transplantation (LT-GVHD) is a rare complication,

associated with bone marrow failure and a hyperinflammatory state;

in a case series of 9 patients where 7 bone marrow samples were

available for next generation sequencing, DNMT3Amutations were

found in 5 out of 7 samples, as compared to 1 of 6 in a LT-non-

GVHD cohort (63).

In accord with these clinical observations, laboratory data

showed an increase in both acute and chronic GVHD when T-

cell lineage-specific Dnmt3a-null mice were used as donors in

multiple murine allogeneic HSCT models (58, 64). These

observations were associated with early proliferation of donor-

derived Dnmt3a-null T-cells as compared to wild-type T-cells.

Furthermore, Dnmt3a-null T-cells demonstrated a migration

advantage to the gastrointestinal tract and secondary lymphoid

organs, enhanced pro-inflammatory cytokine production, and

decreased expression of exhaustion and apoptosis markers (64). A

comprehensive review of the epigenome and transcriptome of

Dnmt3a-null donor T-cell subsets post-HSCT, via whole genome

bisulfite sequencing and in parallel, bulk RNA sequencing, showed

similar global DNA methylation levels to wild-type T-cells but

distinct hypomethylation peaks in gene pathways involved with T-

cell activation and differentiation. More importantly, donor T-cells

lacking DNMT3A provided superior tumor control in graft-versus-

leukemia models, corroborating the clinical data cited above (64). In

gene-set enrichment analyses of the genes differentially expressed

between Dnmt3a-null and WT donor T-cells, CD8+ T-cells lacking

DNMT3A were highly enriched for effector-like signatures and

negatively enriched for exhaustion-like signatures, while CD4+ T-

cells were enriched for genes expressed in activated and progenitor

cell populations.
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These observations are consistent with a growing body of data

showing that DNA methylation critically contributes to the

functional properties that define T-cell identity. For example,

DNMT3A is selectively upregulated 38-fold following T-cell

receptor stimulation and subsequently regulates T-helper cell

polarization and effector T-cell differentiation, depending on the

context of cellular activation (65–67). Following differentiation and

activation, the patterns of gene expression that define T-cell subsets

are stabilized through DNA methylation. T-cell deletion of

DNMT3A enhances the plasticity of T-helper cells by allowing for

reprogramming of cytokine expression, and allows CD8+ T-cells to

overcome epigenetically-defined exhaustion programs in order to

more effectively clear chronic infections (65–71). DNMT3A

deletion also appears to enhance the anti-tumor effects of T-cells

whether in the context of immune-checkpoint inhibition, chimeric-

antigen receptor (CAR) T-cells, or allogeneic HSCT (64, 71, 72).

Akin to what was observed in murine models of allo-HSCT,

deletion of DNMT3A in CAR T-cells resulted in exhaustion-

resistant cells with preservation of the cells’ proliferative capacity

and ongoing anti-tumor response despite prolonged tumor

exposure (72, 73).

Since epigenetic dysregulation is common in neoplasia, and

given the reversible nature of epigenetic alterations, pharmacologic

agents targeting epigenetic regulators are now regularly used in the

treatment of cancer patients (32). Azacitidine and decitabine, the

two most widely used hypomethylating agents, are nucleoside

analogs that bind and inhibit DNA methyltransferases after being

incorporated into newly formed DNA. Both drugs have received

FDA approval for the treatment of MDS, AML, and chronic

myelomonocytic leukemia. However, both agents are non-specific

and despite not being categorized as traditional chemotherapy do

have cytotoxic potential, giving rise to adverse events secondary to

myelosuppression (32). In addition to their anti-tumor effects, the

immune-modulatory potential of azacitidine and decitabine is

appealing both in the pre- and post-transplantation setting. Prior

to HSCT, these agents are used alone or in combination to decrease

disease burden and serve as a bridge to transplant, especially in

older patients with MDS and AML (74–77). In the post-

transplantation period, there is growing interest in strategies that

will help prevent relapse, which is a major driver of mortality (77–

79). Preclinical and clinical data suggested that azacitidine may

mitigate GVHD without compromising graft-versus-leukemia

(GVL) activity (80–82). However, a phase III randomized clinical

trial of azacitidine maintenance versus observation post-HSCT for

high-risk AML/MDS patients failed to improve relapse-free survival

(79, 83). Low-dose decitabine may be more promising, whether

alone or in combination with other agents (84, 85). Next-generation

DNMT inhibitors, such as guadecitabine, appear to have an

improved toxicity profile, and non-nucleoside inhibitors, which

have the potential to be more potent and selective, are in

development (32, 86).

Histone modifications have been widely targeted in the context

of neoplasia and allogeneic HSCT, with several agents inhibiting

histone deacetylases now commercially available including but not

limited to vorinostat, panobinostat, belinostat, and romidepsin (28,

87, 88). Histone modifications contribute to the regulation of
Frontiers in Immunology 04
proliferation and cytotoxicity in activated T-cells and histone

acetylation was one of the first epigenetic modifications to be

studied in preclinical models of acute GVHD (87). Histone

deacetylase (HDAC) inhibitors were found to decrease the allo-

stimulatory function of dendritic cells, a group of potent antigen-

presenting cells known to be instrumental in the induction of acute

GVHD, as well as enhance natural regulatory T-cell function, and

hence reduce GVHD while preserving GVL effects (89–92). As a

result, one of these agents, suberoylanilide hydroxamic acid (SAHA,

now known as vorinostat) was tested in two phase I/II trials

(NCT00810602, NCT01790568; a third, NCT03842696,

underway) for the prevention of GVHD in combination with

standard therapy and was found to be safe and potentially

effective (93, 94). Panobinostat also showed promising results in

two phase I/II studies (NCT01111526, NCT02588339) (95, 96).

Results from a phase III trial of panobinostat as post-HSCT

maintenance therapy are pending (NCT04326764) (79). Enhancer

of zeste homolog 2 (EZH2) is a histone methyltransferase that

catalyzes histone 3 lysine 27 trimethylation, a modification that

represses gene transcription and is thought to be involved in T-cell

immune responses (87). Pharmacologic inhibition of histone

methylation via DZNep, an inhibitor that depletes EZH2, was

found in one study to arrest ongoing GVHD in mice by inducing

apoptosis of alloreactive T-cells without inhibiting donor-derived

hematopoiesis or GVL activity (97, 98). However, these findings

were not replicated with other agents or in a xenogeneic model

using DZNep (99).

Bromodomain and extraterminal (BET) proteins regulate

chromatin dynamics by binding acetylated lysine residues in

histones and nonhistone proteins, including transcription factors;

given the therapeutic potential, BET inhibitors targeting the acetyl-

binding domains of these proteins have been developed (100). In

murine models of GVHD, BET inhibition suppressed GVHD by

altering the cytokine expression profiles of dendritic cells and T-

cells, with retention of anti-tumor effects, while certain inhibitors

also allow for infused Treg expansion as a combinatorial strategy

(101, 102). More recently, Snyder et al. reported on two potent and

selective BET inhibitors which improve survival and reduce GVHD

severity in mice without sacrificing the beneficial GVL effect;

PLX51107 is currently being tested in a phase I/II trial for

steroid-refractory acute GVHD (NCT04910152) (103). Both

EZH2 inhibition and BET-bromodomain inhibition demonstrated

activity in preclinical models of chronic GVHD with lung

involvement, with evidence of altered transcriptomes in the

germinal centers of treated animals (104).

The role of non-coding RNAs, mainly microRNAs, in T-cell

immunobiology is well established and is increasingly being

explored in the context of hematopoiesis and allogeneic HSCT

(105, 106). Several microRNAs are emerging as important

regulators of allogeneic T-cells and may prove to be highly

sensitive and specific biomarkers for GVHD and useful targets for

anti-GVHD oligonucleotide-based therapeutics (105–108).

Ranganathan et al., showed increased expression of microRNA-

155 (miR-155) in both CD4- and CD8-positive cells following

murine allo-HSCT, as well as ameliorated GVHD in multiple KO

and antagonist-treated models and worse phenotype in over-
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expression models (109). MicroRNA-155 also influences GVHD via

its function in recipient dendritic cells. In study by Chen et al., miR-

155–deficient dendritic cells cause less severe GVHD through

reduced migration and defective inflammasome activation,

supported by the fact that Nlrp3/miR-155 double-knockout allo-

HSCT recipient mice had no increased protection from GVHD

compared with Nlrp3−/− recipients (110). The role of the

microRNA-17-92 cluster in allo-HSCT was explored in a similar

study that utilized a T cell-specific KO model, and showed reduced

GVHD by demonstrating defects in proliferation, cytokine

production and a4b7 integrin expression in KO T cells (111).

MicroRNA-146a has a protective role in GVHD, and its anti-

GVHD effects were demonstrated in several studies, via its

function in both allogeneic T-cells and recipient dendritic cells

(112–114). MicroRNA-31 promotes murine chronic GVHD via T-

cell metabolic pathway regulation (108). Differential microRNA

expression has been detected in skin biopsies of patients at the time

of onset of cutaneous acute GVHD, and circulating microRNAs

encapsulated within extracellular vesicles were found differentially

expressed in patients with chronic GVHD (115, 116). Several long

non-coding RNAs (lncRNAs) have been found to influence the

function of T-cells, but their role in allo-immune responses is still

unknown. Linc00402 was recently identified as a long non-coding

RNA that regulates T-cell function in humans and experimental

murine models. RNA sequencing was performed on human T-cells

after HSCT and solid organ (cardiac) transplant and compared to

T-cells from healthy subjects. Linc00402, a T-cell specific molecule,

was found to be differentially expressed in recipients of allogeneic

mismatched unrelated as compared to autologous HSCT patients,

and in donor T-cells from patients who underwent cardiac

transplantation. In contrast, in vitro and murine in vivo data

showed that T-cell activation and proliferation are inversely

related to Linc00402 expression, and that depletion of Linc00402

impairs the allogeneic stimulation of T-cells ex vivo. The authors

hypothesized that higher levels of tacrolimus exposure were the

culprit for the preservation of Linc00402 abundance in allogeneic

HLA-mismatched HSCT. Importantly, the tissue-specific and

allogeneic context-specific expression of this molecule, along with

its immune regulatory properties, make for an appealing

therapeutic candidate (117, 118). In a study by Wang et.al,

numerous lncRNAs were found to be dysregulated in B cells from

patients with chronic graft-versus-host disease (cGVHD) as

compared to normal counterparts. Specifically, lncRNAs

NONHSAT040475, NONHSAT142151 and FR118417 were found
Frontiers in Immunology 05
to be strongly associated with the BCR signaling pathway in

cGVHD pathogenesis (119). Another class of non-coding RNAs,

termed circular RNAs, has been associated with increased relapse

risk in AML patients (120).

In sum, the maintenance and differentiation of hematopoietic

stem cells require epigenetic regulatory networks that are 1)

simultaneously heritable and reversible, 2) responsive to both

intrinsic and extrinsic stimuli, and 3) characterized by

interdependence between the DNA sequence, transcriptional

processes, and the various forms of epigenetic changes. Despite the

evident importance of epigenetic modifications in hematopoiesis and

alloreactivity, the exact mechanistic underpinnings of how

epigenetics operate in each context continue to elude the scientific

community. Future challenges exist not merely in uncovering the full

spectrum of epigenetic circuits, but equally importantly, in defining

exactly how these complex, interactive, and frequently conflicting

pathways ultimately affect donor stem cells, immune cell reactivity,

and HSCT outcomes. As the field of epigenetics continues to steadily

evolve, HSCT patients will undoubtedly benefit from the knowledge

that is yet to be fully appreciated.
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