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Inflammatory memory, as one form of innate immunememory, has a wide range

of manifestations, and its occurrence is related to cell epigenetic modification or

metabolic transformation. When re-encountering similar stimuli, executing cells

with inflammatory memory function show enhanced or tolerated inflammatory

response. Studies have identified that not only hematopoietic stem cells and

fibroblasts have immune memory effects, but also stem cells from various barrier

epithelial tissues generate and maintain inflammatory memory. Epidermal stem

cells, especially hair follicle stem cells, play an essential role in wound healing,

immune-related skin diseases, and skin cancer development. In recent years, it

has been found that epidermal stem cells from hair follicle can remember the

inflammatory response and implement a more rapid response to subsequent

stimuli. This review updates the advances of inflammatory memory and focuses

on its mechanisms in epidermal stem cells. We are finally looking forward to

further research on inflammatory memory, which will allow for the development

of precise strategies to manipulate host responses to infection, injury, and

inflammatory skin disease.

KEYWORDS

inflammatory memory, epidermal stem cells, hair follicular bulge, epigenetic memory,
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1 Introduction

Immune memory has long been regarded as one of the critical functions of the adaptive

immune system. However, recent studies show that innate immune cells also show adaptive

immune functions. When encountering a second insult, a nonspecific enhanced or

attenuated reaction could be elicited in innate immunocytes. This phenomenon is

termed trained immunity or innate immune memory, whose occurrence is related to

epigenetic modification or cell metabolic transformation (1–3). Innate immune memory

has a wide range of manifestations. For instance, vaccination and certain infections could

induce nonspecific protection against more pathogens via innate immune mechanisms (4).

Even plants and invertebrates without adaptive immune systems show immune memory

(5). Usually, immune memory will lead to an enhanced immune response to second

stimulation. However, low doses of lipopolysaccharide (LPS) could also induce a weaker
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inflammatory response to external stimuli (6). All these findings

support that the innate immune system has adaptive characteristics

and innate immune memory of inflammatory processes can be

gained during certain immune events and response by multiple cell

lineage to various stimuli.

As a broader responsive form of immune memory,

inflammatory memory exhibits protective or deleterious responses

to the stimuli for the second time. Exploring inflammatory memory

will be necessary to understand better the mechanisms of host

defense, wound healing, autoimmune-related diseases, aging, and

cancer development (7, 8). Previous studies have shown that

hematopoietic stem cells (HSCs), fibroblasts, and epithelial stem

cells (SCs) from the respiratory and intestinal tract have the

function of inflammatory memory (9–11). A recent conceptual

advance in the stem cell field is the inflammatory memory of

epidermal stem cells (EpdSCs). In 2017, Naik et al. found that the

wound healing process sped up after the skin of mice was

transiently exposed to imiquimod (IMQ, a topical immune

response modifier), which suggests that EpdSCs can gain

inflammatory memory to tissue damage. When the skin is injured

at the same site, this memory of EpdSCs can contribute to a quicker

re-epithelialization process (12). Recently, Levron et al. reported a

new wound-distal memory of progenitors derived from SCs in adult

mice’s hair follicle junctional zone (13).

This comprehensive review described the definition,

mechanisms, and various modalities of inflammatory memory.

For instance, HSC, fibroblasts, and epithelial SCs from the

respiratory and intestinal tract have all been reported to be

involved in memory processes (9, 11, 14). We further focused on

the inflammatory memory of EpdSCs and their clinical significance.

Highlighted findings in recent years are that certain chromatin

regions of EpdSCs remain accessible for up to 6 months after the

initial inflammatory stimulation of the epidermis via single-cell
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sequencing and ATAC-seq analysis. The results showed that

epigenetic modifications such as methylation and acetylation

occurred in this memory region (15, 16). Overall, inflammatory

memory takes part in the pathogenesis of wound healing, chronic

immune-related skin diseases, skin aging, and skin tumors.
2 Overview of the
inflammatory memory

Classically, antigen-specific T or B lymphocytes have immune

memory functions. In recent years, inflammatory memory as a form

of trained immunity has been fully shown in innate immune cells,

which cause modified immune responses to nonspecific second

stimulation (17–19). Many cell lineages have been shown to have

inflammatory memory functions. For example, hematopoietic cells,

fibroblasts, respiratory and intestinal epithelial SCs could

independently or cooperatively distribute and store inflammatory

memory (9, 11, 20). Theoretically, cells or their progenitors, who

persist between the initial immune event and subsequent recall,

might preserve inflammatory memory. Especially those long-lived

SCs are more likely to be triggered by inflammatory cytokines and

acquire inflammatory memory (11, 12, 14). Table 1 summarizes

various inflammatory memory phenomena and mechanisms found

so far.

HSCs are programmed to produce peripheral blood cellular

components. They are pluripotential and can generate diverse

mature functional hematopoietic cells. A series of exciting

experiments have shown inflammatory memory in HSCs. For

example, Kaufmann et al. reported a significant activation of

HSCs after vaccination of Mycobacterium tuberculosis (Mtb).

HSCs could further pass on this information to macrophage and

monocyte progeny, which produce large amounts of inflammatory
TABLE 1 Diversity of inflammatory memory.

Events of inflammatory
memory Effects of inflammatory memory Cell

types Mechanisms involved References

BCG reprograms HSCs in the bone
marrow and enhances myelopoiesis

BCG-educated HSCs generate epigenetically
modified macrophages that provide significantly

better protection against Mtb

HSCs IFN-related signaling (21, 22)

Poly (I:C) stimulated human lung
fibroblasts

TNFa induced increased release of IL-6 Fibroblasts Increased secretion of inflammatory
mediators such as IL-6 and IL-8

(23, 24)

Allergic disease in people with
chronic rhinitis polyps

Th2 cytokines stimulated polyp SCs, which showed
increased transcriptional levels and enhanced Wnt/

b-catenin pathway

Respiratory
epithelial

SCs

Sustained activation of genes
associated with Th2 cytokines IL-4
and IL-13 in the absence of allergen

stimulation

(11, 25)

Low levels of inflammation were
induced in mice given a high-fat diet

High-fat diet caused an increase in the stemness of
ISCs

ISCs Activation of the fatty acid sensor
PPAR-d

(26, 27)

Inflammation pretreatment
accelerated wound healing of local

skin

IMQ-induced psoriasis-like inflammation can alter
EpdSCs, resulting in faster repair of subsequent

wounds at the same site

Hair
follicular
bulge SCs

Increased accessibility of the AIM2
gene; synergistic effect of stress

responsive transcription factor FOS
with JUN and STAT3

(12, 28)

A new wound-distal memory of
progenitors derived from SCs in
adult mice’s hair follicle junctional

zone after an injury

Progenitors in their niche of origin away from the
injured site, up to 7 mm display a cell-autonomous
transcriptional pre-activated state and enhanced

wound repair ability

Progenitors
derived

from Lrig1+

SCs

H2AK119ub-mediated transcriptional
de-repression

(13, 29)
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mediators that kill Mtb more efficiently. On the other hand, Mtb

could reprogram HSCs via a type I IFN response, suppressing

myelopoiesis and impairing the trained protective immunity against

Mtb. The effect may be long-lasting because of chromatin

alterations in macrophages from vaccinated mice (21, 22).

Fibroblasts are the most common structural cells in connective

tissue and essential immunomodulatory cells. They are essential

producers of inflammatory mediators in homeostasis, wound

healing, fibrosis and inflammatory diseases (10, 30). Fibroblasts

have been demonstrated to function as innate immune cells and

maintain a memory, or trained immunity, to repeated inflammatory

stimuli (10, 30). The memory is maintained through a variety of

mechanisms including DNA methylation, histone modifications

and changes in histone abundance, miRNAs, sustained

transcription factor and signalling pathway activities, and their

metabolic state (23, 24, 30, 31). Fibroblasts are becoming essential

research subjects in chronic inflammatory skin diseases such as

psoriasis, scleroderma, and vitiligo (32–34).

The development, update, and homeostasis of the airway and

lung monolayer epithelia are regulated by pluripotent epithelial

progenitors or SCs (35–37). These cells are ideal candidates for

recalling immunological events because terminally differentiated

cells constantly shed off and cannot live long enough (38). Recently,

different teams have carried out many inflammatory memory

studies of respiratory epithelial SCs in human allergic diseases

(11, 38, 39). The results revealed striking changes in epithelial cell

diversity and subtypes via scRNA-seq of chronic rhinosinusitis

samples (11). In addition, when stimulated by Th2 cytokines IL-4

and IL-13, cultured polyp SCs revealed an enhanced transcriptional

response and activation of Wnt/b-catenin pathways compared with

non-polyp tissue, which showed that polyp SCs have specific

memories of allergic reactions they have experienced in vivo. The

efficacy of dupilumab, a fully human monoclonal antibody that

inhibits the signaling of Th2 cytokines IL-4 and IL-13, in the

treatment of patients with chronic nasal polyps further

demonstrates this inflammatory memory (11, 25, 40). Some

studies suggest that respiratory epithelial SCs may contribute to

the persistence of human allergic diseases by acting as a repository

of allergic memory (11). The memory mechanism may be related to

internal, external, and epigenetic factors that lock basal polyp cells

in an uncommitted state (11, 25). However, the specific mechanism

needs to be further studied.

The intestinal stem cells (ISCs) include actively cycling Lgr5+

columnar cells and slower cycling Bmi1+ cells (41–44). In 2016,

Beyaz et al. showed that a high-fat diet augments the numbers and

function of Lgr5+ ISCs of the mammalian intestine by inducing a

robust Peroxisome proliferator-activated receptor delta (PPAR-d)
signature in ISCs and progenitor cells (45). In 2017, Unnikrishnan

et al. found that dietary restriction can induce changes in gene

expression in mice, which persist even when a dietary restriction is

discontinued. DNAmethylation of the Nts1 gene in ISCs may play a

role in this memory effect (26). In 2021, Mana et al. further

demonstrated that a high-fat diet enhances intestinal stemness

and tumorigenicity (46). Recently, Reddy et al. found that

inflammation from gastro-intestinal acute graft-versus-host

disease leaves a memory of its effects on ISCs that persist and are
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likely to affect their sensitivity to adapt to future stress or challenges.

They found that Lgr5+ ISCs undergo metabolic changes that lead to

the accumulation of succinate, which reprograms its epigenome

(27). Exploring the inflammatory memory of ISCs is essential for

maintaining intestinal homeostasis and preventing and treating

intestinal diseases.
3 Current research on EpdSCs

The epidermis is the critical barrier structure of the body. It

contains at least three distinct stem cell populations. They are

situated within the hair follicle bulge, the junctional zone, and the

basal layer of the interfollicular epidermis (IFE) (47, 48). The

identification and isolation of SCs are usually made by functional

and lineage tracking analysis. EpdSCs have been purified based on

the expression of some unique surface markers, including integrin,

keratin (K), P63, and CD34. When labeled by administration of

nucleotide analogs such as [3H] thymidine or bromodeoxyuridine

(BrdU), the retention process will remain for a prolonged time. It is

well known that EpdSCs divide asymmetrically, giving rise to a

transit-amplifying (TA) cell and one parent stem cell. The rapidly

cycling TA cells gradually lose the label, undergoing further

differentiation (49). However, SCs that divide less frequently keep

the label and are called label-retaining cells (LRC). This division

pattern provides and sustains many SCs that update the tissue

continuously. EpdSCs maintain skin homeostasis and hair

regeneration, especially in the epidermal repair after injury. The

immune memory function of EpdSCs has become an important

research field in recent years (17, 47, 50, 51).
3.1 Hair follicular bulge SCs

The bulge of the hair follicle, as part of the outer root sheath, is a

repository of EpdSCs. Analysis of dynamic lineage progression and

transcriptomic changes in mouse hair follicle epithelium revealed

that bulge SCs originate from the periphery of the placode basal

layer. They could migrate to the hair follicle matrix, the sebaceous

gland, and the basal layer of the IFE to produce progenitors that

differentiate into cells of hair, gland, or epidermis (52, 53). The

upper segment of the hair follicle is permanent and comprises the

infundibulum and isthmus. The lower part is transient and goes

through growth, resorption, and rest phases, often called the

anagen, catagen, and telogen stages. Bulge SCs do not contribute

to maintaining the IFE under typical homeostasis situations, but can

rapidly migrate upward and repair the epidermis after skin injury

(48, 54) (Figure 1). With burns, the regenerative function of the hair

bulge is highlighted. Superficial burns with intact appendage

structures allow rapid healing and regeneration of epidermal

appendages. When severe burns involve the hair bulge, the skin

can regenerate without leaving behind damage to adnexal structures

and scar formation.

Various markers consistent with “stemness” were used to

identify SCs in the epidermis. Hair follicle bulge SCs have been

purified by fluorescence-activated cell sorting based on the
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expression of surface markers, including K15, CD34, Lgr5, and a6
integrin (55). Most studies isolate and sort EpdSCs from rodent

animal skin. In humans, although neonatal foreskin is the typical

source of normal keratinocytes, SCs in the hair follicle bulge can

often be obtained from hairy skin, such as the human scalp, with

positive sorting markers K15, b1 integrin, and CD200 (56). In

addition, the supply of human hair follicles for investigative

purposes is limited in most conditions. The role of hair follicle

bulge SCs in inflammatory memory is derived from mice’s scRNA-

seq and ATAC-seq analysis in the latest studies (57–59).
3.2 SCs in the hair follicle junctional zone

The EGF receptor antagonist leucine-rich repeats and

immunoglobulin-like domains 1 (Lrig1) have been identified as

one marker of human EpdSCs (60). In 2009, Jensen et al. found that

Lrig1 expression specifies a unique population of EpdSCs in the

mouse epidermis, located in the hair follicle junctional zone

adjacent to the sebaceous glands and infundibulum. As bulge SCs

did in epidermal reconstitution experiments, these cells could

contribute to all epidermal lineages (61). Then, in 2013, Page

et al. demonstrated that Lrig1+ cells are highly proliferative

EpdSCs and can maintain the upper pilosebaceous unit,

containing the infundibulum and sebaceous gland as independent

compartments, but contribute to neither the hair follicle nor the IFE
Frontiers in Immunology 04
by Long-term clonal analysis (29). They also found that stem cell

progeny from multiple compartments gain lineage plasticity and

permanently contribute to regenerating tissue by analyzing three-

dimensional reconstructions of epidermal-tail whole mounts after

wounding (29).
3.3 Interfollicular epidermis SCs

The IFE SCs form a watertight barrier and play a significant role

during skin homeostasis. The detection of interfollicular LRC

confirmed the existence of IFE SCs in the human and mouse IFE

basal layer (62). Compared with hair follicle SCs, human IFE SCs

showed high expression of b1 integrin, a6 integrin, and delta1 and

low expression of CD71 (63). In addition, as one of the identified

markers of human IFE SCs, p63 is an essential transcription factor

for epidermal development and homeostasis. It controls the fate of

keratinocytes by regulating the balance of stemness, differentiation,

and senescence (64, 65). Recently, human IFE SCs have been

reported to be identified by the expression of a novel

combination of p63 and histone deacetylase1 (HDAC1) (66).

Although there is no evidence to confirm the role of IFE SCs in

inflammatory memory, the recurrence of inflammatory skin

diseases such as psoriasis and atopic dermatitis is more common

in hairless skin, mechanism of local recurrence needs to be

further studied.
FIGURE 1

Mechanisms of inflammatory memory in epidermal stem cells. Hair follicle SCs play significant roles in skin homeostasis and injury repair.
Inflammatory memory could be established, maintained, and recalled by epidermal SCs following various stimuli. The mechanism is related to
chromosomal accessibility in epidermal SCs. Single-cell sequencing and ATAC-seq analysis showed that the primary stimulation activates AIM2,
transcription factors (STATs, NF-kB), and remodel chromatin at inflammatory stress response genes. After inflammation remission, epidermal SCs
maintain accessibility and histone modification in specific chromatin loci. When the skin was injured for the second time, FOS was rapidly recruited
to memory domains, leading to the re-activation of AP1-dependent transcription. Important epigenetic markers such as H3K27ac and H3K4me1
contributed to chromatin accessibility in this process. JAK, Janus Kinase; STAT, signal transducer and activator of transcription; AIM2, absent in
melanoma 2; CASP1, caspase-1; AP1, activator protein-1; NF-kB, nuclear transcription factor-kB; TF, transcription factors.
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IFE SCs contribution to epidermal homeostasis is supported by

slow-cycling cells in the basal layer and the clonal regeneration of

the mouse IFE (67, 68). However human IFE has some unique

characteristics from the mouse. The human epidermis has more

layers of keratinocytes in most body sites, projecting into the dermis

as rete ridges and separated by dermal papillae. Identifying and

isolating human IFE SCs is difficult due to the lack of specific stem

cell markers. Recently, it has been proposed that human IFE may be

maintained by progenitor cells behaving similarly to those in the

mouse, allowing the clusters of SCs to remain quiescent (68). In

addition, IFE SCs are believed to play a significant role in dermal

homeostasis in hairy skin (69). However, human skin includes some

hairless skin, such as palms, soles, glans, and nipples, and the role of

IFE SCs in these areas needs further investigation.
4 Inflammatory memory of EpdSCs

The inflammatory memory of EpdSCs enables the body to

produce enhanced or eased responses when it receives external

stimuli a second time. Repeated inflammatory memory may also be

involved in the recurrence or induction of immune-mediated skin

diseases, skin aging, and the development of skin cancers (70). How

to intervene or block the harmful inflammatory memory of SCs has

a significant theoretical and research value. More and more research

on the occurrence and mechanism of inflammatory memory in

EpdSCs has been reported in recent years.
4.1 Remember and respond to various
inflammatory stimuli by EpdSCs

EpdSCs of the skin sense and respond to various inflammatory

stimuli, including bacteria, viruses, injuries, and other

environmental factors, to maintain and repair tissues in health

and disease. It was previously acknowledged that only some

immune cells can gain memory to resist exogenous stimuli.

However, in 2017, Professor Fuchs and her team reported that

when inflammation or trauma occurs to the skin, EpdSCs in mice

perceive stimuli, proliferate, and differentiate to replace the

damaged epidermal cells. Even if the stimuli disappeared, some

EpdSCs maintained a post-inflammatory situation for a long time,

contributing to a sped-up wound-healing process (12). It is well

known that most epidermal cells transition from the basal layer to

the stratum corneum and eventually fall off. Keratinocytes do not

stay long enough to maintain this “memory,” while EpdSCs divide

slowly in vivo and have slow cell cycle properties. Therefore, the

sensitivity of the epidermis to secondary stimuli may be related to

the memory of inflammation in EpdSCs. Finally, based on their

mouse experiments, the hypothesis was confirmed (12, 15). In

another experiment, Zhang et al. gave the mice IMQ again at the

same site after the first inflammatory response had subsided and

found that the second inflammatory response appeared faster and

more severe, which suggests the inflammatory memory after skin

inflammation (71).
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Recently, Levron et al. reported a new wound-distal memory of

progenitors in adult mice. They found that after a first injury, Lrig1+

SCs give rise to long-term wound-memory progenitors residing in

their niche of origin away from the injured site, up to 7 mm. These

newly identified wound-distal memory cells display a cell-

autonomous transcriptional pre-activated state, enhancing wound

repair ability. When the damage has been resolved, and new

homeostasis has been re-set, Lrig1+ SCs derived cells remain

transcriptionally pre-activated (13).
4.2 Mechanisms of inflammatory
memory in EpdSCs

The process of inflammatory memory is related to tissue

adaptation to environmental exposures during homeostasis and

disease conditions. Theoretically, this process might occur on any

cell type, especially skin cells and various barrier epithelial cells. It

will be essential to determine the distribution and interaction of

different cell lineages and how they are shaped by host and

environmental factors (38). Recent studies have shown that

EpdSCs can record inflammatory events by changing their

chromatin landscape and function (1, 7).

The localization of inflammatory memory is mainly

concentrated in the chromatin of EpdSCs (Figure 1).

Epigenetic or metabolic changes enhance the skin sensitivity

and tissue repair capacity to subsequent encounters (8). The

inflammatory response makes chromatin remodeling and

activates inflammation-related transcription factors (14). Upon

resolution, EpdSCs retain inflammation-induced chromatin

accessibility. These chromatin domains contain inflammation-

sensing regulatory elements and genes associated with enhancers

(72). These elements are also related to genes that encode skin

barrier restoration proteins. After a subsequent skin injury

stimulus, SCs show enhanced transcriptional response and

promote wound repair. Further investigation exploring the

mechanisms of inflammatory memory showed no contributions

of skin-resident T cells or macrophages. The inflammasome, IL-

1b, and epigenetic reprogramming of SCs have been involved.

Significantly, the absence of melanoma 2 (AIM2)/caspase-1/IL-1b
axis seemed essential for memory recall. AIM2 is the crucial

memory mediator and inflammasome activator, and it augments

IL-1b to promote the regenerative process after injury (14).

EpdSCs express a variety of cytokine and pattern recognition

receptors that could sense damage-associated molecular patterns

(DAMPs), pathogen-associated molecular patterns (PAMPs), and

cytokine signals (73). In addition, the inflammatory memory state

in EpdSCs could persist for at least 180 days, showing the

durability of the response.

Some researchers want to know how epigenetic memory works

and how chromatin information can be transmitted to progeny

after SCs divide. They found that inflammation-associated

transcription factors, such as STATs and NF-kB, are activated

rapidly through post-translational mechanisms (Figure 1). As the

essential element for innate immune responses to infection or tissue
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damage, NF-kB execute function via conventional TNF-a/TNFR/
NF-kB signal pathway in the skin. Some studies reported

that specific chromatin sites containing some sequence of

inflammation-activated TFs remain open status. Although the

molecular details underlying inflammatory memory are obscure,

DNA or histone modifications play a significant role in maintaining

inflammatory memory (74). EpdSCs infrequently divide,

which may permit more epigenetic modification to be sustained.

However, as the primary form of epigenetic modification,

histone modifications are relatively unstable in their inheritance

compared with DNA methylation. So, more exciting mechanisms

will be explored to understand the inflammatory memory

phenomenon better.

The latest mechanisms of inflammatory memory related to

epigenetic inheritance are detailed below (Figure 1). After an

initial inflammatory or microbial trigger, SCs change histones and

chromatin accessibility to activate the transcription of

inflammatory, antimicrobic, and stress-related genes. Most of

these genes could return to their baseline epigenetic status after

stopping stimulus, but restoring H3K4me1 modification at

enhancers or H3K4me3 modification at proximal promoters is

slow (28). Associated genes of accessible chromatin permit the

rapid recruitment of RNA polymerase II and transcriptional

activation upon a secondary trigger (75). Levron et al. found that

the long-range priming relies on H2AK119ub-mediated

transcriptional de-repression in distal memory cells derived from

Lrig1+ SCs (13). However, whether histone modifications are

enough to maintain memory domains in an open status without

inflammation and what kind of secondary stimuli could trigger the

memory need to be explored.

Besides the histone modifications of enhancer H3K4me1 and

promoter H3K4me3 in the open chromatin region mentioned

above, other epigenetic modifications include histone-change

enzymes and nucleosomes that could bind to multiple

transcription factors. Researchers focused on inflammation-

sensing transcription factors that are activated because of

cytokine or microbial exposure. For example, JAK/STAT

signaling is essential for the initial response, establishing

inflammatory memory (76). In addition, many members of the

Stat family are rapidly induced by various cytokines in the recall

stage. Recently, Larsen’s study showed that establishing memory

requires stimulus-specific factor STATs to be activated and open the

memory domains and the general stress-responsive transcription

factors of the AP-1 family, including c-JUN and c-FOS, to remodel

and open the chromatin. They found pre-existing inflammation-

independent transcription factors bind to inflammatory memory

loci and preserve accessibility long after the inflammation; stress-

responsive transcription factors are no longer present. Above all,

FOS-associated AP-1 factors are more important for establishing

and recalling inflammatory memory from analyzing existing

databases in human and mouse cells (16). The present studies

show that EpdSCs establish, maintain, and recall immune memory

through various sensors, then alter their responses and function.

However, it remains to be explored how inflammatory memory

maintained by EpdSCs influences stress-induced ligands, which
Frontiers in Immunology 06
further interact with T lymphocytes or inflammatory mediators in

the local niche (77).
4.3 Clinical significance of inflammatory
memory in EpdSCs

Recent discoveries revealed that epidermal stem cell memory

might participate in various pathophysiological conditions. For

example, inflammatory memory could change the skin wound

healing process. However, memories can also be maladaptive,

leading to chronic immune-related skin disorders and skin cancer

development. Enhancing the beneficial memory effect and reducing

harmful inflammatory memory will be of great value in preventing

and treating related skin diseases.
4.3.1 Inflammatory memory in wound healing
The effect of inflammatory memory on skin wound healing is an

important research field for training immunity. Levy et al. reported that

follicular SCs contribute to the resurfacing of the wound and could

remain resident in the basal layer of the epidermis months later (78).

The division of EpdSCs, affected by various inflammatory niches, could

repair the wound. The wound-healing process is usually divided into at

least three stages: coagulation, inflammation, and repair. Many

cytokines and chemokines play a significant role in tissue

regeneration during the wound inflammation phase. The pioneering

study of Naik on the inflammatory memory of EpdSCs is carried out in

psoriasis-like mice induced by IMQ. They found that skin wounds at

the inflammation resolution site heal faster than control mice

independently of immune cells, such as resident T cells and

macrophages. Chromosomal accessibility in EpdSCs was identified

by high-throughput sequencing, and IMQ exposure increased the

accessibility of the AIM2 gene, which is related to inflammation and

hyper-proliferation in EpdSCs. AIM2-deficient mice lost the ability to

recollect inflammation and failed to speed up wound repair in

previously inflamed skin. When inducing the expression of

epidermal AIM2, wound repair was enhanced even without pre-

challenge with IMQ (12). There are also some clinical phenomena

associated with inflammatorymemory. For example, a surgical incision

or punch injury can induce new lesions on the normal skin of psoriasis

patients, which is termed the Koebner phenomenon (79, 80).

Conversely, the acceleration phenomenon observed in animal wound

healing models through inflammatory memory still lacks enough

clinical work support.
4.3.2 Inflammatory memory in immune-related
skin diseases

Psoriasis and atopic dermatitis are common chronic

inflammatory skin diseases. Inflammatory memory may play an

essential role in the recurrence of these diseases. In clinical work,

recurrence of psoriasis lesions often occurs in friction areas such as

the back, elbows, and anterior tibia of lower extremities. Despite

psoriatic lesions subsiding and the skin with an almost normal

appearance after therapeutic intervention, transcriptional profiling
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of resolved skin with persistent differential expression of disease-

related genes distinguishes it from uninvolved healthy skin (81). It is

usually believed that tissue-resident memory T lymphocytes have a

role in the recurrence of psoriasis (82). However, in the mouse

model of psoriasis-like inflammation, the memory function of

EpdSCs rather than tissue-resident T cells was confirmed.

Transcriptome and ATAC-seq analysis of psoriatic and normal

skin tissues showed that AP-1-mediated genes might regulate the

histopathological changes of psoriatic lesions (83). In an IMQ-

induced psoriasis-like mouse model, the chromatin alteration of

EpdSCs was found and could persist for a long time in the skin of

inflammation resolution. The same mouse model showed that over

1,000 DNA regions in EpdSCs gained accessibility at the peak of

skin inflammation. Essential mechanisms are that stress-responsive

transcription factor FOS cooperates with JUN, signal transducer,

and activator of transcription 3 (STAT3). After resolving the

inflammatory response, STAT3 and FOS were released from the

memory domains. However, JUN, ATF3, and p63 remained on

memory domains, which could quickly maintain the chromatin

open at the memory domains and facilitate FOS recruitment and

gene reactivation on secondary challenges such as wounding and

infections (16). These results show that EpdSCs could gain long-

term epigenetic memory during psoriasis. Chromatin accessibility

increases in psoriasis, and two epigenetic markers are vital

contributors (32, 84). One is histone three lysine twenty-seven

acetylation (H3K27ac) at distal enhancers could make the acetyl

group neutralize the positive charge of histone three lysine twenty-

seven (H3K27) and lead to weaker interactions between histone and

DNA. Another is histone three lysine four trimethylation

(H3K4me3), which has nucleosome remodeling roles at the

promoters of stimulated genes. The inflammatory memory could

make EpdSCs more vigorous in response to a broad range of

subsequent stressors, potentially contributing to the recurrence

of psoriasis.

4.3.3 Inflammatory memory in skin tumors
Abnormal proliferation and differentiation of EpdSCs lead to

the occurrence of squamous cell carcinoma (SCC) and basal cell

carcinoma (BCC). It was reported that epidermal cells positively

stained with LGR5, one of the crucial markers of SCs in the

epidermis, might be BCC’s cell origin (85), and the LGR5-positive

tumor population is closely related to basal cell carcinoma relapse

(86). Chronic inflammation plays a significant role in the

occurrence and development of SCC and BCC because of various

physicochemical factors. For example, skin SCC is prone to occur

based on discoid lupus erythematosus, lichen planus, and

chronic cheilitis.

Multiple studies found that repeat inflammatory stimuli can

induce inflammatory memory in EpdSCs, resulting in related gene

mutations and keratinocyte abnormal proliferation and

differentiation (12, 13, 87). Chickens infected with the Rous
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sarcoma virus usually develop tumors along the wound site after

an injury (88). In mice, inflammatory memory of EpdSCs after

subsequent tissue damage increased the susceptibility to cancer (12,

13). In addition, inflammatory training of tumorigenic cells can

confer enhanced cancer susceptibility in human (89).

Baksh et al. highlighted that oncogenic EpdSCs are serine

auxotrophs whose growth and self-renewal require abundant

exogenous serine. EpdSCs activate de novo serine synthesis when

extracellular serine is limited, removing the repressive histone

modification H3K27me3 and activating differentiation programs

that promote SCC (90). The literature has reported that H3K27me3

is related to b-glucan-trained immunity (91); thus, the mechanism

of the relationship between EpdSCs inflammatory memory and

SCC development needs to be further studied.
5 Conclusions and future perspectives

Inflammatory memory in EpdSCs is one kind of trained

immunity, like in the innate immune system’s monocytes,

macrophages, and natural killer cells. However, SCs are

characteristic of multipotency and could transfer the epigenetic

modification to next-generation cells, resulting in the training of the

entire tissue (92). Besides hair follicle bulge SCs in mice, there still

needs to be more in-depth research on whether the SCs of sebaceous

glands and sweat glands involve the formation of inflammatory

memory. Although some progress has been made in establishing

and maintaining inflammatory memory in EpdSCs, the time and

intensity of its occurrence need to be further studied between

pathophysiological conditions.

EpdSCs collect information about various stimuli and

remember and respond to subsequent exposures. The responses

are changed to reduce damage, repair the tissue, and maintain

homeostasis. However, the inappropriate intensity of an active

immune response will cause chronic inflammation. A similar

mechanism is involved in various inflammation-related diseases,

such as chronic wounds, psoriasis, atopic dermatitis, and skin

cancer. Although the memory domains could be explained by

chromatin accessibility, the critical question is, what incentives

can stimulate specific chromatin regions to form long-term

epigenetic alteration? Are other epigenetic markers contributing

to chromatin accessibility besides H3K27ac, H3K27me3,

and H3K4me1 (93)? Is there heterogeneity in the same or

different lineage SCs? Can we artificially activate memory loci

to regulate the interaction between memory SCs and the local

immune niche? A more comprehensive and in-depth study

on the molecular mechanisms underlying immune memory

formation in EpdSCs is necessary. Modulating the epigenetic

reprogramming of inflammatory memory may offer novel

therapeutic strategies for wound healing, immune-related skin

diseases, and skin tumors.
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