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Background: The link between the gut microbiota (GM) and Sjögren’s Syndrome

(SS) is well-established and apparent. Whether GM is causally associated with SS

is uncertain.

Methods: The MiBioGen consortium’s biggest available genome-wide

association study (GWAS) meta-analysis (n=13,266) was used as the basis for a

two-sample Mendelian randomization study (TSMR). The causal relationship

between GM and SS was investigated using the inverse variance weighted, MR-

Egger, weighted median, weighted model, MR-PRESSO, and simple model

methods. In order to measure the heterogeneity of instrumental variables (IVs),

Cochran’s Q statistics were utilized.

Results: The results showed that genus Fusicatenibacter (odds ratio (OR) = 1.418,

95% confidence interval (CI), 1.072–1.874, P = 0.0143) and genus

Ruminiclostridium9 (OR = 1.677, 95% CI, 1.050–2.678, P = 0.0306) were

positively correlated with the risk of SS and family Porphyromonadaceae (OR =

0.651, 95% CI, 0.427–0.994, P = 0.0466), genus Subdoligranulum (OR = 0.685,

95% CI, 0.497–0.945, P = 0.0211), genus Butyricicoccus (OR = 0.674, 95% CI,

0.470–0.967, P = 0.0319) and genus Lachnospiraceae (OR = 0.750, 95% CI,

0.585–0.961, P = 0.0229) were negatively correlated with SS risk using the

inverse variance weighted (IVW) technique. Furthermore, four GM related genes:

ARAP3, NMUR1, TEC and SIRPD were significant causally with SS after FDR

correction (FDR<0.05).

Conclusions: This study provides evidence for either positive or negative causal

effects of GM composition and its related genes on SS risk. We want to provide

novel approaches for continued GM and SS-related research and therapy by

elucidating the genetic relationship between GM and SS.
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Introduction

The peak incidence of Sjögren’s Syndrome (SS), a chronic

autoimmune illness, occurs around the age of 50 (1).

Inflammation of the exocrine glands, particularly the salivary and

lacrimal glands, is the main side effect of SS and a contributing

reason in excessively dry mouth and eyes. Clinical signs of SS might

range from those associated with sicca to systemic illness and cancer

(2). Formal criteria for the diagnosis are based on the severe

immunologic abnormalities of SS, which include the detection of

serum anti-Roantibodies antibodies and localized lymphocytic

sialadenitis on labial salivary gland biopsy (3). This illness has a

heavy impact since there are few viable treatment choices. Thus, it is

crucial to investigate the causes of SS in order to aid in the creation

of treatment plans that cause little harm or even no adverse effects.

The biggest known symbiotic microbiological communities in

the human body is the gut microbiome (GM), which is made up of

bacteria, fungi, viruses, and protozoa (4), and comprises 4 trillion

microorganisms (5) and 150 000 microbial genomes (6). The

development of the human immune system is crucially influenced

by the gut microbiota, which also protects against pathogen

overgrowth (7). According to a study, the dynamics of human

immune cells were connected to the gut microbiome, indicating that

the gut microbiome was responsible for the immune system’s

regulation (8). Autoimmune illnesses were made more likely by

the dysbiosis of the gut microbiome, which impacted immune

responses (9). One theory was that autoimmune reactions to

nuclear antigens were affected by the presence of commensal GM

(10). Previous research has linked the IL-23/IL-17 major cytokine

pathway to the development of GM (11) as well as spondyloarthritis

(SpA), ankylosing spondylitis (AS), reactive arthritis (ReA) (12),

and reactive arthritis induced by bacterial infections. In addition to

maintaining intestinal permeability, IL-17 encourages T cell

priming and boosts the production of pro-inflammatory

cytokines and chemokines by immune cells (13), fibroblasts,

endothelium and epithelial cells, and endothelial and epithelial

cells (14). The primary source of IL-17 is Th17 cells. Thl7 cell

growth results from T cell activation, which is greatly aided by IL-

23. Th17 cells contribute significantly to the emergence of SpA by

the induction of pro-inflammatory cytokines such IL-17 and TNF-

a (15). Moreover, prior research has found that the microbiota

diversity of SS is much lower than that of healthy controls (16–22),

suggesting that microbial dysbiosis may contribute to the

pathogenesis. Nevertheless, whether there is a causal connection

between the gut microbiota and SS is yet unknown.

Mendelian randomization (MR) is a unique method to

investigate the relationship between GM and SS in this context.

To evaluate the causative relationship between exposure and illness

outcome, MR constructs IVs of exposure using genetic variations

(23). The distribution of genotypes from parent to child is random,

therefore common confounding variables have no effect on the

connection between genetic variations and outcome, and a causal

sequence is justified (24). In this work, two-sample Mendelian

randomization (TSMR) study was carried out to assess the causal

link between GM and SS using GWAS summary statistics from the

MiBioGen and FinnGen consortiums.
Frontiers in Immunology 02
Materials and methods

The MR study’s assumptions and design

To assess the causal connections between GM taxa and SS,

TSMR analysis was performed. Figure 1 shows the flowchart of the

MR study between GM taxa and SS. For GM and SS, summary-level

data from the genome-wide association studies (GWASs) was

acquired. The MR study also met the following 3 assumptions

(25) in order to get trustworthy findings (Figure 2): (1) The GM

taxa must be closely connected to the instrumental variables (IVs)

that are ultimately included for usage; (2) There was no

interdependence between the included IVs and confounders

(affecting GM taxa and SS); (3) There was no horizontal

pleiotropy since SS was only impacted by IVs via GM taxa. In the

meanwhile, our results were published in accordance with the MR-

STROBE recommendations (26).
Data sets

The MiBioGen research is the largest ethnically diverse

genome-wide meta-analysis of the GM to date (27). In the GWAS

meta-analysis, there were 18,340 people from 24 cohorts. Targeting

the V4, V3-V4, and V1-V2 sections of the 16S rRNA gene allowed

researchers to characterize the microbial makeup of several cohorts,

and 10,000 readings per cohort were selected from all microbiome

datasets. An effective sample size of at least 3,000 people and

participation in at least three cohorts were the study-wide cutoffs.

Through the implementation of a standardized pipeline,

microbiome trait loci (mbTL) were mapped to identify genetic

loci that affect the relative abundance (mbQTL) or presence
FIGURE 1

Flowchart of TSMR design.
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(microbiome binary trait loci, or mbBTL) of microbial taxa. 211

bacterial taxa’s worth of accessible GWAS summary statistics were

subsequently used into the MR analysis. SS GWAS data containing

2247 cases and 332115 controls is obtained from FinnGen Release 8,

published on Dec 1, 2022(https://www.finngen.fi/en) (28). SS

patients are defined according to ICD-10 code M35.0, ICD-9 code

7102, or ICD-8 code 73490 (mostly according to ICD-10 code).

The IVs were chosen using the following selection criteria: First,

possible IVs were chosen from single nucleotide polymorphisms

(SNPs) connected to each species at a significance level of (P =

1x10-5) (29); Second, the linkage disequilibrium (LD) between the

SNPs was calculated using data from the 1000 Genomes Project’s

European samples as the reference panel, and only SNPs with the

lowest P-values were kept among those SNPs with R2 < 0.001

(clumping window size = 10,000 kb); Third, SNPs having a minor

allele frequency (MAF) of less than 0.01 were eliminated; Fourth, F-

statistic measures the strength of the relationship between genetic

variants and exposure, where a higher F-statistic indicates a

stronger instrument. The threshold of 10 is widely accepted as it

corresponds to an instrument that explains at least 10% of the

variance in the exposure variable and has a low probability of weak

instrument bias (30). F-statistic for each IV is calculated (F=(beta/

se)^2), and only those IVs with an F-statistic greater than 10

were retained.
Statistical analysis

In this investigation, a variety of techniques were utilized to

determine if there was a causal relationship between GM and SS,

including inverse variance weighted (IVW), MR-Egger, weighted

median, weighted model, MR-PRESSO, and simple model

approaches. To evaluate the overall impact of GM on SS, the IVW

technique coupled a meta-analysis strategy with the Wald estimates

for each SNP. The IVW results would be unbiased if there was no

horizontal pleiotropy (31). Based on the premise that instrument

strength is independent of direct effect (InSIDE), MR-Egger

regression enables the evaluation of pleiotropy using the intercept

term. The outcome of the MR-Egger regression is consistent with

IVW if the intercept term equals zero, demonstrating the absence of

horizontal pleiotropy (32). When up to 50% of IVs are invalid, the

weighted median technique enables accurate causal connection

assessment (33). The weighted mode estimate has been found to
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have more power to identify a causal impact, less bias, and lower type

I error rates than MR-Egger regression in the event that the InSIDE

hypothesis is falsified (33). By eliminating large outliers, the MR-

PRESSO analysis finds horizontal pleiotropy and makes an effort to

decrease it. Nevertheless, the MR-PRESSO outlier test is dependent

on InSIDE assumptions and necessitates that at least 50% of the

genetic variations be valid instruments (34). The simple mode

approach is also less biased than other methods while being less

precise since it can reduce bias (33).

In order to assess the stability of significant results, we carried out

additional tests for heterogeneity and horizontal pleiotropy using

meta-analytic methods. These tests included the modified Cochran Q

statistic and the MR Egger intercept test of deviation from the norm

(35). To avoid horizontal pleiotropy brought on by a single SNP, a

leave-one-out analysis was carried out, which systematically drops

one SNP at a time. The packages “TwoSampleMR” (36) and

“MRPRESSO” in R version 4.2.1 were used for every analysis.
Mapping SNPs to genes

To further understand the mechanism of the influence of gut

microbiota on Sjogren syndrome, we entered the SNPs of each Taxa

that were significant in the MR analysis as lead SNPs into FUMA

GWAS (37) (a platform that can be used to annotate, prioritize,

visualize and interpret GWAS results). These SNPs were mapped to

genes using the SNP2GENE tool in FUMA. To understand gene

interactions at the protein level, PPI networks were constructed for

mapped genes using STRING (38) with 0.4 as the recommended

minimum interaction index and default values for all other variables.

Analysis and display of PPI data using Cytoscape (V3.9.1).
Deeper MR analysis of transcriptomic

To further verify the causal relationship between mapped genes

and SS, we performed a transcriptome Mendelian randomization

analysis on them. We obtained cis-eQTLs (cis expression

quantitative trait loci, cis-eQTLs) of SNP mapped genes from the

eQTLGen consortium (https://eqtlgen.org/). Complete descriptions of

the data are accessible in the original publications (39). In a nutshell,

the eQTLGen data comprised cis-eQTLs for 16,987 genes and 31,684

blood samples, the majority of which were from healthy people of

European ancestry. The whole set of significant cis-eQTL findings

(false discovery rate, FDR < 0.05) and allele frequency data was

downloaded at 2023/03/10. Using a very low correlation criterion in

the setting of a cis-regionMRmay lead to the loss of causative variants;

hence, these eQTLs were clumped using a pairwise linkage

disequilibrium (LD) threshold of r2 < 0. 1 (40).The final IVs were

obtained for 237 genes from a total of 324 genes. The process of

Mendelian randomization was the same as before, but considering the

multiple testing problem, we performed an FDR correction, and the

result of FDR < 0.05 was considered significant.
FIGURE 2

Three assumptions of MR.
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Results

Causal effects of gut microbiome on SS

211 Taxa’s analysis results are shown in the lollipop plot in

Figure 3. Class Methanobacteria, family Methanobacteriaceae and

order Methanobacteriales were excluded from the analysis results

because MR-Egger showed a different effect direction than the other

four methods (), and the final significant six Taxa forest plots

are shown in Figure 4. The results of IVW analyses demonstrated

that genus Fusicatenibacter (odds ratio (OR) = 1.418, 95%

confidence interval (CI), 1.072–1.874, P = 0.0143) and genus

Ruminiclostridium9 (OR = 1.677, 95% CI, 1.050–2.678, P =

0.0306) were positively correlated with the risk of SS. Family

Porphyromonadaceae (OR = 0.651, 95% CI, 0.427–0.994, P =

0.0466), genus Subdoligranulum (OR = 0.685, 95% CI, 0.497–

0.945, P = 0.0211), genus Butyricicoccus (OR = 0.674, 95% CI,

0.470–0.967, P = 0.0319) and genus Lachnospiraceae (OR = 0.750,

95% CI, 0.585–0.961, P = 0.0229) were negatively correlated with SS

risk (Figure 4). The MR estimates of weighted median indicated that

genus Butyricicoccus (OR = 0.611, 95% CI, 0.384–0.972, P = 0.0377)

and family Porphyromonadaceae (OR = 0.521, 95% CI, 0.298–

0.909, P = 0.0217) served as protective factors for SS

(Supplementary Table S1). However, none of the results were

significant after Bonferroni multiple tests correction (P<0.05/

211 = 0.000237). We show significant taxa ’s SNPs in

Supplementary Table S2 and Supplementary Figure S1. The

heterogeneity test revealed no heterogeneity among the individual

SNPs. It seemed unlikely that horizontal pleiotropy would distort

the impact of the gut microbiota on SS, according to the findings of

the MR-Egger regression and MR-PRESSO global test (Table 1).

Leave-one-out analysis revealed that no one SNP was responsible

for the causative estimates of GM and SS, which were displayed in

Supplementary Figure S2.
Mapping SNPs to genes

To obtain more insight into the biological significance of prior

findings, we evaluated the functional annotations of the genetic
Frontiers in Immunology 04
variants used as IVs in MR through FUMA GWAS tool (37). The

SNP hit genes are shown in Supplementary Table S3. STRING was

used to generate PPI networks from 324 significant GM’s SNPs

mapped genes, which were then displayed in Cytoscape to predict the

interactions and adhesion pathways of common significant GM’s

SNPs mapped genes. As shown in the diagram, the PPI network of

genes hit by SNPs contains 115 nodes and 202 edges (Figure 5).
Deeper MR analysis of transcriptomic

We obtained gene expression-related SNPs (eQTLs) from the

eQTLGen consortium (https://eqtlgen.org/). As illustrated in

Figure 6, the genetically proxied expression of 4 genes was

significantly associated with the risk of schizophrenia at FDR <

0.05. Among these genes, ARAP3, NMUR1, TEC were associated

with genus Subdoligranulum. SIRPD was associated with genus

Ruminiclostridium9. Other genes were not significantly associated

with SS. As illustrated in Supplementary Table S4, the effect

direction of all five MR approaches was consistent. The

heterogeneity test showed no heterogeneity among individual

eQTLs. According to the MR-Egger regression results, it seemed

implausible that horizontal pleiotropy would bias the effect of gut

microbiota on SS (Supplementary Table S5).
Discussion

This was the first study to evaluate the two-way causal link

between the GM and SS using a number of complimentary MR

methods. This TSMR investigation provided evidence that the

presence of family Porphyromonadaceae, genus Subdoligranulum,

genus Butyricicoccus, and genus Lachnospiraceae was associated

with a lower chance of developing SS, and that genus

Fusicatenibacter and genus Ruminiclostridium9 may be factors

that increase the likelihood of SS. Further, we performed MR

analysis of these genes using these GM-associated SNPs paired on

top of the genes, suggesting a causal relationship between these

genes and SS, which may indicate that the GM affects SS through

these genes.

The immune system and GM interact physiologically during the

developing process, and GM has been implicated in the
order Methanobacteriales

family Porphyromonadaceae

genus Subdoligranulum

family Methanobacteriaceae

genus Fusicatenibacter

class Methanobacteria genus Ruminiclostridium9

genus Butyricicoccus

genus LachnospiraceaeUCG008

Lolipop plot of 211 taxa IVW results
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FIGURE 3

Lollipop plot of 211 Taxa’s analysis results of GM on SS.
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FIGURE 4

Forest plot of IVW analysis results of the effect of GM on SS.
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development of chronic inflammatory illnesses and metabolic

disorders in humans (7, 41). Recent research suggests that gut

dysbiosis affects the immune system in a way that causes

autoimmune disorders such rheumatoid arthritis, SLE, systemic

sclerosis, ankylosing spondylitis, and Sjögren’s syndrome to develop

or worsen (42).

Earlier epidemiological investigations discovered a link between

GM and SS. Previous research has shown that when SS patients are

compared to healthy persons, the GM’s -diversity is considerably

reduced and its -diversity is changed (18, 43, 44). The severity of dry

eye symptoms and GM diversity were shown to be correlated (4).

The Firmicutes/Bacteroidetes (F/B) ratio is frequently seen to be

lowered in individuals with autoimmune diseases (45, 46), which

may be a sign of GM dysbiosis (47, 48). Nevertheless, these studies

have considerable drawbacks because of variations in ethnicity,
Frontiers in Immunology 05
gender, or diet between cohorts, limited sample numbers, and

various sequencing techniques, which lead to significant

variations in the findings among research. As a result, it is

difficult to infer the etiology of GM and SS based solely on

prior studies.

Molecular mimicry, metabolite alterations, and the collapse of

epithelial tolerance are the primary explanations for how the gut

microbiota may affect Sjogren’s syndrome (49). One of the most

important points is the change of metabolites. Changes in metabolites

short-chain fatty acids (SCFAs), which mostly consist of acetic acid,

propionic acid, and butyric acid, are one of the significant metabolites

produced by gut microbes. SCFAs are essential signaling molecules

that control the immune system, cell growth, and metabolism of the

host (50, 51). Many SCFA-producing bacteria, including

Lachnoclostridium, Lachnospira, and Sutterella, were decreased in

systemic autoimmune disorders. It should be noted that these

bacteria have a strong pro-regulatory and tolerogenic effect on

immunological processes (52). The most frequently cited bacterial

product in SS is butyrate. Numerous investigations found that

butyrate-producing bacteria were substantially reduced in SS (16,

53, 54), including Faecalibacterium prausnitzii, Bacteroides fragilis,

Lachnoclostridium, Roseburia, Lachnospira, and Ruminococcus.

This is consistent with our findings. Butyrate, a crucial metabolite

produced from the microbiome, supports gut barrier processes by

supplying colonic epithelial cells with energy. Furthermore, new

studies found that the Clostridia clusters XIVa and IV, as well as

butyrate-producing bacteria Bacteroides spp., were crucial for

preserving the Treg/Th17 equilibrium. It should be emphasized
TABLE 1 Heterogeneity test, pleiotropy test and MR-PRESSO results of genetic variants.

Taxa

Heterogeneity Pleiotropy MR-PRESSO

MR Egger IVW MR Egger Global Test

Cochran’s Q P-value Cochran’s Q P-value Egger intercept P-value RSSobs P-value

family Porphyromonadaceae 4.819 0.682 5.311 0.724 0.039 0.506 6.756 0.732

genus Subdoligranulum 5.299 0.808 5.816 0.830 -0.022 0.490 7.116 0.860

genus Fusicatenibacter 14.609 0.553 14.621 0.623 -0.004 0.914 16.421 0.620

genus Ruminiclostridium9 8.863 0.181 8.864 0.263 0.002 0.985 11.699 0.298

genus Butyricicoccus 2.434 0.876 3.132 0.873 0.026 0.436 4.048 0.886

genus Lachnospiraceae UCG008 10.026 0.263 11.081 0.270 0.062 0.386 13.674 0.294
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that the immunomodulatory molecule polysaccharide works in

concert with butyrate to support the development of Treg cells. a

Bacteroides fragilis descendant (55–57). The mucosa barrier’s

capacity to prevent the colonization of harmful microorganisms

will be compromised by disruption of the Treg/Th17 balance (16).

Basically, butyrate regulates genes associated with the circadian clock

to carry out the anti-inflammation function, which has the ability to

alter T cell balances and control the frequency of B cells that produce

IL-10 and/or IL-17 (58). These various cues point to a possible role

for diminished SCFAs or butyrate-producing bacteria in the

pathogenesis of SS through altering immune cell frequency or

function, mucosal barrier permeability, and possibly salivary

gland secretion.

In addition, there is evidence that a bacterial-derived peptide

causes clonal expansion of CD8+ T cells, which is associated with

autoimmune diseases such as AS and reactive arthritis (ReA) caused

by bacterial infections (59), and that GMmay act in the same way in

SS. HLA-B27 is a member of the HLA Class I family of MHC genes

whose role is to present peptide antigens to CD8 T cells. In the feces

of individuals with AS, peptide elution experiments have revealed

an abundance of bacterial peptides that are identical to known

HLA-B27-presented epitopes, indicating a failure in the clearance of

these bacteria, and several peptides provided by APCs-B*27+, but

not by B27-negative donors, elicited CD8 responses, which is

consistent with these peptides activating the adaptive immune

system in AS (60). Within the setting of innate immune

activation, proliferation of self-reactive Th17 cells, or microbial

mimicry, the initial infectious stage is followed by hyperactivation

and disturbed self-tolerance (61). Therefore, CD8 T cells are kept in

a state of high activation and do not experience senescence, which

results in less effective responses to foreign antigens, possibly as a

result of ongoing exposure to bacterial adjuvant (62, 63). This also

affects immunological priming and increases the generation of

proinflammatory cytokines (TNF, IL-23) that contribute to the

clinical signs of joint and gastrointestinal inflammation that are

frequently present in AS (60, 64–66). The above studies on GM and

AS further demonstrate the causal relationship we found between

GM and SS, which is also an autoimmune disease, suggesting that

GM may contribute to autoimmune disease through a common

pathway. To further explore the immune mechanisms behind the

causal relationship between GM and SS, we also built a PPI network

using six significant GM’s SNPs mapped genes, based on an in-

depth understanding of protein biology and prediction of

drug targets.

Among the GM-related genes that were causally associated with

SS, TEC gene encodes a non-receptor protein tyrosine kinase with a

pleckstrin homology domain that is involved in the intracellular

signaling mechanisms of cytokine receptors, lymphocyte surface

antigens, heterotrimeric G protein-coupled receptors, and integrin

molecules, key players in the regulation of immune functions, an

integral component of T cell signaling, and plays a distinct role in T

cell activation (67, 68). TEC may be associated with possible

pathogenic variants of autoimmune diseases such as SS by

regulating T cell activation and T cell receptor signaling pathways
Frontiers in Immunology 06
(69). This may suggest that GM influences the occurrence of SS

through TEC. Other genes in this study have not been previously

reported to be related to SS, which may be a new finding and

provide clues for future studies on the mechanism of action between

GM and SS

This study has a number of advantages. By removing

confounding variables and reversing the causal inference process,

MR analysis was used to establish the causal relationship between

gut microbiota and SS. The most comprehensive GWAS meta-

analysis was used to acquire genetic variations of the gut

microbiome, guaranteeing the reliability of the analytical tools.

The MR-PRESSO and MR-Egger regression intercept term

analyses were used to identify and rule out horizontal pleiotropy.

In addition, a network-based approach is developed to investigate

the gene expression patterns from 6 significant GM’s SNPs mapped

genes and identified molecular targets that may help as potential

biomarkers of GM’s SNPs mapped genes in this study. It could also

provide crucial information about their effects on SS.

This research does have some limitations, though. First, the study

data refer only to people of European ancestry and do not include

people from other regions. It is still unclear, therefore, whether the

results can be regarded as representative of the total community.

Second, although it is challenging to determine the extent of sample

overlap, there was probably some overlap between the exposure and

result research participants. Fortunately, the robust methods

employed in this investigation (F statistic substantially greater than

10) should minimize any potential bias brought on by sample overlap

(70). Third, the variability of the MiBioGen meta-analysis was

extremely high, with only 9 taxa identified in> 95% of the samples,

which may have affected the accuracy of the results of this study.

Fourth, with only 2247 SS cases in the FinnGen GWAS data, this

small sample size may not produce a sufficiently valid beta value,

resulting in less statistical power. However, the FinnGen SS GWAS

still provides valuable insights into genetic architecture and can serve

as a useful starting point for further investigations with larger sample

sizes or complementary approaches. Fifth, we did not consider

gender factors in the analysis of data, and whether gender

differences have an impact on the results needs further study due

to data unavailability. Sixth, we did not find GWAS data on “dry

eyes” and “dry mouth” for further differentiation studies. Finally, the

results were not significant after multiple corrections were performed.

But adopting a strict multiple testing correction would have likely

been unduly cautious given the biological plausibility and the multi-

stage statistical approach, which may have overlooked possible strains

that are causally associated to SS. In addition, it is essential to

interpret the results of Mendelian randomization analyses in

concert with additional measures such as instrument strength and

sensitivity analyses as we have done in this study. As a result, we

remain optimistic that our research has academic implications.

Future studies should aim to validate our current findings with

larger sample sizes and diverse populations to establish the

robustness of the results obtained. In addition, it would be

worthwhile to carry out replication analyses using different MR

methods to confirm the identified genetic associations. Meanwhile,
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the search for mediating variables in the causal chain of GM and SS is

also important for the prevention and treatment of SS.

Conclusions

In summary, we thoroughly evaluated the probable causal

relationship between the gut microbiota and SS. Four other

bacterial traits had a negative causative direction with SS, whereas

two further bacterial features displayed a positive causal direction.

Many intestinal bacterial species discovered in this study that may

have decreased the incidence of SS may hold promise for SS

prevention and therapy.
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