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validation of mitochondria-
related genes biomarkers
associated with immune
infiltration for sepsis
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Background: Sepsis remains a complex condition with incomplete

understanding of its pathogenesis. Further research is needed to identify

prognostic factors, risk stratification tools, and effective diagnostic and

therapeutic targets.

Methods: Three GEO datasets (GSE54514, GSE65682, and GSE95233) were

used to explore the potential role of mitochondria-related genes (MiRGs) in

sepsis. WGCNA and two machine learning algorithms (RF and LASSO) were

used to identify the feature of MiRGs. Consensus clustering was subsequently

carried out to determine the molecular subtypes for sepsis. CIBERSORT

algorithm was conducted to assess the immune cell infiltration of samples.

A nomogram was also established to evaluate the diagnostic ability of feature

biomarkers via “rms” package.

Results: Three different expressed MiRGs (DE-MiRGs) were identified as sepsis

biomarkers. A significant difference in the immune microenvironment landscape

was observed between healthy controls and sepsis patients. Among the DE-

MiRGs, NDUFB3 was selected to be a potential therapeutic target and its

significant elevated expression level was confirmed in sepsis using in vitro

experiments and confocal microscopy, indicating its significant contribution to

the mitochondrial quality imbalance in the LPS-simulated sepsis model.

Conclusion: By digging the role of these pivotal genes in immune cell infiltration,

we gained a better understanding of the molecular immunemechanism in sepsis

and identified potential intervention and treatment strategies.

KEYWORDS

mitochondria, sepsis, machine learning algorithm, immune cell infiltration, mito-
chondrial quality imbalance
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Introduction

Sepsis is a fatal syndrome resulting from multiple organ failure

caused by an inappropriate host response to infection. Despite a

significant decline in sepsis mortality due to improvements in life

support techniques, long-term ICU stays remain on the rise, resulting

in a significant socioeconomic burden (1, 2). Despite significant

advances in diagnosis and treatment, the incidence of sepsis

continues to increase due to an incomplete understanding of the

pathogenesis due to individual heterogeneity and the complexity of

the infection (3). At the same time, there are few studies on the factors

related to long-term mortality in patients with sepsis, and risk

stratification is unclear (4, 5). Therefore, there is a need to further

search for prognostic factors, more accurate risk stratification for sepsis,

and more sensitive and specific diagnostic and therapeutic targets.

In recent years, the role of mitochondria beyond energy supply

has received increasing attention. Danger signals actively secreted or

passively released by dead or damaged cells are known as damage-

related molecular patterns (DAMPs). DAMPs activate the immune

system by activating classical pattern recognition receptors (PRRS)or

non-PRR pathways, including ion channels and G-protein-coupled

receptors (6). ATP, the main form of energy produced by

mitochondria, is a DAMP. Damage-induced release of

mitochondria and their contents can increase local ATP levels,

thereby enhancing the killing effect of macrophages in sepsis

through P2X7 and P2X4 receptors (7, 8). In addition to ATP,

various components of mitochondria can be used as DAMPs,

including transfactor A, cytochrome c, succinate, mitochondrial

(TFAM), cardiolipin, and mtRNA (9). These mitochondrial

damage-associated molecular patterns (mtDAMPs) can be

stimulated by lipopolysaccharide secretion by monocytes in

extracellular vesicles (10). mtDAMP released into circulation is

recognized by the immune system and drives an inflammatory

response (11). Additonally, during sepsis process, mitochondrial

stress leads to mitochondrial membrane potential decreases,

resulting in impaired membrane integrity (12). This mitochondrial

damage causes mitochondrial DNA (mtDNA) leaking into the

cytoplasm and acting as a key DAMP. By affecting the respiratory

chain, enhancing oxidative stress and inflammatory response,

inducing cell apoptosis, mitochondrial damage leads to cell

dysfunction and tissue damage, and further aggravates

mitochondrial dysfunction, thus forming a feedback loop (13).

Uncontrolled inflammation following severe trauma is often

one of the key factors leading to organ damage and poor prognosis.

An increasing number of reports have hinted at the important roles

of mtDNA and mtDAMP in sepsis (14). mtDAMPs can induce a

strong inflammatory response and septicaemia - like symptoms.

mtDAMPs are present in trauma patients. Animals treated with

mtDAMP showed an exaggerated inflammatory response triggered

by mtDAMP (14). Traumatized patients had higher plasma

mtDNA levels (15, 16) than healthy subjects. Moreover, mtDNA

levels were closely associated with post-injury complications (17).

Plasma levels of circulating mtDNA were significantly higher in

patients with severe sepsis/septic shock than in patients with

postoperative inflammation or trauma (18, 19). Thus, the plasma

concentration of mtDNA was considered to be an independent
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predictor of post-traumatic SIRS (20). mtDNA may be better than

lactate concentration or even SOFA score in predicting mortality

after admission in sepsis patients (21). Further studies of both

mtDNA and mtDAMPs in sepsis will greatly improve our

understanding of sepsis pathogenesis.

In this study, we aim to use machine learning algorithms to

identify new mitochondria-related genes (MiRGs) in sepsis. Three

MiRGs (BCKDHB, LETMD1, and NDUFB3) were screened out.

More information about the role of MiRGs in immune infiltration

was further explored. After the verification of high expression of

NDUFB3 with our sepsis clinical specimens, the effect of NDUFB3

on mitochondria was tested with a confocal microscope. The

expression of NDUFB3 was inhibited by small interfering RNA

technology and the mitochondrial function was significantly

reduced in the sepsis model. This study provides new ideas and

targets for the intervention and treatment of sepsis.
Materials and methods

Sepsis datasets collection

Three public gene expression matrices (GSE54514, GSE65682,

and GSE95233), comprising of gene expression data from sepsis

patients (SP) and healthy controls (HC), were obtained from the

Gene Expression Omnibus (GEO) databases. The GSE65682 dataset

(GPL13667, [HG-U219] Affymetrix Human Genome U219 Array),

consisting of 42 healthy samples and 760 sepsis samples, served as

the training cohort, while the GSE54514 (GPL6947, Illumina

HumanHT-12 V3.0 expression beadchip) and GSE95233

(GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133

Plus 2.0 Array) datasets, which included 58 healthy samples and 229

sepsis samples, were utilized as the test cohort. The R script “sva”

was employed to normalize the data and eliminate any batch effects

present in the three datasets (20). The definition of differentially

expressed genes (DEGs) was established at |Fold change| ≥ 2, p (p.

adjust) < 0.05. Mitochondria-related genes (MiRGs) were collected

from the Mito-Carta, MitoMiner, IMPI 2, and UniProt databases.
WGCNA and machine learning algorithm

Weighted gene co-expression network analysis (WGCNA) was

employed in this study to identify the pivotal gene module associated

with sepsis and healthy controls. Initially, all samples underwent

clustering to exclude anomalous samples. Next, with the application

of the scale-free topology model fit (R2 = 0.85), a network was

constructed with a soft threshold (power) of 9 (b). The genes were
subsequently separated into distinct modules and clustered in a tree,

which were then merged into the final module. Pearson correlation

algorithm was employed to calculate the correlation between each

gene module. Eventually, the association between clinical features and

gene modules was estimated, and the most relevant modules for the

following analysis were selected. The least absolute shrinkage and

selection operator (LASSO) logistic regression and random forests

(RF) were employed for feature selection to screen diagnostic markers
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for sepsis. The LASSO algorithm was conducted using the “glmnet”

package, while the RF algorithm was implemented as tree-based

methods for classification and regression analysis. In this study,

variables with the minimum log lambda of LASSO were considered

as characteristics variables, and the importance threshold for selecting

crucial variables using RF was set at 3. The common genes from

LASSO and RF were obtained by Venn plot and used for

further analysis.
Exploration of functional enrichment in
(DE-MiRGs)

We utilized the “clusterProfiler” and “ggplot2” packages to

perform enrichment analyses of DE-MiRGs using Gene Ontology

(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(22). Furthermore, we applied GSEA to enrich the DEGs into

distinct functional signaling pathways for HC and SP groups.
Nomogram development based on the
diagnostic biomarkers

A nomogram model, which is based on the differentially

expressed miRNA-regulated genes (DE-MiRGs), was constructed

using the R package “rms”, to estimate the diagnostic probability of

sepsis patients. To validate the diagnostic capacity of the nomogram,

a receiver operating characteristic (ROC) curve was plotted. The

nomogram scores were computed using the following parameters:

-2.548 x BCKDHB + -5.454 x LETMD1 + 4.507 x NDUFB3.
Immune infiltration and consensus
clustering analysis

Based on the expression matrix of each samples in the training

cohort (GSE65682), the CIBERSORT algorithm was employed to

evaluate the immune infiltration. Following the computation of

marker genes for 22 immune cells, the relative proportion of the 22

immune cells was obtained. To investigate the correlation between

infiltrating immune cells and 3 diagnostic biomarkers, Pearson’s

correlation was conducted using the “ggplot2” R package. The 3

diagnostic DE-MiRGs were utilized for consensus clustering, with a

maximum K of 9, via the R package “ConsensusClusterPlus”. Based

on the optimal classification of K = 2, sepsis patients were classified

into 2 molecular subtypes for further analysis. “ggplot2” script was

utilized to exhibit the distribution pattern of HC and SP groups in a

PCA plot based on the 22 immune cells proportion.
Clinical samples

The clinical blood samples used in this study were obtained

from 30 sepsis patients and 15 healthy volunteers at Daping

Hospital (Chongqing, China) (Supplementary Table 1). The study

was approved by the Ethics Committee of the Army Medical
Frontiers in Immunology 03
University and was registered with the Chinese Clinical Trial

Registry (ChiCTR2200055772). All procedures were carried out

under the approval of the Ethics Committee, and informed consent

was obtained from all patients prior to participation.
Reagents and cell culture and treatment

The Mito-tracker was procured from Thermo Fisher Scientific

(Waltham, MA, USA). The ROS assay kit, ATP detection kit, and

JC-1 enhanced mitochondrial membrane potential assay kit were

purchased from Beyotime (Shanghai, CHINA). The siRNA for

NDUFB3 was generated by Obio Technology (Shanghai,

CHINA), and the target sequence of siNDUFB3 was 5′-
GAUUAUAGACAAUGGAAGATT -3′ . H9C2 cells were

obtained from the American Type Culture Collection (ATCC),

located in Manassas, VA, USA, and cultured in DMEM

supplemented with 10% FBS and 1% antibiotics in a 5% CO2/

95% air atmosphere, at 37°C (23). To construct an in vitro sepsis

model, H9C2 cells were stimulated with 1mg/ml LPS, purchased

from Sigma (St. Louis, MO, USA), for 12 hours.
Immunofluorescence

The cells were introduced into the confocal chamber and

incubated with Mito-tracker (diluted to a ratio of 1:10,000),

DCFH-DA (diluted to a ratio of 1:1,000), and JC-1 (diluted to a

ratio of 1:1,000) at a temperature of 37°C for a period of 30

minutes. Following this, observations were made of the

mitochondrial morphology, reactive oxygen species (ROS), and

mitochondrial membrane potential utilizing a laser confocal

microscope (Leica SP5, Germany). The mitochondrial length

was subsequently analyzed utilizing a mitochondrial network

analysis (MiNA) toolset, which was included in the ImageJ

software (https://fiji.sc/).
qRT-PCR analysis

The blood RNA was extracted using the PureLink™ blood total

RNA extraction kit (Invitrogen).Then, the extracted RNA was then

reverse transcribed into cDNA libraries using the Bestar™ qPCR RT

Kit (DBI Bioscience), and fluorescent quantitative PCR reactions

were performed using the Bestar® SYBRGreen qPCR master mix

(DBI Bioscience). Actin was handled as an internal reference. Primers

used in these experiments were listed in Supplementary Table 2.
Statistical analysis

Statistical analyses were performed using R (version 4.1.1),

GraphPad Prism (version 8.0.1), and SPSS 17.0 (SPSS Inc.,

Chicago, IL, USA). Cell study data were repeated in a minimum

of three independent experiments. In this study, statistical

differences between the two groups were tested using the T test
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and Wilcoxon rank-sum test. One-way ANOVA analysis was used

between multiple groups. All data are presented as the mean ±

standard deviation (SD) and statistical significance was considered

at p < 0.05.
Results

DEGs screening and GSEA analysis

Three datasets were collected from the GEO database

(GSE95233, GSE65682, GSE54514) in this study. After

removing the batch effect and data normalization, we collected

100 healthy samples (HC) and 989 sepsis samples (SP) for the

subsequent analyses (Figure 1). In the training cohort

(GSE65682), under the screening condition set at |fold change|

≥ 2 and p-value (p.adjust) < 0.05, 744 DEGs were obtained,

including 398 down- and 346 up-regulated DEGs (Figure 2A).

The heatmap diagram showed the expression of the top 25 up-

and down-regulated DEGs in HC and SP groups (Figure 2B). The

analysis of GSEA suggested that the DEGs in the SP group were

greatly enriched in chemical carcinogenesis-DNA adducts, fatty

acid biosynthesis, glycosphingolipid biosynthesis-lacto and

neolacto series, mucin type O−glycan biosynthesis, and starch
Frontiers in Immunology 04
and sucrose metabolism; however, we found that the DEGs in HC

group were remarkably enriched in immune-related signaling

pathways, including antigen processing and presentation and

allograft rejection (Figures 2C, D).
Construction of WGCNA

The training cohort (GSE65682) was utilized to develop a

WGCNA network. The 42 HC samples and 760 SP samples were

clustered under a set threshold condition to exclude abnormal

samples. Under the filter of scale-free topology (R2 > 0.85), the

soft threshold (power) for scale independence was selected as b =

9 (Figure 3A). With the height of clustering of module eigengenes

set at 0.25, a total of 18 gene modules were obtained for further

analysis (Figure 3B). The cluster dendrogram indicated the height

of each module which was cut by the dynamic tree and merged

into modules (Figure 3C). The correlation heatmap suggested

that there was no apparent correlation between each module

(Figure 3D). In addition, transcriptional correlation analysis

within each module showed that there was no significant

association between modules, showing the reliability of module

descriptions (Figure 3E). The relationship of gene modules and

clinical features illustrated that module black was negatively
FIGURE 1

Diagram of the Study flow.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1184126
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shu et al. 10.3389/fimmu.2023.1184126
correlated with SP (r = -0.6, p = 4e-80), and positively correlated

with HC (r = 0.6, p = 4e-80); module red was negatively

associated with HC (r = -0.52, p = 8e-57), and positively

correlated with SP (r = 0.52, p = 8e-57); module green was

positively correlated with HC (r = 0.37, p = 7e-27), and

negatively correlated with SP (r = -0.37, p = 7e-27, Figure 3F).

According to the correlation coefficient, module black was

identified as the most characteristic module. The scatter plot

indicated that the module membership versus gene significance

showed a high correlation of HC and SP (r = 0.77, p = 1.4e-179),

and the genes in this module were collected for further analysis

(Figures 3G, H).
Frontiers in Immunology 05
Identification of DE-MiRGs and
functional enrichment analysis
of pivotal module genes

Based on the different analysis and WGCNA (black module),

64 overlapping genes were identified as pivotal DE-MiRGs by the

Venn diagram (Figure 4A) (24). We utilized function enrichment

analysis to explore the potential molecular biological function of

pivotal DE-MiRGs for SP. The analysis of GO enrichment

illustrated that those pivotal DE-MiRGs were associated with

the generation of precursor metabolites and energy, cellular

respiration, mitochondrial matrix, and structural constituent of
A B

DC

FIGURE 2

Identification of DEGs and GSEA functional enrichment analysis. (A) Volcano plot of DEGs in HC and SP groups. The threshold of screening DEGs is
set at |fold change| ≥ 2 and p (p.adjust) < 0.05. Turquoise dots represent down-regulated genes and red dots represents up-regulated genes.
(B) Analysis of top 25 up- and down-regulated genes in HC and SP group. (C, D) GSEA analysis of DEGs in HC and SP group.
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ribosome (Figure 4B). The KEGG analysis of pivotal DE-MiRGs

was linked with carbon metabolism, ribosome, diabetic

cardiomyopathy, and chemical carcinogenesis-reactive oxygen

species (Figure 4C).
Identification of feature biomarkers

We performed two machine learning algorithms to select the

feature DE-MiRGs for SP. The LASSO algorithm showed the
Frontiers in Immunology 06
minimum lambda of DE-MiRGs, and 10 characteristic variates

were obtained (Figures 5A, B). Random forest (RF) algorithm

result identified 8 feature DE-MiRGs for further analysis

(Figure 5C). According to LASSO and RF algorithms, three

overlapping genes were identified as feature biomarkers, including

BCKDHB, LETMD1, and NDUFB3 (Figure 5D). As displayed in

Figure 5E, a remarkable association was observed between the three

feature biomarkers; BCKDHB was positively associated with

LETMD1 and negatively associated with NDUFB3; NDUFB3 was

negatively correlated with LETMD1.
A B

D E

F G H

C

FIGURE 3

WGCNA analysis to select characteristics gene module for SP. (A) Scale free topology model fit (R2 = 0.85) and mean connectivity. (B) Clustering of
module genes. (C) Cluster dendrogram for selecting gene modules. (D) Association between the gene modules. (E) Correlation analysis of
transcriptome in different modules. (F) Heatmap analysis of 18 modules and clinical features (HC, SP). (G, H) Module membership vs. gene
significance for SP and HC in black module.
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Validation of feature biomarkers and
effectiveness evaluation

Two separate cohorts were adopted to validate the expression

and diagnostic effectiveness of feature biomarkers. In the

training cohort (GSE65682) and validation cohort (GSE95233,

GSE54514), the expression of three feature biomarkers suggested

the HC group had higher expression of BCKDHB, LETMD1, and

lower expression of NDUFB3 (Figures 6A, B). Moreover, a

nomogram model was established based on three gene

signatures to evaluate the diagnostic effectiveness of SP in both

cohorts. The results of the nomogram illustrated a satisfactory

diagnostic ability of BCKDHB, LETMD1, and NDUFB3 for SP

(Figures 6C, E). The ROC analysis in the training cohort

suggested that the AUC of three feature biomarkers (BCKDHB,

LETMD1, NDUFB3) and nomogram score was 0.971, 0.977,

0.985, and 0.997, respectively (Figure 6D). The ROC analysis

of feature biomarkers (BCKDHB, LETMD1, NDUFB3) and

nomogram score in the validation cohort displayed that the

AUC was 0.732, 0.614, 0.734, and 0.768 (Figure 6F). These

results demonstrate a satisfactory diagnostic effectiveness of

three feature biomarkers that could be used for clinical

precision diagnosis of SP.
Frontiers in Immunology 07
Analysis of immune microenvironment
landscape

By assessing the signature of 22 immune cell subtypes, we

calculated the relative percent of 22 immune cells in the HC and SP

groups based on the CIBERSORT algorithm (Figure 7A). Between

the 22 immune cells, a significant correlation was observed in a

heatmap; NK cells resting was negatively correlated with NK cells

activated (r = -0.68), but positively correlated with T cells CD8 (r =

0.41); T cells CD4 memory activated was positively correlated with

T cells CD8 (r = 0.42); B cells memory was negatively correlated

with eosinophils (r = -0.44), NK cells activated (r = -0.35) and

macrophages M0 (r = -0.35) (Figure 7B). Quantitative data revealed

a great difference between HC and SP groups in most immune cells,

such as B cells memory, T cells CD8, T cells CD4 memory resting, T

cells CD4 memory activated, and T cells regulatory (Tregs)

(Figure 7C). PCA plot illustrated a significant classification of

immune cells in HC and SP groups (Figure 7D). Moreover, the

correlation analysis of three feature biomarkers and the immune

microenvironment landscape suggested that BCKDHB, LETMD1,

and NDUFB3 were greatly correlated with 22 immune cells

(Figures 7E–G). Collectively, these findings demonstrate a

significant difference between HC and SP groups in the immune
A

B C

FIGURE 4

DE-MiRGs screening and function enrichment analysis. (A) Identification of pivotal DE-MiRGs in black module. (B) GO enrichment analysis of DE-
MiRGs. (C) KEGG pathway analysis of DE-MiRGs.
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microenvironment and closely associated with BCKDHB, LETMD1,

and NDUFB3.
Consensus clustering analysis of three
diagnostic biomarkers for SP

We performed a consensus clustering analysis to cluster the SP

samples into different molecular subgroups. Based on the three

diagnostic biomarkers, two optimal classifications were obtained for

SP (Figures 8A–C). The quantitative data indicated that the samples

in Cluster A had higher expression of BCKDHB and LETMD1,

whereas the expression of NDUFB3 was higher in Cluster B

(Figures 8D–F). The immune cell assessment result illustrated

that the immune microenvironment of samples in both cluster

classifications was greatly different, such as B cells memory, T cells

CD8, T cells CD4 naïve, and neutrophils (Figure 8G). The analysis
Frontiers in Immunology 08
of GSEA suggested that the DEGs in the Cluster A group were

greatly enriched in Antigen processing and presentation and graft

versus host disease, while the DEGs in Cluster B group were

remarkably enriched in Glycosphingolopid biosynthesis and O-

glycan biosynthesis (Supplementary Figure 1). These findings

demonstrate that the SP samples could be accurately

classified into different molecular subgroups based on the

three feature biomarkers and notably correlated with the

immune microenvironment.
Effects of NDUFB3 on mitochondrial
dysfunction in sepsis

In order to further validate the expressions of 3 diagnostic

biomarkers in sepsis, we collected the serum of 30 septic patients

(SP) and 15 healthy controls (HC) for quantitative real-time PCR
A B

D E

C

FIGURE 5

Feature biomarkers selection via machine language algorithms. (A, B) LASSO analysis to screen key DE-MiRGs. (C) RandomForest (RF) analysis of key
DE-MiRGs, the filter condition for screening feature variates is set at: importance > 3. (D) Venn analysis of LASSO and RF. The overlapping genes are
considered as feature biomarkers. (E) Correlation heatmap of BCKDHB, LETMD1, and NDUFB3. Green color represents negative correlation, red
color represents positive correlation.
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(qPCR). The results of qPCR showed that the expression of

NDUFB3 was higher in sepsis, whereas the expression of

LETMD1 and BCKDHB were lower in SP than in HC

(Figure 9A). At the same time, the results of TEM showed that,

as compared with the control group, the mitochondria ridge in

sepsis was disordered, and broken with obvious vacuolar

degeneration (Figure 9B).

We further explored the possible roles of DE-MiRGs

dysregulation on mitochondrial function in sepsis. As the

highest AUC among the three diagnostic biomarkers, we mainly

focused on the role of NDUFB3. H9C2 cells were stimulated with

LPS to mimic the in vitro sepsis model (25). The fluorescence

intensity of ROS (Figures 9C, D) was significantly increased,

indicating that oxidative stress occurred in the LPS group. The

mitochondrial membrane potential and ATP reduced in H9C2

cells represented the dysfunction of mitochondria (Figures 9E, F).

The mitochondrial morphology of H9C2 cells was significantly

fragmented, confirming the existence of mitochondrial damage

after sepsis (Figures 9G, H). Negative control (siNC) could not

improve the mitochondrial function and morphology of H9C2

cells after being treated with LPS (Figures 9C–H). NDUFB3

inhibition by siNDUFB3 (Supplementary Figure 2) could

significantly attenuate mitochondrial dysfunctions of H9C2

cells, showing a decreased ROS level, increased mitochondrial

membrane potential and ATP (Figures 9C–F). Besides, NDUFB3

inhibi t ion by siNDUFB3 could s ignificant ly improve

mitochondrial morphology in LPS-treated H9C2 cells

(Figures 9G, H). Overall, our results suggested that NDUFB3 is

highly expressed in sepsis and plays a vital role in the

mitochondrial quality imbalance in LPS -treated H9C2 cells.
Frontiers in Immunology 09
Discussion

Sepsis is a potentially life-threatening condition caused by the

spread of bacteria or toxins in the bloodstream. Mitochondria, the

powerhouses of the cell, play a crucial role in the immune response

to sepsis by releasing signals that initiate an inflammatory response

and energy production to fight the infection (9). However,

mitochondrial dysfunction can exacerbate the severity of

septicemia and increase the risk of mortality. In this study, we

found the mitochondria ridge in sepsis patients was disordered,

broken with obvious vacuolar degeneration by confocal microscope.

In vitro experiments subsequently confirmed the existence of

mitochondrial damage in sepsis. Mitochonria have been proposed

as a key players in the pathogenesis of sepsis. Ultra-structural

aterations of mitochondria have been found in animal species

(26). Changes in mitochondrial morphology, such as

fragmentation and swelling, have been observed in septic patients

(27). This evidence is in line with the report that increased

mitochondrial respiration and ATP synthesis can reduce oxidative

stress, overcome metabolic paralysis, regenerate tissues, organs and

innate and adaptive immune cells, which makes sepsis better

survival (28). Some drugs targeting mitochondrial are being

developed. Some known effective drugs have also been proven to

work partially through mitochondrial-related pathways (29). This

fact indicates MiRGs could function as therapeutic targets for

sepsis patients.

We screened out three MiRGs and verified them again with our

specimens. So far, there have been no in-depth studies on sepsis

with these three genes. NDUFB3 (NADH dehydrogenase

(ubiquinone) 1 beta subcomplex, 3) is an important subunit of
A B

DE FC

FIGURE 6

Validation of the expression of feature biomarkers and effectiveness evaluation. (A) The expression of BCKDHB, LETMD1, NDUFB3 in training cohort
(GSE65682). (B) Validation of BCKDHB, LETMD1, NDUFB3 in validation cohort (GSE95233, GSE54514). (C, D) Nomogram construction and ROC
curve of three gene signatures in GSE65682. (E, F) Nomogram construction and ROC curve of three gene signatures in GSE95233 and GSE54514.
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mitochondrial respiratory complex I. Our data showed NDUFB3

played an important role in the process of mitochondrial mass

imbalance in the simulated sepsis model treated with LPS. However,

seldom evidence could be found concerning its functions in sepsis

progression. The expression changes of NDUFB3 lead to the

production of mitochondrial reactive oxygen species (mtROS)

(30). The roles of mtROS in sepsis are twofold. On the one hand,

mtROS can be used as bactericidal weapon during infection.

However, mtROS levels are essential to induce an effective

immune response within a controlled range. When mitochondrial

damage occurs, overproduction of mtROS can lead to persistent

inflammation, leading to pathologic outcomes such as sepsis (31).

Reports about BCKDHB have focused on its effect on maple

syrup urine disease (MSUD). BCKDHB gene is one of the main

catalytic subunits of branched ketoate dehydrogenase (BCKDH)

in mitochondria. Together with BCKDHA, it forms a branched a-
ketoate dehydrogenase E1 complex, which can decompose

branched amino acids (32). Increased branched-chain amino
Frontiers in Immunology 10
acid concentrations were found in a variety of insulin-deficient

and resistant states. The mechanism of BCKDH is not fully

understood, and the decreased activity of BCKDH may be an

important cause (33). Sepsis is associated with hypermetabolism.

If the hypermetabolic state persists, life-threatening multisystem

organ failure may occur (34). In this case, branched-chain amino

acids are important energy substrates for muscles (35, 36). Insulin

resistance and inflammation-related metabolic changes in the

Sepsis process may be related to branched-chain amino acid

metabolism involved in BCKDHB (34). Protein 1 of the LETM1

domain (LETMD1), also known as HCCR-1, is a mitochondrial

protein. Limited studies have shown that LETMD1 is essential for

the mitochondrial structure and thermogenic function of brown

fat cells (37). LETMD1 selectively regulates reactive oxygen

generation and NF-kB activation in macrophages through

MyD88, thus regulating phagocytosis and inflammatory

response to lipopolysaccharide (38). Inflammatory reactions of

lipopolysaccharide trigger the secretion of pro-inflammatory
A B
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FIGURE 7

Analysis of immune microenvironment landscape in HC and SP groups. (A) Immune cells assessment between HC and SP groups. (B) Analysis of
correlation in 22 type immune cells. (C) Violin diagram of 22 type immune cells in HC and SP groups. (D) PCA plot showed a different distribution
pattern in HC and SP. (E–G) Correlation analysis of three diagnostic biomarkers (BCKDHB, LETMD1, and NDUFB3) and immune microenvironment.
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cytokines and other biological processes through initiating signal

cascades, thus becoming an extremely important link in the

process of sepsis and development, and a potential therapeutic

target (39, 40).

The correlation analysis of immune cell infiltration suggests the

existence of immunosuppressive and depleted microenvironments

in sepsis patients. In addition, after dividing sepsis patients into two

groups using consensus clustering, we observed the effect of MiRGs

on the immune microenvironment of patients with Sepsis. The

effect of MiRGs on immune infiltration in other diseases has been

reported (41–43). We have observed that DE-MiRG screened in
Frontiers in Immunology 11
sepsis is associated with neutrophil immune infiltration. Compared

with the control group, the levels of neutrophils in patients with

sepsis were significantly higher. Neutrophils control the infection by

migrating to the inflamed site and exercising their lethal role against

the pathogen. In sepsis, neutrophil migration and killing capacity

are decreased, resulting in an insufficient response to infections and

easy collateral damage to surrounding tissues due to the decline in

precision (44). In addition, increased levels of neutrophils in sepsis

patients often lead to a number of harmful functions. First, the

accumulation of activated neutrophils blocks the capillary lumen,

leading to ischemia (45). Secondly, neutrophils that migrate to vital
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FIGURE 8

Subgroup analysis of SP samples based on three feature biomarkers. (A–C) Consensus clustering analysis. (D–F) The expression of BCKDHB and
LETMD1, and NDUFB3 in both cluster subgroups. (G) Immune microenvironment analysis of subgroups. *p<0.05, **p<0.01, ***p<0.001
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organs can locally release pro-inflammatory and lytic factors that

cause local tissue damage (46). As a double-edged sword in the

progression of sepsis, the relationship between high neutrophil

levels in patients with sepsis and prognosis needs to be further
Frontiers in Immunology 12
investigated. The consensus clustering further indicated the

correlation of these three mitochondria-related hub genes with a

high level of neutrophils in sepsis. With increasing evidence that

neutrophils may be a promising therapeutic target for sepsis
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FIGURE 9

NDUFB3 inhibition attenuated mitochondrial quality imbalance after sepsis. (A) qPCR was conducted to examine the expression of NDUFB3, LETMD1 and
BCKDHB in 30 SP and 15 HC samples. ****P< 0.0001 as compared with the SP group. (B) TEM images showed mitochondria cristae damage in heart
tissues (bar = 0.5 mm) (n=3). (C) ROS staining immunofluorescence reflected the oxidative stress in H9C2 cells (bar = 20 mm) (n=3). (D) The fluorescence
intensity of ROS. (E) JC-1 aggregate/monomer reflected the mitochondrial membrane potential in H9C2 cells (bar = 20 mm) (n=3). (F) The concentration
of ATP (n=3). (G) Representative images of mitochondrial morphology in H9C2 cells (bar = 10 mm) (n=3). (H) Ratio (long/short) of mitochondria (long (> 8
µm) and short ≤ 8 µm) was quantified by ImageJ. ****P< 0.01 as compared with the normal group, #P< 0.05 as compared with the LPS group, ###P<
0.001 as compared with the LPS group, ####P< 0.0001 as compared with the LPS group. all data are presented as the mean ± SD.
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treatment (47), the possibility of MiRGs as therapeutic targets needs

to be further explored.

Our data also showed high levels of eosinophils in patients with

sepsis and significant differences in eosinophil expression among

MiRGs subgroups of sepsis patients. This is consistent with the

previously reported conclusion that there is a positive association

between increased eosinophilic counts and sepsis compared with

non-septic trauma patients admitted to the ICU (48). Currently,

there is no consensus on the role of eosinophils in sepsis. Low levels

of peripheral eosinophil activity have been reported to be associated

with poor survival in sepsis (49). One explanation is that the type 2

immune response is related to eosinophilia. It can balance the pro-

inflammatory response of sepsis due to type 1 immune response

disorder. Thus, the lack of eosinophils may be a manifestation of an

immune imbalance and may thus trigger the secretion of pro-

inflammatory cytokines, leading to poorer outcomes (49). In

addition, when stimulated by bacterial lipopolysaccharide,

eosinophils, can release mtDNA and form extracellular structures

with granular proteins that can bind to and kill bacteria, thus

contributing to antibacterial defense (50). In general, studies on

sepsis, MiRG and the interaction with eosinophils are superficial

and need further investigation.

In summary, we identified three MiRGs (BCKDHB, LETMD1,

and NDUFB3) by the machine learning algorithm. Subsequently,

the role of these hub genes in immune cell infiltration was studied to

further understand the immune mechanism in the pathogenesis of

sepsis. Differences in the immune micro-environment between

subgroups of patients with sepsis provide innovative insights into

personalized immunotherapy for sepsis. By qPCR, the high

expression of NDUFB3 in sepsis was verified by our clinical

specimens. In vitro experiments showed NDUFB3 plays an

important role in the process of mitochondrial mass imbalance in

the LPS-simulated sepsis model. This study provides new ideas and

targets for the intervention and treatment of sepsis. Although we

provide risk stratification and potential intervention targets by

expanding the pool of sepsis biomarkers including NDUFB3, the

scope of application of a single biomarker is limited due to the

complexity of sepsis etiology (51). In the future, combined with

other studies, the sepsis risk stratification marker pool will be

further expanded. Gene array analysis will help reduce the bias of

gene selection, in order to accurately evaluate different sepsis

subtypes, stages of disease progression and treatment intensity

selection (52, 53). There are for sure shortcomings in this study.

We have not been able to conduct further experimental verification

of the molecular mechanism of NDUFB3 caused mitochondrial

mass imbalance. The immune infiltration results were a correlation

rather than a more accurate causal analysis. Further in-depth

explorations about the role of MiRGs could be done in the future.
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