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Background: Recently, the incidence rate of renal fibrosis has been increasing

worldwide, greatly increasing the burden on society. However, the diagnostic

and therapeutic tools available for the disease are insufficient, necessitating the

screening of potential biomarkers to predict renal fibrosis.

Methods: Using the Gene Expression Omnibus (GEO) database, we obtained two

gene array datasets (GSE76882 and GSE22459) from patients with renal fibrosis

and healthy individuals. We identified differentially expressed genes (DEGs)

between renal fibrosis and normal tissues and analyzed possible diagnostic

biomarkers using machine learning. The diagnostic effect of the candidate

markers was evaluated using receiver operating characteristic (ROC) curves

and verified their expression using Reverse transcription quantitative

polymerase chain reaction (RT-qPCR). The CIBERSORT algorithm was used to

determine the proportions of 22 types of immune cells in patients with renal

fibrosis, and the correlation between biomarker expression and the proportion of

immune cells was studied. Finally, we developed an artificial neural network

model of renal fibrosis.

Results: Four candidate genes namely DOCK2, SLC1A3, SOX9 and TARP were

identified as biomarkers of renal fibrosis, with the area under the ROC curve

(AUC) values higher than 0.75. Next, we verified the expression of these genes by

RT-qPCR. Subsequently, we revealed the potential disorder of immune cells in

the renal fibrosis group through CIBERSORT analysis and found that immune

cells were highly correlated with the expression of candidate markers.

Conclusion: DOCK2, SLC1A3, SOX9, and TARP were identified as potential

diagnostic genes for renal fibrosis, and the most relevant immune cells were

identified. Our findings provide potential biomarkers for the diagnosis of

renal fibrosis.
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Introduction

Renal fibrosis refers to the proliferation of fibrous tissue in the

kidney due to trauma, infection, inflammation, and other factors,

resulting in a gradual deterioration of renal function (1). Its

pathological characteristics include damage to intrinsic renal cells,

stimulation of the inflammatory response, activation of fibroblasts

and myofibroblasts, accretion of extracellular matrix (collagen fibers,

fibronectin, and laminin), loss of intrinsic renal cells, atrophy and

collapse of renal tubules, and thinning of blood vessels, which

ultimately result in damage to the kidney structure (2). Renal

fibrosis mainly includes glomerulosclerosis, tubulointerstitial

fibrosis, and intrarenal vascular sclerosis. The diagnosis of renal

fibrosis depends on renal biopsy, which is invasive and prone to

bleeding (3). Therefore, it is important to identify easily available and

specific biomarkers of renal fibrosis.

Recently, comprehensive bioinformatics analysis based on high-

throughput sequencing has been used to screen new prognostic

biomarkers related to a variety of diseases (4). Zhou et al. found that

Wnt-induced secreted protein-1 (WISP-1) is increased in animals with

renal fibrosis and may provide a new target for the treatment of renal

fibrosis (5). Sun et al. revealed that ISG20 knockout significantly

inhibits the progression of renal fibrosis in vitro, indicating that

ISG20 may play an important role in renal fibrosis (6). Using RNA

sequencing analysis, Shuo et al. revealed that Gal-3 was highly

expressed in renal fibrosis biopsy samples and positively correlated

with the severity of renal fibrosis, which supported the effect of Gal-3 in

predicting renal fibrosis (7). However, the exploration of a joint

diagnostic model of multiple genes for renal fibrosis is still insufficient.

Therefore, our research aimed to analyze the differential

expression of genes between renal fibrosis disease and healthy

individuals, screen diagnostic markers for renal fibrosis and

determine the relationship between biomarkers, immune cell

levels, and drug sensitivity.
Methods

Data acquisition

The gene expression levels in renal fibrosis and control samples

were obtained from the gene expression omnibus GEO database. The

dataset GSE76882 was used as the training set, which included 99

controls and 175 renal fibrosis samples. All samples were standardized

for subsequent analyses. To verify the reliability of the neural network

model, the dataset GSE22459 was used as the validation set, which

included 25 control samples and 40 renal fibrosis samples.
Differential expression of genes screening,
weighted correlation network analysis and
enrichment analysis

The different expression of genes (DEGs) between the control

samples and renal fibrosis samples were screened using the R

package “limma” The screening conditions were: log fold change
Frontiers in Immunology 02
(FC) was greater than 2 and false discovery rate (fdr) was less than

0.05. Subsequently, we obtained the module with the highest

correlation with renal fibrosis through weighted correlation

network analysis (WGCNA) (8) and obtained renal fibrosis-

related DEGs through the intersection. Next, we used the R

package “clusterProfiler”, “org. Hs. eg. db” and “DOSE” to

conduct gene ontology (GO) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment (9, 10).
Identification and verification of predictive
markers for renal fibrosis

Least absolute shrinkage and selection operator (LASSO)

logistic regression and support vector machine-recursive feature

elimination (SVM-RFE), were used to identify predictive genes for

renal fibrosis (11–15). The R package “glmnet” was used for LASSO

analysis, and the optimal variable was found by the SVM-RFE

algorithm. Candidate diagnostic markers were screened using these

two algorithms and verified using reverse transcription quantitative

polymerase chain reaction (RT-qPCR).
Correlation analysis between immune cells
and candidate biomarkers

Immune cells in renal fibrosis and control samples were

evaluated using the CIBERSORT algorithm. Spearman rank

correlation analysis was performed using the R package “ggplot2”

to visualize the correlation between candidate biomarkers and

various immune cells (16).
The gene set enrichment analysis

GSEA was performed to analyze the potential biological

functions of the candidate genes. A gene set named

“c2.cp.kegg.v7.0. symbols.gmt” was downloaded from the

Molecular Signatures Database (MSigDB) and selected as the

reference gene set (17).
Drug sensitivity analysis

To identify additional drugs targeting the candidate biomarkers

for the treatment of renal fibrosis, we conducted a drug sensitivity

analysis. The CellMiner database was used to download gene

expression data and drug sensitivity data, and the R package

“impute”, “limma”, “ggplot2” and “ggpubr” were used for drug

sensitivity analysis (18).
Cell culture and drug treatment

HK-2 cells, a human renal tubular epithelial cell line, were

obtained from The American Type Culture Collection (ATCC,
frontiersin.org
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Manassas, VA, USA) and maintained in DMEM containing 10%

FBS and 1% penicillin-streptomycin at 37°C with 5% CO2. In the

experimental group, we incubated the cells for 48h with

recombinant TGF-b1 (5 ng/ml; PeproTech, USA).
Reverse transcription-quantitative
polymerase chain reaction

Total RNA was extracted using the TRIzol reagent. Total RNA

was reverse transcribed into the cDNA template according to the

manufacturer’s protocol, and SYBR Green Real-Time PCR Master

Mix Plus (Toyobo) was used to amplify the cDNA template. b-
Actin was selected as an endogenous reference gene to normalize

the mRNA levels. Primer sequences used for RT-qPCR are listed in

Supplementary Table S1.
A renal fibrosis classification model
established by an artificial neural network

First, the DEG expression data were converted to a Gene Score

table based on expression levels. The medians of all the sample

expression values and the expression values of a single gene in a

given sample were compared. If the expression value of the upregulated

gene was greater than 0, it was given a value of 1; otherwise, it was given

a value of 0. Likewise, if the expression value of the downregulated gene

was higher, it was given a value of 0; otherwise, it was given a value of 1.

Renal fibrosis was the outcome variable; cases were assigned a value of

1, whereas controls were assigned a value of 0. An artificial neural

networkmodel was visualized using the R package neuralnet (19) based

on the constructed Gene Score table. The model parameters were set to

five hidden layers. To optimize the model and reduce overfitting, the R

package Caret (20) was used to calculate the 5-fold cross-validation of

the artificial neural network model.
Results

Identification of DEGs and
enrichment analysis

The flow chart of this study was shown in Figure 1A. First, we

screened 471 differentially expressed genes (DEGs) between the

renal fibrosis group and the control group in GSE76882 using the R

package “limma” (Figures 1B, C). Next, we obtained five modules

through WGCNA and found that the blue module had the highest

correlation with renal fibrosis (Figures 1D, E). We crossed these two

results to obtain 285 renal fibrosis-related DEGs (Figure 1F).

A protein-protein interaction (PPI) network (Figure 2A) was

constructed for DEGs using STRING (https://cn.string-db.org/).

Figure 2B shows the number of connection nodes of hub genes.

Next, correlation analysis revealed strong positive correlations

between these hub genes (Figures 2C, D). In addition, we

explored the possible biological functions of DEGs using
Frontiers in Immunology 03
enrichment analysis. The GO enrichment analysis revealed that

the DEGs were principally enriched in leukocyte proliferation,

MHC class II protein complex, and chemokine activity

(Figure 2E). KEGG enrichment analysis showed enrichment of

multiple immune-related signaling pathways including the

chemokine signaling pathway, Th1 and Th2 cell differentiation,

intestinal immune network for IgA production, and cytokine-

cytokine receptor interaction (Figure 2F). These results indicate

that immune response may contribute to the occurrence and

development of renal fibrosis.
Identification of the diagnostic markers for
renal fibrosis

We used two machine-learning algorithms to identify

diagnostic markers of renal fibrosis. First, LASSO regression

algorithm was used to reveal 22 potential biomarkers (Figures 3A,

B). SVM-RFE analysis of the DEGs identified five genes that could

be used for diagnosis (Figures 3C, D). Next, we determined the

common biomarkers obtained in both machine learning algorithms

to obtain four common biomarkers: DOCK2, SOX9, SLC1A3, and

TARP (Figure 3E).
Diagnostic power and expression of four
candidate biomarkers

We conducted a comprehensive analysis of the four candidate

genes. We plotted receiver operating characteristic (ROC) curves

for the four candidate biomarkers and found that DOCK2, SLC1A3,

SOX9, and TARP had good diagnostic efficacy, with the area under

the ROC curve (AUC) values of 0.886, 0.815, 0.843, and 0.797,

respectively (Figure 4A).

Next, we estimated the expression of the four candidate

diagnostic genes. As shown in Figure 4B, the expression levels of

DOCK2, SLC1A3, SOX9, and TARP were higher in the renal

fibrosis group than in the control group. In addition, we

conducted RT-qPCR experiments and discovered that DOCK2,

SLC1A3, SOX9, and TARP were also highly expressed in HK-2

cells after TGF-b1 treatment, which was consistent with the results

of bioinformatics analysis (Figure 4C). We also found the

expression of DOCK2, SLC1A3, SOX9, and TARP were higher in

blood of renal fibrosis patients than healthy individuals (Figure 4D).
Correlation between candidate biomarkers
and immune cells

The incidence of renal fibrosis is also accompanied by

abnormalities in both the proportion and function of immune

cells. Hence, we further analyzed the relationship between the

four candidate biomarkers and the 22 immune cells. First, the

CIBERSORT algorithm was used to analyze the change in the

proportion of immune cells between renal fibrosis and control
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samples. We found that the ratio of CD8 T cells, activated CD4

memory T cells, follicular helper T cells, gamma delta T cells,

macrophages M0, activated mast cells, neutrophils, and eosinophils

were increased in the renal fibrosis group, whereas the ratio of

plasma cells, resting CD4 memory T cells, T cells regulatory (Tregs),
Frontiers in Immunology 04
activated NK cells, macrophages M2 and resting mast cells was

decreased (Figure 5A).

In addition, DOCK2 and TARP expression positively correlated

with macrophages M1 (Figures 5B, C). All candidate biomarkers

were positively correlated with activated NK cells and neutrophils
A B

D

E F

C

FIGURE 1

Identification of renal fibrosis-related DEGs. (A) Flowchart of the research. (B) Heat map of differentially expressed genes between renal fibrosis
samples and healthy samples. (C) Volcano plot of differentially expressed genes between renal fibrosis samples and healthy samples. (D) weighted
correlation network analysis of train cohort. (E) Correlation between blue module and renal fibrosis. (F) Venn of DEGs and WGCNA.
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(Figures 5D–K). Besides, the expression of DOCK2 was positively

correlated with activated CD4 memory T cells, gamma delta T cells,

CD8 T cells, follicular helper T cells, eosinophils, and memory B

cells and negatively correlated with the ratios of macrophages M2,

macrophages M0, naive CD4 T cells, Tregs, plasma cells, resting
Frontiers in Immunology 05
CD4 memory T cells, resting mast cells, and activated NK cells

(Figure 6A). SLC1A3 expression was positively correlated with the

degree of activation of CD4 + memory T cells, follicular helper T

cells, Eosinophils, CD8 T cells, gamma delta T cells, and memory B

cells, and negatively correlated with monocytes, resting DCs, native
A B

D

E F

C

FIGURE 2

Enrichment analisis of renal fibrosis-related DEGs. (A) PPI network of renal fibrosis-related DEGs. (B) The number of connection nodes of hub genes.
(C, D) Correlations between top 20 hub genes. (E) The top 10 most significantly enriched GO terms. (F) The top 30 most significantly enriched KEGG
pathways.
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CD4 + T cells, Tregs, resting CD4 + memory T cells, plasma cells,

resting mast cells, and activated NK cells (Figure 6B). SOX9

expression was positively correlated with gamma delta T cells,

activated CD4 memory T cells, follicular helper T cells, and CD8

T cells, and negatively correlated with macrophages M2, naive B

cells, macrophages M0, resting mast cells, and activated NK cells

(Figure 6C). TARP expression was positively correlated with

activated CD4 memory T cells, follicular helper T cells, resting
Frontiers in Immunology 06
DCs, Eosinophils, CD8 T cells, gamma delta T cells, and memory B

cells, and negatively correlated with monocytes, native CD4 T cells,

Tregs, resting CD4 memory T cells, plasma cells, resting mast cells,

macrophages M0, macrophages M2 and activated NK cells

(Figure 6D). In addition, we found that these candidate

biomarkers had strong positive correlations with immune-related

genes, including chemokines, MHC, receptor and immune

checkpoints (Figures 6E–H).
A B

D

E

C

FIGURE 3

Identification of diagnostic markers for renal fibrosis. (A, B) Tuning feature screening in the LASSO model. (C, D) A plot of biological marker
screening via the SVM-RFE arithmetic. (E) Venn graph displaying 4 diagnosis biomarkers shared by LASSO and SVM-RFE.
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Signaling pathways associated with the
candidate biomarkers

The relevant signaling pathways associated with the four

candidate biomarkers were identified using GSEA. DOCK2 was

positively associated with the chemokine signaling pathway,

cytokine-cytokine receptor interaction, and Leishmania infection

(Figure 7A). SLC1A3 mainly participates in Leishmania infection,

chemokine signaling pathways, and cytokine-cytokine receptor

interactions (Figure 7B). SOX9 was positively associated with

cytokine-cytokine receptor interactions, chemokine signaling

pathways, and toll-like receptor signaling pathways (Figure 7C).

TARP was positively linked to hematopoietic cell lineage, cytokine-

cytokine receptor interaction, and chemokine signaling pathway

(Figure 7D). These results indicate that the candidate biomarkers

were closely correlated with the chemokine signaling pathway,
Frontiers in Immunology 07
cytokine-cytokine receptor interaction, and Toll-like receptor

signaling pathway, which might be instrumental in the

pathogenesis and development of renal fibrosis.
Drug sensitivity analysis

We performed a drug sensitivity analysis to identify additional

drugs that could improve renal fibrosis (Figure 8). As a result, the

expression of DOCK2 positively linked with Hydroxyurea,

Chlorambucil, Nelarabine, Chelerythrine, Uracil mustard, Melphalan,

Asparaginase, Triethylenemelamine, Thiotepa, Cyclophosphamide,

Pipobroman, Imexon, Fludarabine, XK-469, Batracylin and Nitrogen

mustard. The expression of TARP was positively linked to

Chelerythrine, Hydroxyurea, Cyclophosphamide, Imexon,

Nelarabine, Raloxifene, Melphalan, Fenretinide and Chlorambucil.
A

B

D

C

FIGURE 4

The ROC curve and expression of candidate biomarkers. (A) The ROC curve of DOCK2, SOX9, SLC1A3 and TARP. (B) The expression of DOCK2,
SOX9, SLC1A3 and TARP in GSE76882. (C) RT-qPCR of DOCK2, SOX9, SLC1A3 and TARP in HK-2 cells with or without TGF-b. (D) The expression of
DOCK2, SOX9, SLC1A3 and TARP in patients with renal fibrosis and healthy individuals.
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Constructing an artificial neural
network model

We set up a Gene Score table for the renal fibrosis outcome

variable (Supplementary Table S2). Based on the Gene Score table, we

built an artificial neural network model to classify gene expression

data. Four input, five hidden, and two output layers were used in the

artificial neural network model (Figure 9A). The AUC value was

0.934 and its accuracy was 0.874, demonstrating the reliability of the

model (Figure 9B). To verify the reliability of the model, we analyzed

the test group and found that the ROC value was 0.713 (Figure 9C).
Discussion

Currently, renal biopsy remains the primary clinical diagnostic

modality for renal fibrosis. Renal biopsy is traumatic, challenging to

perform repeatedly, challenging to observe dynamically, and cannot

be performed in patients with contraindications (21). Moreover, the
Frontiers in Immunology 08
renal puncture tissue is less than 1%, mainly cortex, and less

medulla, which has limitations in the diagnosis of chronic kidney

disease, especially renal fibrosis. Therefore, identifying a

noninvasive examination method that can reflect the degree of

renal fibrosis and objectively evaluate its efficacy is indispensable. In

this study, we screened renal fibrosis biomarkers using machine

learning and constructed an artificial neural network model. The

identification of these biomarkers will facilitate the diagnosis of

renal fibrosis, the selection of therapeutic approaches, and the

prediction of treatment responses.

In the present study, we first screened 471 DEGs between the

renal fibrosis and control groups and then obtained the renal

fibrosis-related module genes. We then combined these results to

obtain 285 renal fibrosis-related DEGs. These DEGs were mainly

enriched in multiple immune-related signaling pathways, strongly

suggesting that the immune response is instrumental in the

pathogenesis of renal fibrosis.

Two separate algorithms (LASSO and SVM-RFE) were used to

screen for potential diagnostic biomarkers for renal fibrosis. Four
A B

D E F G

IH J K

C

FIGURE 5

Immune cell infiltration in renal fibrosis samples and control samples. (A) Comparison of 22 immune cell types in renal fibrosis samples and control
samples. (B–K) Correlation between candidate biomarkers and neutrophils, macrophages M1, activated mast cells.
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genes with overlapping features (DOCK2, SLC1A3, SOX9, and

TARP) were finally selected. The roles of these genes in fibrotic

diseases have been reported previously. For instance, Xia et al.

found that DOCK2 deficiency could weaken bleomycin-induced

pulmonary fibrosis through TGF-b signaling pathway (22). Recent

research by Gu et al. revealed that the knockdown of SOX9 could
Frontiers in Immunology 09
reduce injury-induced tracheal fibrosis by inhibiting granulation

tissue proliferation, ECM deposition, and inflammatory reactions,

and promoting granulation tissue apoptosis (23). Gesine et al.

Revealed that deletion of SOX9 in fibroblasts reduced cardiac

fibrosis, thereby improving left ventricular dysfunction, dilation,

and myocardial scar formation after myocardial infarction (24). In
A B

D

E F

G H

C

FIGURE 6

Correlation between four candidate biomarkers and immune cells. (A) DOCK2. (B) SLC1A3. (C) SOX9. (D) TARP. Correlation between four candidate
biomarkers and immune related genes. (E) Chemokine. (F) MHC. (G) Receptor. (H) Immune checkpoint.
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addition, Varinder et al. found that the inactivation of SOX9 in mice

prevented fibrosis of the parenchyma and bile and improved liver

function and chronic inflammation (25). However, the value and

mechanism of action of these biomarkers in renal fibrosis have not

yet been clearly studied, which needs to be elucidated in

future research.

The chemokine signaling pathway is implicated in renal

fibrosis. Renal fibroblasts secrete CCL2, CCL3 and other

inflammatory chemokines, which drive various inflammatory

cells to the lesion site, thereby promoting the formation of renal

interstitial fibrosis (26, 27). A large number of cytokines, such as

IL-1, IL-2, IL-6, IL-8, and TGF-b, can be further released by

activated macrophages to promote the development of fibrosis

(28). In this study, we found that four candidate biomarkers were

involved in the chemokine signaling pathway and cytokine-

cytokine receptor interactions. Therefore, targeting these

signalling pathways may be an effective strategy for the

treatment of renal fibrosis.

Renal fibrosis is often accompanied by a series of changes in the

proportion and function of immune cells. According to Purvi et al.,

IL-17 secretion may participate in the pathogenesis of renal fibrosis

after AKI via neutrophil recruitment (29). In obstructive
Frontiers in Immunology 10
nephropathy, GSDMD-dependent neutrophil extracellular traps

could accelerate renal fibrosis through macrophage-to-

myofibroblast transition (30). Interferon-related factors 4 and 5

are involved in macrophage activation, the release of pro-

inflammatory mediators by pro-inflammatory macrophage M1,

causing tissue inflammation and renal fibrosis (31). In addition,

Kurusu et al. showed that mast cell infiltration per unit volume was

positively correlated with the severity of tubulointerstitial fibrosis,

suggesting that mast cells are involved in the occurrence and

progression of renal fibrosis (32). In this study, we found that

four candidate biomarkers were significantly associated with the

infiltration of multiple immune cells, including macrophages M1,

neutrophils, and mast cells. These results indicate that immune cells

participate in the occurrence and development of renal fibrosis, and

research on immune cells is an important direction for treating

renal fibrosis in the future.

Given that renal fibrosis and cancer share a common feature of

enhanced epithelial mesenchymal transition (EMT), as well as the

inhibitory effects of many anti-tumor drugs on EMT, we analyzed

the relationship between these drug sensitivity and model genes to

provide possible direction for the treatment of renal fibrosis. The

results showed that DOCK2 and TARP were positively correlated
A B

DC

FIGURE 7

Gene set enrichment analysis (GSEA) identifies signaling pathways involved in the candidate biomarkers. (A) DOCK2. (B) SLC1A3. (C) SOX9. (D) TARP.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183088
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1183088
with most drugs. These findings lay the foundation for anti-

fibrosis drugs.

Although this study constructed a novel neural network model

to predict renal fibrosis based on high-throughput sequencing

data, it had several limitations. Firstly, this was a retrospective

study with a relatively small sample size, which remains
Frontiers in Immunology 11
unreliable. Therefore, a prospective study with a larger sample

size is warranted.

In summary, we determined four potential diagnostic

biomarkers in the peripheral blood of patients with renal fibrosis

through machine learning and comprehensively analyzed their

diagnostic value, drug sensitivity, and correlation with immune
FIGURE 8

Drug sensitivity analysis of candidate biomarkers.
A B C

FIGURE 9

Constructing an artificial neural network model. (A) Artificial neural network model for renal fibrosis. (B) The training group verifies the ROC curve
findings. (C) The testing group verifies the ROC curve findings.
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cells. These findings will help improve the diagnosis and treatment

of renal fibrosis.
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