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The opinion flows from Introduction to the immunological quantum that

requires a historical perspective, to Quantum vaccine algorithms supported by

a bibliometric analysis, to Quantum vaccinomics describing from our perspective

the different vaccinomics and quantum vaccinomics algorithms. Finally, in the

Discussion and conclusions we propose novel platforms and algorithms

developed to further advance on quantum vaccinomics. In the paper we refer

to protective epitopes or immunological quantum for the design of candidate

vaccine antigens, which may elicit a protective response through both cellular

and antibody mediated mechanisms of the host immune system. Vaccines are

key interventions for the prevention and control of infectious diseases affecting

humans and animals worldwide. Biophysics led to quantum biology and

quantum immunology reflecting quantum dynamics within living systems and

their evolution. In analogy to quantum of light, immune protective epitopes were

proposed as the immunological quantum. Multiple quantum vaccine algorithms

were developed based on omics and other technologies. Quantum vaccinomics

is the methodological approach with different platforms used for the

identification and combination of immunological quantum for vaccine

development. Current quantum vaccinomics platforms include in vitro, in

music and in silico algorithms and top trends in biotechnology for the

identification, characterization and combination of candidate protective

epitopes. These platforms have been applied to different infectious diseases

and in the future should target prevalent and emerging infectious diseases with

novel algorithms.

KEYWORDS
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Introduction to the immunological quantum

Vaccines are one of the most important achievements in human history. From classical

3Is (isolate-inactivate-inject) to recombinant vaccines and recent vaccinomics approaches,

vaccines have prevented millions of deaths worldwide (1–4). However, development of

effective vaccines against infectious diseases such as tuberculosis, acquired

immunodeficiency syndrome (AIDS), malaria, Lyme disease or Crimean-Congo

Hemorrhagic Fever (CCHF) causing millions of deaths annually is still a challenge.
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Quantum biology was proposed by Pascual Jordan in 1932

based on the dynamics of biological living systems to maintain the

non-equilibrium state (4, 5). Then and based on the double helix

structure of DNA, proton tunneling was proposed in 1963 as the

quantum mechanics mechanism of DNA point mutations (6).

Additionally, stochastic models have been proposed for gene

regulation based on gene activation and inactivation by random

association and dissociation events (7). These findings support the

concept of quantum immunology based on the random processes of

electronic structure of molecular interactions behind peptide

immunogenicity present in the immune system (4, 8). Then, in

allusion to Albert Einstein’s definition of the proton as a quantum

of light, immune protective epitopes were proposed as the

immunological quantum (9).
Quantum vaccine algorithms

Using a bibliometric analysis by searching “quantum + vaccine

+ algorithm” in PubMed (https://pubmed.ncbi.nlm.nih.gov;

January 16, 2023), the results provided 14 references. The recent

origin of these algorithms starts with advances in deep sequencing

and structural studies applied to protective candidate antigens to

develop safer and more efficacious vaccines (10). Reverse

vaccinology approaches such as Vacceed were developed for in

silico vaccine candidate discovery (11). Algorithms and methods

based on amphipathicity profiles of proteins, sequence motifs,

quantitative matrices (QM), artificial neural networks (ANN),

support vector machines (SVM), quantitative structure activity

relationship (QSAR), T-cell major histocompatibility complex

(MHC) class I binding prediction and molecular docking

simulations among others were developed to predict T-cell

epitopes (12, 13). Quantum chemical calculations to predict

biological function were applied to T-cell receptor interaction

with a peptide/MHC class I (14). Recently, an algorithm was

proposed using semi-empirical quantum mechanical methods for

calculating peptide-MHC class I and II molecules binding energy

for the rational design of T-cell epitopes with application in

vaccinology (15).

Mathematical combinatorial and computational techniques for

drug discovery such as topology, combinatorics, graph theory and

knot theory could be also applied to vaccinology (16). For example,

facing recent challenges associated with severe coronavirus disease

(COVID-19), the interactions between SARS-CoV-2 spike

glycoprotein (S protein) and human angiotensin-converting

enzyme 2 (hACE2) were characterized to identify potential

vaccine candidates. Machine learning algorithms were applied to

identify changes in infrared spectra associated with variations of the

secondary structure of S protein for developing faster than

conventional quantum chemistry calculations of real-time

spectroscopy of protein dynamics (17). Combining this approach

with antibody isotype S epitope mapping in different patient cohorts

(18) may facilitate the identification of candidate protective epitopes

for vaccine development.

Computational protein design algorithms are important for the

combination of immunological quantum in vaccine antigens and
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have the potential to increase the accuracy and reliability of vaccine

chimeric antigens (19). An innovative approach using

biocompatible, near-infrared quantum dots (QDs) was recently

proposed for the delivery of intradermal QDs with reliable code

information together with vaccines for developing tools for vaccine

decentralized data storage and biosensing (20).
Quantum vaccinomics

Vaccinomics was defined as the application of immunogenetics

and genomics to study the molecular mechanisms in response to

vaccines (21). In the vaccinomics platform, systems biology

integration of omics datasets combined with Big Data analytics

and machine learning allow the identification of candidate vaccine

protective antigens (2, 4, 22–28) (Figure 1). Quantum vaccinomics

was then proposed as the methodological approach with different

platforms for the identification and combination of immunological

quantum for vaccine development (4, 29–33). Quantum

vaccinomics platforms include in silico prediction and epitope

mapping of immunological quantum as well as in vitro, in music

and in silico characterization of protein-protein interactions to

identify protein interacting domains as candidate protective

epitopes (29–33) (Figure 1). These platforms facilitate antigen

combination and including probiotics and post-translational

modifications such as glycan alpha-gal to boost protective

immune response to vaccination (34, 35). In this way, quantum

vaccinomics platforms include top trends in biotechnology such as

Big Data, gene sequencing and editing, precision medicine, bio

manufacturing, and synthetic biology.

As recently reported (33), vaccines may elicit protective

response in some species but in others prevalent antibodies may

recognize non-protective epitopes. Using sera from both vaccinated

protected and non-protected species it is possible to conduct a

microarray epitope mapping to identify immunological quantum

for the design of a chimeric protective antigen (33). Epitope

mapping can also be used to identify immunological quantum

recognized by immunized hosts and reactive to different pathogen

and vector species. For example, using sera from tick Subolesin-

immunized cattle it was possible to identify B-cell reactive epitopes

in different tick species (32). This information could then be used to

combine protective epitopes and design a vaccine chimeric antigen

with improve protection against multiple tick species parasitizing

on the same host.

The collaboration between science and art has shown an impact

on approaching scientific and social challenges (e.g., (29, 36–38)). In

this context, musical algorithms to translate gene/protein sequences

into music provide insights into biomolecule evolution and

interactome (30, 39). Protein interactome involves functional

sequences that are not highly exposed to the immune system but

play a key function and thus constitute candidate protective

epitopes. The information obtained from in music approaches

translates into the identification of protein-protein interacting

motifs that in combination with in vitro (e.g., yeast two-hybrid)

and in silico methods provide candidate immunological quantum

for vaccine antigen design (29, 30) (Figure 1). In silico
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computational algorithms applied to vaccine discovery transforms

digital abstractions of this complex interdisciplinary and

interdependent system into candidate protective antigens (31,

40, 41).
Discussion and conclusions

Despite the advances represented by quantum vaccine

algorithms, limitations of these algorithms were approached using

quantum vaccinomics. For example, Van Regenmortel (42, 43)

discussed that peptide antigenicity can be chemically and

structurally modified to improve antibody-peptide interactions,

but it does not necessarily improve immunogenicity mediated by

multiple factors of the host immune system. Using human

immunodeficiency virus (HIV) model, Van Regenmortel (44)

illustrates the limitations of reductionist methods, systems biology

and structure-based reverse vaccinology to address the complexity

of the human immune system for a rational design of anti-HIV

vaccines for the prevention of acquired immunodeficiency

syndrome (AIDS). However, quantum vaccinomics combines

different platforms including not only in vitro, in music and in

silico characterization of protein-protein interactions but also

mapping of B-ce l l react ive protec t ive ep i topes and

characterization of cellular immune mechanisms associated with

protection in response to vaccine using integration of omics

datasets (18, 29, 32, 33). For example, quantum vaccinomics was
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successfully applied to the tick protective antigen Subolesin.

Subolesin was discovered by expression library immunization in

the mouse model of Ixodes ricinus tick infestations (45). Protective

linear B-cell and conformational epitopes were mapped and in silico

modeling of protein structure was then used to identify and

combine candidate protective epitopes in the chimeric antigen

Q38 (31, 46). The Q38 antigen was validated using other

quantum vaccinomics algorithms (29, 32) and elicited a protective

immune response against tick infestations (47).

The combination of the different quantum vaccine and

quantum vaccinomics approaches is important to provide reliable

information on the proposed immunological quantum. These

results need to be validated ex vivo and in vivo to advance in

vaccine development. Our research in this area is mainly focused on

ticks and tick-borne diseases (29–33), but quantum vaccinomics

approaches have been applied to other diseases such as COVID-19

(17), tuberculosis (48), AIDS (41) and neosporosis (40). Future

directions using quantum vaccinomics approaches should target

highly prevalent and emerging infectious diseases.

Novel platforms and algorithms will be developed to further

advance in quantum vaccinomics for the development of vaccines

and other control interventions. These novel platforms include (a)

use of commensal bacteria to produce and secrete protective

antigens to interfere with pathogen infection or serve for vaccine

delivery (49), (b) combination of vaccines with probiotics (e.g., with

high alpha-gal content) and heat inactivated mycobacteria to serve

as adjuvants/immunostimulants (50, 51), (c) new vaccine delivery
FIGURE 1

Quantum vaccinomics platforms for the identification of immunological quantum and design of vaccine chimeric protective antigens. Candidate
protective antigens are identified using systems biology integration of omics dataset combined Big Data analytics and machine learning. Then,
immunological quantum can be identified using in silico algorithms or epitope mapping for predicting protective epitopes or using in vitro, in silico
and in music approaches for the identification of domains involved in protein-protein interactions.
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platforms (e.g., nanoparticle (NP)-based formulations, lipid NP-

mRNA, viral vectors, virus-like particles) to stimulate innate and

trained immunity and boost protective immune response (52), (d)

oral vaccine formulations to improve safety and access to

developing countries (50), and (e) stimulating trained immunity

mechanisms in response to vaccination (51).
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Rıó FJ, et al. Antibody isotype epitope mapping of SARS-CoV-2 spike RBD protein:
targets for COVID-19 symptomatology and disease control. Eur J Immunol (2023) 53
(4):e2250206. doi: 10.1002/eji.202250206

19. Talluri S. Algorithms for protein design. Adv Protein Chem Struct Biol (2022)
130:1–38. doi: 10.1016/bs.apcsb.2022.01.003

20. McHugh KJ, Jing L, Severt SY, Cruz M, Sarmadi M, Jayawardena HSN, et al.
Biocompatible near-infrared quantum dots delivered to the skin by microneedle
patches record vaccination. Sci Transl Med (2019) 11:eaay7162. doi: 10.1126/
scitranslmed.aay7162

21. Poland GA. Pharmacology, vaccinomics, and the second golden age of
vaccinology. Clin Pharmacol Ther (2007) 82:623–6. doi: 10.1038/sj.clpt.6100379

22. Oberg AL, Kennedy RB, Li P, Ovsyannikova IG, Poland GA. Systems biology
approaches to new vaccine development. Curr Opin Immunol (2011) 23:436–43.
doi: 10.1016/j.coi.2011.04.005

23. Poland GA, Kennedy RB, Ovsyannikova IG. Vaccinomics and personalized
vaccinology: is science leading us toward a new path of directed vaccine development
and discovery? PloS Pathog (2011) 7:e1002344. doi: 10.1371/journal.ppat.1002344

24. Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and
novel approaches for vaccine development. AAPS J (2011) 13:438–44. doi: 10.1208/
s12248-011-9281-x

25. de la Fuente J, Merino O. Vaccinomics, the new road to tick vaccines. Vaccine
(2013) 31:5923–9. doi: 10.1016/j.vaccine.2013.10.049

26. Contreras M, Alberdi P, Fernández De Mera IG, Krull C, Nijhof A, Villar M,
et al. Vaccinomics approach to the identification of candidate protective antigens for
the control of tick vector infestations and Anaplasma phagocytophilum infection. Front
Cell Infect Microbiol (2017) 7:360. doi: 10.3389/fcimb.2017.00360

27. de la Fuente J, Villar M, Estrada-Peña A, Olivas JA. High throughput discovery
and characterization of tick and pathogen vaccine protective antigens using
frontiersin.org

https://www.who.int/health-topics/vaccines-and-immunization
https://doi.org/10.3389/fpubh.2018.00062
https://doi.org/10.3389/fpubh.2018.00062
https://doi.org/10.3389/fimmu.2019.01722
https://doi.org/10.3389/fimmu.2019.01722
https://doi.org/10.1080/14760584.2021.1987222
https://doi.org/10.1098/rspa.2018.0674
https://doi.org/10.1103/RevModPhys.35.724
https://doi.org/10.1159/000345611
https://doi.org/10.1093/bioinformatics/btu300
https://doi.org/10.1007/978-1-4939-1115-8_19
https://doi.org/10.1371/journal.pone.0115745
https://doi.org/10.1371/journal.pone.0115745
https://doi.org/10.3389/fchem.2015.00009
https://doi.org/10.1093/bib/bbab171
https://doi.org/10.2174/1568026619666190208164005
https://doi.org/10.1073/pnas.2025879118
https://doi.org/10.1002/eji.202250206
https://doi.org/10.1016/bs.apcsb.2022.01.003
https://doi.org/10.1126/scitranslmed.aay7162
https://doi.org/10.1126/scitranslmed.aay7162
https://doi.org/10.1038/sj.clpt.6100379
https://doi.org/10.1016/j.coi.2011.04.005
https://doi.org/10.1371/journal.ppat.1002344
https://doi.org/10.1208/s12248-011-9281-x
https://doi.org/10.1208/s12248-011-9281-x
https://doi.org/10.1016/j.vaccine.2013.10.049
https://doi.org/10.3389/fcimb.2017.00360
https://doi.org/10.3389/fimmu.2023.1172734
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


de la Fuente and Contreras 10.3389/fimmu.2023.1172734
vaccinomics with intelligent big data analytic techniques. Expert Rev Vaccines (2018)
17:569–76. doi: 10.1080/14760584.2018.1493928

28. Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current challenges in
vaccinology. Front Immunol (2020) 11:1181. doi: 10.3389/fimmu.2020.01181
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Cruz A, et al. Frankenbacteriosis targeting interactions between pathogen and
symbiont to control infection in the tick vector. iScience (2023) 26:106697.
doi: 10.1016/j.isci.2023.106697

50. Kasaija PD, Contreras M, Kabi F, Mugerwa S, Garrido JM, Gortazar C, et al. Oral
vaccine formulation combining tick subolesin with heat inactivated mycobacteria
provides control of cross-species cattle tick infestations. Vaccine (2022) 40:4564–73.
doi: 10.1016/j.vaccine.2022.06.036

51. Juste RA, Ferreras-Colino E, de la Fuente J, Domıńguez M, Risalde MA,
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