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Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine

disorder affecting women, which can lead to infertility. Infertility, obesity,

hirsutism, acne, and irregular menstruation are just a few of the issues that

PCOS can be linked to. PCOS has a complicated pathophysiology and a range of

clinical symptoms. Chronic low-grade inflammation is one of the features of

PCOS. The inflammatory environment involves immune and metabolic

disturbances. Numerous organ systems across the body, in addition to the

female reproductive system, have been affected by the pathogenic role of

immunological dysregulation in PCOS in recent years. Insulin resistance and

hyperandrogenism are associated with immune cell dysfunction and cytokine

imbalance. More importantly, obesity is also involved in immune dysfunction in

PCOS, leading to an inflammatory environment in women with PCOS. Hormone,

obesity, and metabolic interactions contribute to the pathogenesis of PCOS.

Hormone imbalance may also contribute to the development of autoimmune

diseases. The aim of this review is to summarize the pathophysiological role of

immune dysregulation in various organ systems of PCOS patients and provide

new ideas for systemic treatment of PCOS in the future.

KEYWORDS
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1 Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in

women of childbearing age, which is closely related to female infertility, with an incidence

of 5% -15% (1). The diagnosis of PCOS is a diagnosis of exclusion and should present with

at least two of the three main symptoms: 1) clinical and/or biochemical hyperandrogenism

(HA); 2) ovulatory dysfunction (OD); and 3) polycystic ovarian morphology (PCOM) (2).

Clinical manifestations like insulin resistance (IR), obesity, hirsutism, and acne may also be

present (3). Women with PCOS are more likely to develop type II diabetes, endometrial

cancer, underlying cardiovascular disease, mood disorders, and depression. Additionally,

multiple pregnancies, abortions, preeclampsia and pregnancy-induced hypertension,

gestational diabetes, and other problems are more likely to occur in PCOS women (4).
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Currently, the etiology of PCOS remains unknown, as its symptoms

are complex and diverse and cannot be completely cured

clinically (5).

Primordial follicles consist of an oocyte resting at diplotene

stage in meiosis I diplotene and a single layer of flattened anterior

granulosa cells surrounding it. The majority of primordial follicles

are more likely to stay dormant until death than to be activated (6).

Activated primordial follicles form primary follicles, at which point

pregranulosa cells will transform into a single layer of cuboidal

granulosa cells (GC). The transformation of main follicles into

secondary (preantral) follicles occurs with GC proliferation,

differentiation, and oocyte growth. At the same time, theca cells

begin to form around the outer granulosa cells and can produce

androgens and serve as raw materials for estrogen production by

GC (7). Accumulation of follicular fluid between GCs increases in

response to estrogen and follicle-stimulating hormone, and

follicular enlargement is called antral follicle (7). Atresia develops

in the majority of antral follicles, and only antral follicles that react

to follicle-stimulating hormone (FSH) and luteinizing hormone

(LH) are likely to be selected for ovulation (7, 8). Due to the high

expression of LH receptors in a subset of antral follicles that line the

follicular wall, preovulatory LH spikes activate these follicles,

causing them to ultimately ovulate the dominant follicle (9).

PCOS is an important syndrome causing anovulation. Women

with PCOS have larger-than-normal ovaries and more than 12

follicles that range in size from 2 to 9 millimeters (10). PCOS is

characterized by an elevated density of small preantral follicles

compared to normal ovaries (11), arrested follicular maturation

with accumulation of follicular fluid and dilatation of antrum.

Follicles gradually expand, apoptosis occurs in the GC layer and

finally atresia occurs, resulting in the disappearance of GC in the

follicular wall and the appearance of thin-walled cysts. The causes of

ovarian folliculocytosis in PCOS patients are very complex and have

been shown to be related to factors such as abnormal anti-mullerian

hormone (AMH) secretion by GC, excessive androgen production

by membranous cells, and insufficient FSH secretion leading to

follicular maturation failure (12).

Regarding the pathogenesis of PCOS, recent studies have

suggested that it is associated with genetic and environmental

factors, intrauterine environment, endocrine, immune and

metabolic dysfunction (13). Hyperandrogenism, obesity and IR

interact in PCOS and are involved in immune disorders and

systemic inflammation in PCOS (14). Obesity, as a metabolic

disease, occurs in nearly 50% of women with PCOS and is one of

the causes contributing to chronic low-grade systemic inflammation

(15). BMI has already been shown to correlate with endometrial

proliferation in women with PCOS. In PCOS patients, BMI is

positively correlated with expression of endometrial marker of

proliferation Ki-67 (MKI67) (16). Numerous studies have recently

concentrated on the impact of chronic inflammation and low-grade

inflammation on immunity, with hyperandrogenism playing a

significant role in the emergence of immunological problems in

PCOS. The prevalence of PCOS is strongly correlated with a

number of inflammatory factors, including IL-6, TNF-a, IL-1, IL-
18, IL-17, and inflammasomes (17). Additionally, PCOS was

associated with a considerably higher proportion of various
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immune cell subsets (16). A low grade chronic inflammatory state

in PCOS patients is caused by the accumulation of numerous

inflammatory cells and multiple inflammatory cytokines (18).

This article reviews the literature on the relationship between

PCOS and immune cells and cytokines and their metabolic effects

in various organ systems of the female body, and explores the

immune response mechanism of PCOS.
2 Method

In this review, a literature search was performed in PubMed,

Elsevier, and Wiley Online Library, including literatures published in

English and available up to March 2023. The following key word were

used for the search alone or in combination: polycystic ovarian

syndrome (PCOS), obesity, insulin resistance, hyperandrogenism,

inflammation, immune regulation, androgens, estrogens, cytokines,

macrophages, monocytes, dendritic cells, natural killer cells, vaginal

microorganisms, intestinal microorganisms, nonalcoholic fatty liver

disease, autoimmune thyroid disease, subclinical hypothyroidism,

adrenal androgens, dehydroepiandrosterone, dehydroepiandrosterone

sulfate, COVID-19, obstructive sleep apnea. Literatures were selected

for review based on their titles and abstracts which were relevant to the

topic. The references of the articles correlating to this review were

further searched and selected.
3 The impact of sex hormones on
immune responses in women

By boosting the amount of immune cells that are in circulation

and regulating the generation of cytokines in the body, sex

hormones have an impact on the immune system (19). Typically,

androgens have anti-inflammatory effects and can suppress

immune cell activity (20). For example, androgen ablation

increases the number of mature dendritic cells (mDCs) as well as

expression of dendritic cell (DC) costimulatory markers in lymph

nodes (21). Androgen causes a significant decrease in cell-surface

toll-like receptor 4 (TLR4) expression in macrophage-like cell lines

(22). In addition, androgens can also regulate adaptive immunity in

humans by inhibiting Th1, Th2 and Th17 activity, but inducing

Treg activity (23). However, the anti-inflammatory effects of

androgens are not absolute. Hyperandrogenism in PCOS may

change inflammation by influencing macrophage numbers and

phenotypes. Higher M1 (inflammatory) and M2 (anti-

inflammatory) macrophage ratios could be observed in 5a-
dihydrotestosterone (DHT) -treated rat ovaries and PCOS female

ovaries (24). Androgen receptor (AR) is expressed by normal skin,

fibroblasts, epithelial cells, and macrophages in acute trauma (25). It

is reported that castrated rats treated with androgens before

urethroplasty have a prolonged inflammatory phase during

healing, with upregulation of macrophages and TNF-a levels in

urethral wounds (26). Estrogen has a more complex regulatory

effect on the immune system (27, 28). Because estrogen levels

fluctuate throughout the menstrual cycle, estrogen can suppress
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pro-inflammatory pathways at high levels during periovulation and

indicate pro-inflammatory pathways when levels fall to the early

follicular phase (29). Through the estrogen receptor a (ER a),
estrogen can take role in the activation of the macrophage

immunophenotype. Estrogen influences macrophage metabolic

remodeling, enabling macrophages to cooperate with various

activation pathways in different microenvironments (28). When

estrogen levels are physiological, the immune system responses

more strongly to bacterial endotoxins. Contrarily when levels are

supraphysiological, the capacity of macrophages to bind

lipopolysaccharide (LPS) is enhanced. It potentially leads to a

more severe inflammatory response after bacterial infection (28).

This reflects the dual effects of estrogen on the immune system in

different microenvironments. Specifically, in autoimmune diseases

like systemic lupus erythematosus (SLE), estrogen stimulates the

expression of IL-6, which drives naive CD4 cells to differentiate into

Th17 cells and inhibits TGF b of IL-6, which drives naive (30). In

SLE, activation of IFN (a or g) signaling upregulates estrogen

receptor a (ERa) expression and stimulates target gene

expression. Elevated levels of estrogen and IFN-a engage positive

feedback loops that further intensify the inflammatory response in

SLE (30, 31).
4 The impact of obesity on
immune system

Obesity is a metabolic systemic disorder that affects metabolic

homeostasis and causes low-grade inflammatory responses (32). It

has been demonstrated that immune system deficiencies are related

to obesity. A large number of neutrophils, M1 macrophages, and T

cells could be observed in adipose tissues (33). Adipose tissue

macrophages (ATM) play a dominant role in participating in

systemic inflammatory responses. Increased secretion of

monocyte chemoattractant protein-1 (MCP-1/CCL2) and

leukotriene B4 (LTB4) by adipocytes promotes migration and

infiltration of macrophages. Macrophages and adipocytes that

accumulate abundantly in adipose tissue secrete adipose

inflammatory cytokines TNF-a, IL-6, and IL-1b, activating the

nuclear factor kappa-B (NF-kB) pathway to produce large

amounts of inflammatory factors. Leptin secreted by adipose

tissue is also one of the causes involved in immune disorders in

obese individuals (34). In addition, adipose tissue was enriched for

large numbers of CD4+ T cells as well as IFN-g secreted by them.

Macrophages and adipocytes overexpressing class II major

histocompatibility complex (MHC II) and costimulatory

molecules (e.g., CD80 and CD86) in adipose tissue act as antigen-

presenting cells (APCs) to promote CD4+ T cell proliferation and

Th1 differentiation and produce excessive IFN-g in adipose tissue

(35). Furthermore, leptin secreted by adipocytes can stimulate Th1

cells to secrete IFN-g in excess and induce MHC II overexpression

in adipocytes, further aggravating the inflammatory response (36).
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5 PCOS-related immune dysregulation
in the female reproductive system

The immune system orchestrates the HPO axis to participate in

normal female physiological processes, such as ovulation,

fertilization, pregnancy, and embryo implantation. Immune cells

like neutrophils, T cells, and macrophages are recruited to the

ovaries during fertilization and migration (37). It has been proved

that luteal production and regression are influenced by

macrophage, T cell, and granulocyte infiltration (38). Endometrial

immune environment is important to the maintenance of normal

pregnancy. On the one hand, Endometrial immune cells protect

against pathogen infiltration, on the other hand, the immune

system exerts immune tolerance functions and contributes to the

implantation of embryos and normal pregnancy (39). The

composition and function of the microorganisms in the genital

tract are also influenced by mucosal local immunity. Immune

regulation issues in PCOS-affected women further promote the

development of chronic inflammation (40). The mechanisms

involved in immune as well as metabolic disorders in PCOS in

the reproductive system will be investigated below.
5.1 PCOS-related immune
dysregulation in the ovary

Ovarian tissue is mainly composed of ovarian parenchyma and

ovarian stroma. The parenchyma is composed of ovarian follicles,

whereas the stroma is composed of immune cells, blood vessels,

nerves, lymphatic vessels, and ovarian-specific components (41).

Macrophages, dendritic cells, neutrophils, eosinophils, mast cells, B

cells, T cells, and natural killer (NK) cells are among the immune

cells found in the ovary. Ovarian immune cells have multiple

functions, including phagocytosis and antigen presentation,

remodeling of tissues by proteolytic enzymes, and secretion of

soluble signals, including cytokines, chemokines, and growth

factors (41, 42).

PCOS patients are in a state of chronic low-grade inflammation,

which may trigger a cascade of events that further promote the

content of ovarian androgens and affect ovulation. PCOS patients

present with an abnormal androgen response to gonadotropin-

releasing hormone (GnRH) stimulation leading to ovarian

androgen overproduction (43). Immune cells and cytokines

interact with androgens resulting in disruption of ovarian

immune balance in PCOS. For example, González’s results

showed that mononuclear cells (MNCs) entering the ovary may

cause a local inflammatory response that stimulates ovarian

androgen production in women with PCOS (44). Li et al. showed

that the IFN-g levels were decreased in PCOS rats induced by

dehydroepiandrosterone (DHEA). It is possible that DHEA

inhibited proliferation and promoted apoptosis of ovarian

granulosa cells and down-regulated IFN-g expression (43).
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Follicles represent the basic functional units of the ovary (7).

Follicular fluid (FF) which is composed of follicular cell secretion

and theca vascular exudate, which contains gonadotropins secreted

by the pituitary gland and steroid hormones secreted by the ovary,

changes with follicular development (45). In recent years, there have

been plenty of studies demonstrating that abnormal inflammation

can alter normal ovarian follicular dynamics, leading to impaired

oocyte quality, anovulation, and associated infertility (46). DCs are

specialized innate immune cells that sense danger signals, absorb

and process antigens, and transmit them to T lymphocytes (47).

Prior to impending ovulation, DC are important components of

bone marrow-derived leukocytes in the microenvironment of

mature oocytes and their abundance and maturity may be related

to ovarian function in women with PCOS (48). Evidence has shown

that the mean fluorescence intensity (MFI) of human leukocyte

antigen DR (HLA-DR) expression reflects a positive correlation

between DC maturity and ovarian response as measured by serum

E2 levels on the day of human chorionic gonadotropin (hCG)

administration. E2 production measured 48 h prior to oocyte

retrieval was associated with the presence of more mature DCs,

while this association was strengthened when analyzing patients

undergoing in vitro fertilization (IVF) due to male factor infertility

(i.e., normal ovarian function). This suggests that maturity of DC in

FF is positively correlated with gonadotropin response and may

favor an aseptic inflammatory process leading to ovulation in

follicles (48). In addition, the percentage of CD11c+ HLADR+

DCs was significantly lower in FF of PCOS patients than in

normal controls. It is also possible that reduced DCs may

influence the activation of Th17/Th1 cells, leading to failure of

dominant follicle selection and developmental processes (49).

Th cells play a role in adaptive immunity by producing

cytokines.Th1 mainly secrete IL-2 and IFN-g to promote cellular

immunity, and Th2 mainly secrete IL-4 to regulate humoral

immunity (50). Local coordination of T lymphocytes impacts

survival of granulosa cells and embryo quality in female ovaries.

Changes in T cell distribution can promote follicular survival either

by providing trophic growth factors or inhibiting adverse immune

activity, or conversely by transmitting cytotoxic signals to induce

oocyte or granulosa cell death and promote follicular regression

(51). Early studies have found that memory T lymphocytes in the

theca layer of PCOS ovaries are reduced compared to non-PCOS
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ovaries (52). Qin, et al. showed that Th1 cytokines (IFN-g, IL-2)
production in FF lymphocytes was significantly higher in PCOS

patients than in controls, and Th1 cytokines predominate in FF of

PCOS patients as analyzed by flow cytometry. On the contrary, the

production of Th2 cytokines (IL-4, IL-10) was not statistically

significant between the two groups, suggesting that the imbalance

of Th1/Th2 cell ratio may affect egg quality and ovulation (53). Li

et al. showed that the percentage of total CD4+ T cells and CD8+ T

cells was significantly decreased while the expression of PD-1 was

increased in FF of the infertile PCOS patients. The failure of

dominant follicle selection and development was caused by higher

PD-1 levels, which further supported the pathogenic function of

local T cell imbalance in PCOS (54).

Granulocyte colony-stimulating factor (G-CSF) is a cytokine

that stimulates neutrophil proliferation and differentiation, which is

mainly secreted by granulosa cells before ovulation. G-CSF

produced by granulosa cells may recruit leukocytes to the thecal

layer during ovulation to accelerate ovulation (55). G-CSF

concentrations in follicular fluid and serum were also significantly

higher in PCOS patients than in controls. The neutrophil count and

neutrophil/leukocyte ratio of PCOS patients were significantly

higher than those of controls, further supporting the theory of

chronic inflammation in PCOS (55, 56). Other studies have shown

that IL-18 levels in FF of PCOS patients are higher than those in

controls, especially the level of IL-18 in FF of overweight PCOS

patients is significantly higher than that in normal weight PCOS

patients (57). More studies showed increased levels of IL-1b, IL-6,
and TNF in FF of PCOS patients (17, 58, 59). The reason for this is

that inflammatory cytokines in follicular fluid alternately alter the

follicular microenvironment, activating the NF-kB inflammatory

pathway. The inflammatory cascade may affect granulosa cell

proliferation, inhibit oocyte maturation, and aggravate ovulatory

dysfunction more severely (58) (Table 1).
5.2 PCOS-related immune dysregulation in
the endometrium

The human endometrium is a steroid-dependent tissue, and

hormonal changes during the ovulatory cycle can affect the growth

and remodeling of endometrial cell components and tissues (60). In
TABLE 1 The immune cells and cytokines in follicular fluid of PCOS.

Immune cells Related immune cells or
cytokines

Function References

CD11c+HLA-DR+DCs Th17, Th1 Failure of dominant follicle selection and developmental processes (49)

Th1 IFN-g, IL-2 Affection on egg quality and ovulation caused by Th1/Th2 cell ratio imbalance (53)

Th2 IL-4, IL-10

CD4+ T cells, CD8+ T cells PD-1 Failure of dominant follicle selection and development (54)

Immune factor

G-CSF Neutrophil Chronic inflammation in PCOS (55, 56)

IL-18, IL-1b, IL-6, and TNF-a Activation of NF-kB inflammatory pathway (17, 57–59)
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addition to guarding against infections, female reproductive system

immune cells also enable embryo implantation and establish

immunological tolerance to sperm and embryo/fetus (61). As

steroid hormones (progestins, androgens, and estrogens) change

with the menstrual cycle, it has been demonstrated in an increasing

number of studies that immune cells and inflammatory factors have

an impact on the reproductive system’s ability to function. Steroid

hormones either directly or indirectly affect the expression of

chemokines IL- 8 and MCP-1) as well as the survival and

apoptosis of resident endometrial cells (stromal cells, epithelial

cells, and endothelial cells) and immune cells (39, 62). CD56+

uterine natural killer cells (uNK), CD68+ macrophages and CD8+

cytotoxic T lymphocytes are all common endometrial/decidual

immune cells (63), and They regulate endometrial function by

releasing cytokines, such as IL-15, IL-10 and IFN-g (64).
The endometrium of women with PCOS has continuous

estrogen exposure during both the proliferative and secretory

phases, while diminished progesterone action during the secretory

phase is likely to impair endometrial receptivity and lead to long-

term endometrial hyperplasia, bleeding, and cancer (65). In

addition to sex hormones, metabolic disorders and chronic

inflammatory conditions caused by obesity and hyperinsulinemia

promote oxidative stress imbalance in PCOS endometrium and

affect progesterone receptor activity in PCOS endometrium.

Women with PCOS had a poorer reaction to progesterone than

did women without the condition, and they had thicker surface

epithelium and more stromal cells than women without PCOS, but

considerably fewer blood vessels overall (66). uNK cells are one of

the most important immune cells of human uterine leukocytes. The

main endometrial NK cells are CD16− NK cells, accounting for 70-

80% of secretory endometrial lymphocytes (67). The percentage

change of uNK with hormones during the menstrual cycle may play

a key role in implantation and maintenance of pregnancy, especially

the number of decidualized endometrium is further increased in the

first trimester (67, 68). Female sex hormones appear to regulate

uNK recruitment indirectly by modulating chemokine and

interleukin expression. It has been shown that the percentage of

CD56+/CD16− NK cells and CD56bright/CD16− NK cells decreased

in the late secretory endometrium of PCOS women, while the

proportion of CD3+ lymphocytes significantly increased.

Meanwhile, CD56+ and CD56bright NK cells were reduced, the

expression of IL-15, IL-18, and CXCL10 was also significantly

lower in PCOS than that of the control group, which may be

related to chronic oligo-ovulation or hyperandrogenism in PCOS

patients (68). CD68+ macrophages are seen in the endometrium

throughout the menstrual cycle, particularly in the late luteal phase

(69). Endometrial macrophages may be involved in the onset of

menses, repair and remodeling of the functional layer of the

endometrium, and play an important role in the preparation of a

receptive endometrium during the “window of implantation” and

endometrial decidualization (61). Macrophages within the

endometrium have been identified as an important source of

proinflammatory and chemotactic factors that specifically express

role-specific markers at different stages of the menstrual cycle (70).

It has been shown that endometrial CD68+ macrophages and
Frontiers in Immunology 05
CD163+ M2 macrophages are significantly increased in PCOS

patients, which may be related to insulin resistance and the

release of inflammatory factors in PCOS (71). One of the main

endocrine features of PCOS is hyperandrogenism, while androgens

can induce TNF-a production by macrophages. Recent studies have

observed that the proliferative endometrial TNF-a level is

significantly increased in PCOS patients (72, 73). Therefore, the

increased number of macrophages in the endometrium of PCOS

patients may be responsible for the increased TNF-a (72). DCs are

mainly located in the functional and basal layers of the

endometrium and are broadly classified according to their

developmental pathways: plasmacytoid DCs (pDCs) and Myeloid

DCs. Myeloid DCs have a high correlation with the endometrium

and can be divided into immature DCs (iDCs) and mDCs according

to maturation status (74). In response to foreign antigens or

inflammatory signals, mDCs present antigens together with MHC

molecules to T cells, effectively initiating adaptive immunity (71,

75). Studies have shown that the increased percentage of

endometrial CD1a+ iDCs, CD83+ mDCs in normal weight PCOS

patients, and confirmed that the dysfunction of DCs may be related

to the pathogenesis of PCOS. Granulocyte-macrophage colony-

stimulating factor (GM-CSF) can promote DC and endometrial

macrophage maturation (71). Studies have found that GM-CSF

down-regulation in endometrial stromal fibroblasts (eSF) of women

with PCOS, which may be associated with poor endometrial

receptivity and DC cell migration (76). Endometrial T cells

include CD4 Th1, Th2 CD8, Treg, and Th17 cells, mainly located

in the decidual stroma and glandular epithelium (77). Decidual

tissues had the highest concentration of CD8+ T lymphocytes.

Endometrial CD8+ T cells are elevated in PCOS patients,

indicating that the immune environment of the endometrium is

altered and T cel ls may be involved in endometrial

immunoregulatory mechanisms in PCOS (71). Previous studies

have also shown that high levels of MCP-1 increased the terminal

differentiation of CD4+ T cells into Th2 cells, while the basal level of

MCP-1 was also increased in PCOS patients. It indicates that T cells

may play a role in the pathogenesis of the condition (76).

Cytokines and chemokines in the endometrium also affect the

endometrial immune microenvironment in PCOS patients. At

present, IL-1 and vascular endothelial growth factor (VEGF) are

closely related to endometrial receptivity. The expression levels of

IL-1 and VEGF in endometrium of PCOS rats were significantly

lower than those of the control group, suggesting that the

endometrial receptivity of PCOS rats was significantly lower than

that of the normal control group (78). It has been found that the key

elements of TLR -mediated NF-kB signaling pathway were

dysregulated in endometrial tissue of PCOS women, and the

expression of TLR4 protein was increased in the endometrium.

IRF-7 and NF-kB signaling may be activated and TRL4 positively

regulated by hyperandrogenism, which may also boost the

expression of cytokines like IFN-a and TNF-a in the

endometrium (79). In addition, the inflammatory environment in

the endometrium of women with PCOS is also thought to be

associated with the overexpression of other cytokines, such as IL-

6, IL-8, IL-18, and CRP (76, 80, 81) (Figure 1).
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5.3 PCOS-related immune dysregulation in
the vaginal mucosa

Healthy female vagina is colonized by multiple normal

microbial and fungal groups, which are divided into beneficial

microorganisms and opportunistic pathogens inhabiting the

vaginal environment, with lactobacilli as the dominant genus (82,

83). The effects of estrogen and progesterone on vaginal epithelial

cells, PH, sexual activity, menstruation, and antibiotic usage are the

key factors affecting the vaginal microbiome (83). The body benefits

from the homeostasis of vaginal bacteria since they are a crucial part

of the microenvironment of the reproductive tract (40). Increasing

evidence suggests that the composition of a woman‘s vaginal

microbiota can significantly impact her sexual and reproductive

health, including her risk of adverse delivery outcomes, including

miscarriage and premature delivery, as well as infection with HIV

and other sexually transmitted pathogens (84–86). The stratified

squamous epithelial cells that cover the mucus layer are part of the

vaginal ecosystem, along with vaginal bacteria, neutrophils,

macrophages, classical dendritic cells, Langerhans cells, NK cells,

T and B lymphocytes, and other innate and adaptive immune cells

(86). The vagina contains many immune-related cells and receptors

that detect pathogenic organisms primarily through microbial motif

pattern recognition of pattern recognition receptors (PRRs), such as

TLRs or dectin-1 receptors (40). Additionally, vaginal defense is

aided by mannose-binding lectin (MBL), vaginal antimicrobial

peptide (AMP), immunoglobulin A, and immunoglobulin G (IgA,

IgG) (40).

The impact of PCOS on women’s vaginal health is mainly

reflected in the disruption of homeostasis of the vaginal

microenvironment. Hong’s study showed that the vaginal

microbiome is associated with clinical manifestations of PCOS,

such as acanthosis nigricans, intermenstrual bleeding, etc. When

compared to healthy women, PCOS patients with high testosterone

levels had a higher relative abundance of L. crispatus and a lower

relative abundance of L. iners. On the other hand, their relative

abundance of Mycoplasma and Prevotella was significantly higher
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than that of controls (87). Another study also demonstrated that L.

crispatus and L. iners populations were more sensitive to

testosterone levels in women with PCOS (88). Tu showed that

there was a significant decrease in lactobacilli in lower genital tract

(LGT) organisms in PCOS patients, while Gardnerella vaginalis was

significantly enriched in both the vagina and cervix of PCOS

patients, in addition to several potential pathogens including

Gardnerella, Prevotella, Veillonellaceae, Streptococcus, and

Dialister species (89). Gardnerella, Prevotella, and other species

produce sialidase, IgA protease, and short-chain fatty acids, which

lead to local IgA inactivation and, respectively, improve their

adherence to epithelial cells, evade antibody-mediated inhibition,

and modulate the immune environment (90, 91). Prevotella also

contributes to activation of Th17 immune responses via APCs,

promotes increases in cytokines such as IL-23A, IL-6, IL-1A, and

IL-1B that promote Th17 immune responses, and recruits and

activates Th cells in inflamed vaginal mucosa (92). Bacterial

products of certain anaerobes have been shown to induce the

production of short-chain fatty acids from pro-inflammatory

cytokines by TLR stimulation, dendritic cell activation and

maturation, and by producing specifically short immune cell

migration, apoptosis, and phagocytosis (93). This suggests that

disturbances in vaginal microbial homeostasis in PCOS may be

associated with impaired mucosal immunity.
6 PCOS-related immune
dysregulation in the
cardiovascular system

Increasing evidence suggests that women with PCOS are at

increased risk for coronary artery disease (CAD) and cardiovascular

disease (CVD) (15, 94, 95). Insulin resistance is one of the most

important pathogenesis of PCOS and an important cause affecting

cardiometabolism in women with PCOS (96). IR increases a

woman’s risk of CVD by being linked to a number of
FIGURE 1

Immunoregulation of endometrium in PCOS women. PCOS women have a imbalanced immune environment in the endometrium. Both the
proliferation and differentiation of T cells in PCOS women’s endometrium as well as the proliferation of innate immune cells such uNK cells and
dendritic cells are influenced. At the same time, cytokines secreted by immune cells are dysregulated. Further evidence of the inflammatory milieu in
PCOS women’s endometrium came from the upregulation of inflammatory molecules like TNF, CRP, and IL-6.
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cardiometabolic disorders, including dyslipidemia, hypertension,

diabetes mellitus, and metabolic syndrome (97). Oxidative stress

and chronic inflammation have been implicated in the pathogenesis

of IR in PCOS, including increased reactive oxygen species (ROS)

production by peripheral blood leukocytes, activation of leukocyte-

endothelial interactions, and increased levels of the pro-

inflammatory transcription NF-kb, as well as pro-inflammatory

cytokines and C-reactive protein (98). The low-grade

chronic inflammatory state of PCOS is likely to provide a

pathophysiological basis for the development of CVD, particularly

the development of atherosclerosis. Microparticles (MPs) are

subcellular vesicles that can be released practically by any cell and

range in size from 100 to 1000 nm. They are a major indicator for

identifying cardiometabolic risk in PCOS (99). MPs derived from

leukocytes (LMPs) may originate from neutrophils, monocytes/

macrophages, and lymphocytes, alter endothelial function,

participate in coagulation and platelet activation, and promote the

recruitment of inflammatory cells into the vessel wall, contributing

to atherosclerotic lesion progression (100). A study showed higher

levels of LMPs in PCOS patients, suggesting that MP may be closely

associated with the development of atherosclerosis in PCOS

patients (100). CRP plays a role in and triggers atherothrombotic

processes as one of the recognized markers that can forecast

cardiovascular events. In CAD patients with low-grade or

persistent inflammation, CRP can be used in combination with

the biomarkers MCP-1 and galectin 3 to predict recurrent events

(101). MCP-1 can recruit monocytes to the vessel wall via its C-C

chemokine receptor type 2 (CCR-2) on monocytes as a chemokine

(102). Hu et al. showed that serum concentrations of CRP and

MCP-1 were significantly higher in PCOS patients compared with

controls. The possible mechanism is that elevated CRP levels

promote monocyte accumulation in the atherogenic arterial wall

by increasing monocyte chemotactic activity in response to MCP-1

(103). A meta-analysis showed that women with PCOS had

significantly higher levels of CRP, Hcy, PAI-1 antigen, PAI-1

activity, VEGF, ADMA, AGEs, and Lp (a). Although it is unclear

how IL-6 and TNF-a are related to CVD events in PCOS, these

inflammatory factors are probably significant indicators for

predicting CVD in PCOS (104, 81).
7 PCOS-related immune dysregulation
in the digestive system

7.1 Intestine

The gut microbiota (GM) is a complex community with

physiological roles such as constituting the gut barrier, stimulating

the immune system, and anabolism (105). The impact of PCOS on

the gastrointestinal tract is mainly reflected in the disruption of gut

microbial diversity and homeostasis, while the gut microbiota affects

the development of the immune system and regulates immune

mediators, which in turn affect the intestinal barrier (106).

According to growing evidence showing the GM in PCOS

patients differs from those of healthy women, suggesting that
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microbial imbalance or “dysbiosis” in the gut may contribute to

the pathology of PCOS (107–109). Qi et al. showed that bile acids

are involved in regulating IL-22 production to affect ovarian

function in PCOS. IL-22 mRNA, tauroursodeoxycholic acid

(TUDCA) levels, and GATA3 levels were significantly decreased

in mice transplanted with stool from individuals with PCOS. In

addition, serum IL-22 levels in PCOS-like mouse models also

decreased. Similar to the mice research, PCOS patients had

significantly lower serum and follicular fluid levels of IL-22 than

in controls. Because mice preferentially conjugate bile acids with

taurine, humans predominantly use glycine. Intestinal and serum

IL-22 levels and intestinal GATA 3 mRNA levels increased in

PCOS-like mouse models after glycodeoxycholic acid (GDCA)

administration. Secretion of IL-22 protein and Il22 mRNA levels

were significantly increased in group 3 innate lymphoid cells

(ILC3s) cultured in vitro in the presence of TUDCA or GDCA.

The reason for this is that bile acids induce IL-22 secretion by

intestinal ILC3s via the GATA 3 signaling pathway, which in turn

improves the PCOS phenotype (110). Lindheim et al. showed a

significantly lower abundance of Tenericutes in the gut of PCOS

patients compared to healthy women and a negative correlation

with total blood lymphocyte counts (107). More studies have shown

that LPS produced by intestinal flora has endotoxin effect, and LPS-

binding protein can bind to TRL4 on the surface of innate immune

cells and mediate PCOS-related inflammatory response, further

aggravating IR symptoms in PCOS patients (111, 112).
7.2 Liver

Nonalcoholic fatty liver disease (NAFLD) encompasses a

spectrum of diseases ranging from simple steatosis without

inflammation or fibrosis to nonalcoholic steatohepatitis

(NASH), to fibrosis, cirrhosis, and finally hepatocellular

carcinoma (113, 114). The etiology of PCOS and NAFLD share

the same features: they are all strongly associated with IR,

hyperandrogenism, and obesity (113, 115, 116). In recent years,

increasing evidence suggests an association between NAFLD and

PCOS, but there are few studies on immunomodulation in

NAFLD in PCOS women. Increased plasma levels of IL-6 and

TNF-a have now been demonstrated in NAFLD and NASH

patients, and increased production of TNF-a and IL-6 by

peripheral blood mononuclear cells from NASH patients (117).

Mohammadi et al. showed that the levels of IL-6 and CRP were

significantly increased in PCOS rats, while the levels of IL-6 and

CRP were significantly decreased in curcumin-treated PCOS rats

(118). Increases in IL-6 and TNF-a are likely related to depletion

of DCs located in the central and periportal veins aggravating

aseptic inflammation in the liver and enhancing TLR4 and TLR9

activity and expression in innate effector cells (119, 120). Chen

et al. showed that nine differentially expressed genes (DEGs),

TREM1, S100A9, FPR1, NCF2, FCER1G, CCR1, S100A12, MMP9,

and IL1RN, were significantly upregulated in PCOS and NAFLD,

whereas these DEGs have been demonstrated to be associated with

immune and inflammatory responses (121).
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8 PCOS-related immune
dysregulation in the endocrine system

PCOS is one of the common reproductive endocrine system

diseases in women. In this section, we only discuss dysregulated

immune response in other endocrine system rather than

reproductive system.
8.1 Thyroid

Recent research has demonstrated that autoimmunity,

particularly autoimmune thyroid disease (AITD) and subclinical

hypothyroidism (SCH), may be strongly linked to PCOS etiology.

AITD, the most widespread autoimmune antibody disease, is more

prevalent in women with PCOS than in non-PCOS women and is

the most frequent cause of hypothyroidism or subclinical

hypothyroidism in the adult population (122–125). AITDs

include Hashimoto‘s thyroiditis (HT) and Grave’ s disease (GD).

The pathogenesis of GD and HT may be related to triggering of T

cell- and B cell-mediated immune responses, which may eventually

develop generalized hypothyroidism (125, 126). More women may

have only higher antibody levels without significant thyroid

dysfunction, leading to SCH (126). Several studies have

demonstrated that autoimmune antibodies such as anti-TPO,

anti-TG, anti-TSH are significantly elevated in women with PCOS

(127, 128). The cause of AITD in women with PCOS is likely to be

associated with hyperandrogenism. Androgen levels rise in vivo as a

result of increased GnRH and LH pulse frequency in women with

PCOS (126). Excessive androgens can enhance T suppressor cell

activity or promote Th1 responses, and Th1-mediated

autoimmunity leads to thyroid cytolysis and hypothyroidism,

leading to HT (125). Aromatase converts androgens to estrogens,

which causes compensatory increases in estrogen levels.

Additionally, binding to estrogen receptors appears to have

proliferative effects on B lymphocytes, T lymphocytes, and

macrophages (126). Women with PCOS tend to have inadequate

progesterone secretion, estrogen increases IL-6 expression in T cells,

and the absence of progesterone suppression may lead to

overstimulation of the immune system, making these patients

more susceptible to autoimmune diseases (128).
8.2 Adrenal gland

The ovary is the main source of androgens in women with PCOS.

Indeed, it has long been shown that adrenal androgen secretion is also

increased in PCOS (129). DHEA and dehydroepiandrosterone sulfate

(DHEA-S) are the two primary adrenal androgens in PCOS women.

Acne vulgaris, as one of the common dermatologic manifestations

of PCOS, has also been shown to be associated with higher

concentrations of dehydroepiandrosterone sulfate (130).

Peripheral conversion to testosterone nevertheless contributes to

hyperandrogenism despite minimal adrenal androgen activity (131).

It is reported that adrenal androgen (AA) has been reported in 20% to
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30% of PCOS patients (132). A meta-analysis showed that DHEA

levels were significantly higher in women with PCOS compared to

healthy controls (133). Corticosteroid-steroidogenesis may therefore

be an independent factor for hyperandrogenism in some women with

PCOS and may be a genetic, stable trait (134). DHEA as well as

DHEA-S have been demonstrated to have immunomodulatory

functions in human cytological experiments, mainly affecting

immune cell numbers by modulating cytokine levels (135). DHEA

is involved in ovarian immune regulation and affects the balance of

Th1 and Th2 immune responses in the ovary. It enhances Th1

responses while weakening Th2 responses by reducing the release of

IL-2 and IL-10 (i.e., Th2-related cytokines) and the expression of the

activation marker CD69 on CD4+ T cells, resulting in a new balance of

Th1/Th2 immune responses (136). This shows that adrenal androgens

may be associated with the immunological response in PCOS, but

further research is needed to determine the precise mechanism.

In addition, according to a study, there is a unique clinical

phenotype of PCOS. This phenotype is characterized by age-

specific hyperandrogenism, but the patient‘s hyperandrogenism

initially decreases to the normal range by approximately 35 years of

age. The hyper-/hypoandrogenic PCOS phenotype (HH-PCOS) is

known for having comparatively low androgen levels compared to

the traditional PCOS phenotype (137). Gleicher et al. found that

women with the HH-PCOS phenotype showed an activated immune

system, particularly a strong association with anti-thyroid

autoimmunity in the form of anti-TPO antibodies (138). Whereas

adrenal autoimmunity is highly associated with other autoimmune

abnormalities, antiadrenal and antithyroid autoimmunity is

frequently observed in the same patient (123). Insufficient cortisol

(C) production in the zona fasciculata can be detected in HH-PCOS.

It is tempting to speculate that the putative autoimmune attack on the

adrenal gland is not limited to decreased androgen production in the

zona reticularis, but also affects the adjacent zona fasciculata (139).

This suggests that HH-PCOS is likely an immune/inflammatory

disease and is associated with autoimmunity.
9 PCOS-related immune
dysregulation in the other system

On account of the global outbreak of novel coronavirus

pneumonia, COVID-19 has been increasingly investigated in

PCOS. PCOS patients may have a higher susceptibility to

COVID-19, which is also increased by the presence of

comorbidities such as NAFLD, obesity, alterations in the gut

microbiome (140, 141). Hyperandrogenism in PCOS may be one

of the main causes of high susceptibility to COVID-19. Androgens

modulate immune responses, decrease NK cell activity, reduce

TRL4 expression on macrophage surfaces, and also suppress pro-

inflammatory responses by reducing extracellular signal-regulated

kinase and leukotriene formation in neutrophils (142). In PCOS

mice, elevated androgens upregulated SARS-CoV-2 receptor

angiotensin converting enzyme 2 (ACE2), which acts

synergistically with host transmembrane protease serine 2

(TMPRSS2) to increase SARS-CoV-2 viral entry into tissues (141,
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143). Vitamin D can regulate the immune function of the body and

play an important role in inducing macrophage differentiation,

inhibiting the maturation of dendritic cells and blocking the

adaptive response to antigen presentation, and enhancing the

development of Treg cells (144). Furthermore, vitamin D can also

down-regulate the synthesis of pro-inflammatory factors (IL-1, IL-

6, IL-12, TNF-a and IL-17) and increase the expression of anti-

inflammatory factors (IL-1). Macrophage activation correlates well

with the severity of COVID-19 (145). Vitamin D has been linked to

COVID-19 in a growing number of studies (146–148), although

further research is needed to determine its significance for PCOS

patients. One study showed that vitamin D was significantly lower

in women with PCOS and was negatively correlated with BMI.

Women with PCOS had higher levels of the pro-inflammatory

macrophage-derived biomarkers CXCL5, CD163, and matrix

metalloproteinase 9 (MMP9), but CD200 expression was lower.

Pro-inflammatory expression of these macrophage-derived proteins

was linked to obesity. CD80 was identified as one of the specific

markers of activated Treg in circulation (149), whereas IL-12

induced Th1 cell differentiation and stimulated IFN-g synthesis

(150). Vitamin D deficiency has been associated with decreased

CD80, IFN-g, and IL-12 in PCOS in women with PCOS (151).

These findings imply that one of the potential high-risk variables

contributing to PCOS patients’ susceptibility to COVID-19

infection may be vitamin D deficiency.

Obstructive sleep apnea (OSA) is also an obesity-related disorder

and is generally more prevalent in men than in women (152). OSA is

characterized by repeated partial or complete airway collapse that may

lead to intermittent hypoxia. Intermittent hypoxia further contributes

to oxidative imbalance, producing reactive oxygen species, numerous

cytokines such as IL-2, IL-4, IL-6, lipid peroxidation, and free DNA

(153). There has long been much evidence that women with PCOS

have a higher prevalence of OSA than the normal population (154–

156). Although androgen excess may influence the prevalence and

severity of OSA in both men and women, it does not necessarily cause

OSA in women with PCOS because androgen levels in this population

are still lower than those in men (157, 158). Nevertheless, hormones

may play a protective role in the development of OSA. For instance,

IL-6 secretion is elevated in sleep apnea, yet estrogen can inhibit IL-6

secretion (157). The true predisposing factors for OSA in women with

PCOS may be IR and obesity (152). Obesity/insulin-resistance may be

the main cause of sleep apnea, which in turn may accelerate these

metabolic abnormalities because of the gradual rise of cytokines, such

as IL-6 and TNF-a (159).
10 Discussion

PCOS has a range of effect on organ system in addition to the

female reproductive system. Immune system function is impacted

by hormonal disorders, and PCOS patients suffer low-grade chronic

inflammation due to abnormal cytokine secretion, immune cell

dysfunction, and hormonal disorders. At the same time, the etiology

of chronic inflammation in PCOS is also influenced by obesity and

metabolic disorders (particularly insulin resistance). In a vicious

circle involving hormones, obesity, and IR, inflammatory cells and
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inflammatory markers accumulate up in PCOS women and disrupt

the immune microenvironment of PCOS. In addition to having an

impact on the reproductive system of PCOS patients, where it

affects ovulation, endometrial receptivity, and folliculogenesis,

abnormal immune function also contributes to the dysfunction of

other systems in PCOS women. Patients with PCOS exhibit

microbial dysbiosis, CVD, NAFLD, and OSA, all of which are

closely associated with immunological regulation. Compared to

healthy women, women with PCOS are even more susceptible to

inflammatory illnesses and COVID-19.

One of the PCOS diagnosis criteria and one of its most prevalent

symptoms is hyperandrogenism. Sexual ly dimorphic

immunoreactivity typically uses androgens as anti-inflammatory

hormones and estrogens as pro-inflammatory hormones.

Furthermore, considering women experience menstruation cycles,

changes in sex hormones have an impact on the growth of female

follicles and ovulation. However, androgens are not just

straightforward anti-inflammatory hormone in PCOS. In PCOS

patients with hyperandrogenism, DEGs are highly enriched in

immune and inflammatory responses (160). Nevertheless, there is

controversy over how androgens affect fat tissue in PCOS. There is a

stronger correlation between visceral and abdominal obesity in

women with PCOS, as well as a significantly higher incidence of

NAFLD. Obesity is a chronic inflammatory disorder in which

necrotic adipocytes attract inflammatory cells and release

inflammatory cytokines like TNF-a; PCOS is also associated with

higher levels of M1 macrophages and inflammatory cytokines like

TNF-a and IL-6. More significantly, obesity by itself is not a PCOS

diagnostic indicator. Moreover, there is evidence that an excess of

androgen is not responsible for chronic inflammation in PCOS but

instead has anti-inflammatory benefits when obesity is present (161).
FIGURE 2

The dysfunction of organ systems related to immune dysregulation
in PCOS women. This figure summarizes immune dysfunction in
PCOS women in various systems. Not only the female reproductive
system, the impact of PCOS is even reflected in the cardiovascular,
intestinal, thyroid and other organs.
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From the viewpoint of organs and tissues from the systemic

system, we outline the pathogenic function of immune imbalance in

PCOS women in this review. It is more convincing to demonstrate

that PCOS is a systemic metabolic syndrome as well as an illness of

the reproductive system. The review does, however, have some

constraints. The manuscript is solely based on the author’s

collection of literature, and the opinion that was eliminated has

some subjectivity in the author’s opinion. The significance of

immune cell and immune factor imbalance in PCOS has been

summarized in earlier research. This manuscript begins with

immune cells and immune factors as well. However, it

concentrates more on the relationship with systemic organs and

examines how obesity, hormones, and metabolic disorders interact

with immune cells and immune factors in PCOS inflammation.

In addition to helping to evaluate chronic low-grade

inflammation, understanding the immune cell phenotype and

cytokine expression in PCOS patients can help predict the

development of other diseases. Consequently, figuring out the

pathogenic function of immune regulation in PCOS is crucial for

both treatment and preventing further complications in the

future (Figure 2).
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