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Crosstalk between colorectal
cancer cells and cancer-
associated fibroblasts in the
tumor microenvironment
mediated by exosomal
noncoding RNAs

Shichen Sun, Yanyu Zhang, Yubing Li and Linlin Wei*

Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical
University, Shenyang, Liaoning, China
Colorectal cancer (CRC) is a common malignant tumor of the digestive system,

and its morbidity rates are increasing worldwide. Cancer-associated fibroblasts

(CAFs), as part of the tumor microenvironment (TME), are not only closely linked

to normal fibroblasts, but also can secrete a variety of substances (including

exosomes) to participate in the regulation of the TME. Exosomes can play a key

role in intercellular communication by delivering intracellular signaling

substances (e.g., proteins, nucleic acids, non-coding RNAs), and an increasing

number of studies have shown that non-coding RNAs of exosomal origin from

CAFs are not only closely associated with the formation of the CRC

microenvironment, but also increase the ability of CRC to grow in metastasis,

mediate tumor immunosuppression, and are involved in the mechanism of drug

resistance in CRC patients receiving. It is also involved in the mechanism of drug

resistance after radiotherapy in CRC patients. In this paper, we review the current

status and progress of research on CAFs-derived exosomal non-coding RNAs

in CRC.
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Abbreviations: Alix, Apoptosis-linked gene-2 interacting protein X; CAC, Colitis-associated cancer; CAFs,
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metalloproteinase inducer; ESCRT, Endosomal sorting complex required for transports; HSP70, HSP90,

heat shock proteins; ILVs, intraluminal vesicles; MVBs, multivesicular bodies; MTX, methotrexate; NFs,

normal colorectal fibroblasts; Oxa, oxaliplatin; TGF-b, transforming growth factor b; TME, Tumor

microenvironment; TSG101, tumor susceptibility gene 101; Vps4, vacuolar protein sorting 4.
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1 Introduction

Colorectal cancer (CRC), a malignant tumor of the

gastrointestinal tract, which derives from the epithelial cells of the

colon or rectum, with the highest incidence and tumor-related

mortality (1). The occurrence and progression of CRC are

extremely connected with the patient’s age, gender, lifestyle,

dietary habits, and genetic factors (2, 3). CRC is insidious and

there are often no specific symptoms and signs in the early stages, A

large proportion of patients are already at an advanced stage by the

time they are diagnosed, and even have multiple metastases

throughout the body, losing the opportunity for surgical

treatment (4, 5). Moreover, about 30-40% of surgically resected

CRC patients will develop recurrence and metastasis within 5 years

(4). Despite the recent advances in treatment methods such as

surgical treatment, chemotherapeutic agents, vascular targeting

therapy, translational therapy, and local therapy (5–7) the overall

5-year OS of CRC patients is about 60%, and the overall prognosis is

still poor (8, 9). As a result, elucidating the mechanisms of CRC

progression and metastasis is virtually significant. Wherewith new

strategies, the efficacy of systemic therapy can be improved.

Exosomes are small membranous vesicles with a diameter of 50-

150 nm and contain a variety of biologically active molecules, such

as proteins, nucleic acids, and lipids (10–14). Scientists first detected

exosomes in mammalian mature erythrocytes secreted by

intracellular multivesicular bodies fused to the cell membrane (15,

16). With further research, exosomes were discovered to be

involved in cell-cell information transfer (17). Additionally,

exosomes can regulate the biological functions of recipient cells

by transmitting the genetic information they carry to the recipient

cells (18). Associated with local or distant cells, tumor cells interact

with the local or distant microenvironment, contributing to

secondary malignant growth. Alterations in the tumor

microenvironment play a vital role in the progression of

malignant tumors, among which imbalance in the composition of

immune cells, changes in the phenotype of fibroblasts and

alterations in endothelial cells are characteristic of malignant

lesions (19–21). Recently, there was an upward trend in the

amount of studies, which have shown that never can people

ignore the significance of exosomes to tumorigenesis, progression,

associated immune responses, chemotherapy resistance and

metastasis (22, 23). And exosome-derived non-coding RNAs

also play an important role in CRC. Lnc-PCAT1 from CRC

exosomes can promote epithelial to mesenchymal transition

(EMT) and liver metastasis in CRC by regulating the activity of

the Netrin-1-CD146 complex in circulating tumor cells (CTCs) and

thus provide a new molecular target for the treatment of liver

metastasis in CRC (24). Circ_00016174 in Doxorubicin (DOX)-

resistant CRC tissues and cells Levels are upregulated in

c irc_0006174-enr iched exosomes that enhance DOX

chemoresistance in CRC by regulating the miR-1205/cyclin D2

(CCND2) axis (25). The CRC cell-derived exosome KCNQ1OT1

regulates the miR-30a-5p/biquitin-specific peptidase 22 (USP22)

signaling axis and thus programmed death 1 (PD-1) ubiquitination

and promotes immune escape from CRC (26).
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As crucial elements constituting the tumor microenvironment,

cancer-associated fibroblasts (CAFs) are not only bound up with

normal fibroblasts, but also can secrete a variety of substances

involved in the regulation of the tumor microenvironment (TME)

(27). There are several ways that CAFs have effects on tumor

development. CAFs alter the extracellular matrix by synthesizing

and degrading components and reshape its structure by cross-

linking enzymes and proteases to establish a safety obstacle to

tumors. CAFs also directly boost tumor cell proliferation and

survival by secreting soluble mediators and promote angiogenesis

(28, 29). CAFs also exert negative immunomodulatory impacts and

allow tumors to evade immune surveillance (30). Recent studies

illustrate that CAFs can secrete exosomes to enhance the metastatic

and invasive ability of cancer cells by creating a microenvironment

suitable for tumor growth (31, 32). In addition, the exosomes

secreted by CAFs are known to be more potent than those

secreted by tumors, mediating tumor immunosuppression, thus

contributing to tumor development to a certain extent (33, 34)

(Figure 1). In this paper, we discussed the origin of CAFs-related

exosomes and reviewed the current status and progress of

investigation into CAFs-derived related exosomal non-coding

RNAs in CRC.
2 Overview of CAFs

TME is composed of tumor cells together with various

mesenchymal cells and extracellular matrix (ECM). TME is a

complex landscape, which is not only closely related to the

growth and development of CRC, but also affects the treatment

and prognosis of cancer patients. The components of the TME in

CRC include tumor cells, blood vessels, the extracellular matrix,

fibroblasts, lymphocytes, bone marrow-derived suppressor cells and

signaling molecules. A series of cytokines, chemokines,

growth factors, exosomes and other signal molecules interact to

form a network in TME, enabling tumor to withstand and

survive the increased pressure, leading to cancer metastasis,

immunosuppression, abnormal angiogenesis and drug resistance

(35). Tumor mesenchymal cells are comprised of fibroblasts,

vascular endothelial cells, inflammatory/immune cells,

mesenchymal stem cells, adipocytes (36, 37) (Figure 2). CAFs are

fibroblasts that are activated in the TME. Among all mesenchymal

cells that constitute TME, CAFs are the most abundant tumor

mesenchymal cells. Despite the widespread presence of CAFs in the

tumor mesenchyme, their role in tumor development has been

under-recognized. In recent years, abundant evidence has indicated

that CAFs produce tumor-supporting ECM, facilitate the growth,

expansion and spread of pre-tumor epithelial cells, create a

comfortable environment for emerging malignant cells, and are

vital drivers of tumor progression in many organs (38, 39). In TME,

CAF can regulate the biological behavior of tumor cells and other

mesenchymal cells through cell-to-cell contacts; and can effect

tumorigenesis and progression via release of large amounts of

regulatory factors to synthesize and remodel the ECM (40, 41). In

CRC, previous studies have showed that CAFs are the main cellular
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constituents of stroma associated with primary and metastatic CRC

(42, 43). Compared with normal mucosa, the number of

myofibroblasts in CRC was significantly increased. Studies have

shown that fibroblasts in the lamina propria of colon polyps a-
SMA − becomes a- SMA+, which indicates that interstitial

fibroblasts of lamina propria show myofibroblast differentiation

(44). CAF can also undergo reprogramming of lipid metabolism

and secrete lipid metabolites, which can be absorbed by CRC cells

and promote migration. This is partly caused by the overexpression

of vimentin and the down-regulation of E-cadherin (45). Although

CRC contains a subset of high-level stromal cells, the CAF in CRC is

still relatively insufficient. Therefore, more understanding on the

interaction between CAF and tumor cells to summarize the current

knowledge about the role of CAF in cancer.
2.1 Sources of CAFs

The tumor microenvironment consisting of mesenchymal cells

and extracellular matrix plays a significant role in the development

of tumor formation (46). The distinctive features of the

mesenchymal microenvironment of tumor cells are altered ECM

components, increased microvascular density and inflammatory

cell numbers, and the presence of activated fibroblasts. These

activated fibroblasts are called myofibroblasts or CAFs. Studies

have shown that CAFs have several main sources (47). They are

formed by resident fibroblasts induced to differentiate in response

to various cytokines secreted by cancer cells, such as platelet-
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derived factor, transforming growth factor b (TGF-b) (48, 49).

Myofibroblasts have obvious similarities to vascular smooth muscle

cells and perivascular cells, which in turn may be formed from

vascular beds (50). Recent researches have shown that epithelial

tumor cells themselves are capable of transforming into

mesenchymal cells via the EMT pathway (51). Some of the bone

marrow mesenchymal stem cells (MSCs) have been shown to be

able to transform into mesenchymal cells through the EMT

pathway. Some bone marrow MSCs can also differentiate to form

CAFs (52). In conclusion, most CAFs originate from peripheral

mesenchymal fibroblasts, a small fraction from vascular smooth

muscle cells, and a much smaller fraction from perivascular

cells (53).
2.2 Heterogeneity of CAFs

Studies have shown that cell phenotypic differences are the

main manifestation of the heterogeneity of CAFs, and the

phenotypic transition of CAFs has a temporal as well as a spatial

character which refers to the different phenotypes of fibroblasts in

different parts of the tissue and the differentiated phenotypes of the

same fibroblast in various parts of the tissue (50, 51). With the

development of related technologies, it has become possible to

quantitatively analyze cellular transcriptome differences at the

single cell level. It has been shown that CAFs can be classified

into mCAF subpopulation, dCAF subpopulation, vCAF

subpopulation, and cCAF subpopulation based on the genes of
FIGURE 1

CAFs modulate the immunosuppressive microenvironment. CAFs can mediate the immunosuppressive microenvironment by promoting
immunosuppression.CAFs can induce differentiation of neoplastic T cells into Tregs and recruit Tregs.CAFs can recruit MDSCs and enhance their
immunosuppressive function.CAFs can promote NETosis and M2 polarization of TMA in TME. In addition, CAFs inhibit Th cell function and reduce
CTL infiltration by secreting TGF-b. CAFs inhibit DC-mediated anti-tumor T cell responses and disable NK cell-mediated tumor killing through the
secretion of PGE2 and IDO.
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CAFs subpopulations (54). The mCAF subpopulation is converted

from resident tissue fibroblasts, the dCAF subpopulation is derived

from tumor epithelial mesenchyme, the vCAF subpopulation is

converted from perivascular cells, and the cCAF subpopulation

overlaps with vCAF, while having a strong proliferative capacity.
2.3 Interaction between CAFs and
tumor cells

Studies have shown that CAFs can interact with neighboring

tumor cells (Figure 3). Normal fibroblasts can inhibit tumor cell

growth and promote differentiation of tumor cells to their

malignant phenotype (47, 55, 56). In contrast, CAFs can

significantly stimulate tumor cell growth when co-cultured with

tumor cells (57). CAFs can make tumor cells easily invade blood

vessels by establishing and remodeling the extracellular matrix

structure (58–60). They can promote tumor progression by

secreting a host of growth factors, cytokines and chemokines that

interact with tumor cells or other stromal cells (61–63). What is

more, CAFs are considered as salient targets for the development of

novel anticancer drugs (64, 65). The action of tumor cells on CAFs

is mainly achieved through cytokines. factors such as TGF-b,
PDGF, IGF and colony stimulating factor (CSF) can induce

mesenchymal responses (66, 67). Among them, TGF-b, platelet-
derived growth factors (PDGF), insulin-like growth factor (IGF)

and extracellular matrix metalloproteinase inducer (EMMPRIN)

are considered to be key factors in the process of tumor formation.
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3 Overview of exosomes

Exosomes are a class of lipid bilayer vesicles 30-150 nm in

diameter that encapsulate a variety of proteins, lipids, nucleic acids,

and other metabolites that can be secreted by most types of cells and

are widely present in body fluids such as urine, emulsions, tears, and

cerebrospinal fluid (68, 69). Exosomes can be involved in numerous

physiological activities, including intercellular communication,

mammalian reproduction, and immune regulation, which play an

important role in the pathological progression of diseases such as

cardiovascular disease, neurodegeneration, and cancer (70, 71). In

recent years, the role of exosomes in communication between

tumor cells and fibroblasts has become a hot research topic.

Meanwhile, more and more studies have used exogenous RNA

and protein as new biomarkers of CRC. Proteome analysis

identified many proteins that were differentially expressed in CRC

cell exosomes. A study found that long non-coding RNAs

(lncRNAs) are differentially distributed in the exosomes from

normal cells and CRC-associated fibroblasts (72). Similarly,

another study also found that different lncRNAs were classified

differently as secretions secreted by CRC cells (73).
3.1 Exosome biosynthesis

Classical exosome formation begins with the formation of

secretory endosomes by invagination of the cytoplasmic
FIGURE 2

Interactions between immune cells, inflammatory cells, endothelial cells, adipocytes and fibroblasts in the Tumor microenvironment (TME) can also
drive cancer stem cell maintenance.
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membrane, which subsequently form intraluminal vesicles (ILVs)

in an outgrowth fashion and contain various cytoactive substances

within the vesicles (74, 75) (Figure 4). Secretory endosomes

containing multiple ILVs are called multivesicular bodies (MVBs),

and with acidification, multivesicular bodies (MVBs) maturate and

fuse with the plasma membrane, transferring ILVs outside the cell

and eventually forming exosomes (76, 77). The Endosomal sorting

complex required for transports (ESCRT) is involved in classical

exosome formation. The ESCRT complex can be broadly divided

into four components of ESCRT0, ESCRTTI, ESCRTII and

ECRTIII (78–80). During the biogenesis of MVBs, the cellular

material to be transported is ubiquitinated and the ESCRT0

complex is recruited to the membrane of the secretory endosome.

Immediately thereafter, ESCRTI and ESCRTII allow the secretory

endosomes to form a budding pattern and encapsulate cellular

active substances such as proteins and nucleic acids; the vesicles

detach from the cell membrane in the presence of the ECRTIII

complex (81, 82). Moreover, other proteins contribute to exosome

biogenesis, including apoptosis-linked gene-2 interacting protein X

(Alix), vacuolar protein sorting 4 (Vps4), tumor susceptibility gene

101 (TSG101) and chromatin modifying protein 4 (CHMP4) (83,

84). Currently, the common biomarkers of exosomes are the four

membrane penetrating proteins (CD82, CD81, CD63 and CD9),

heat shock proteins (HSP70, HSP90) and related proteins involved

in membrane transport and fusion (membrane linker and

Rab) (85).
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3.2 Exosome biological functions

Exosomes were once thought to be the only way for cells to

excrete waste products, but subsequent researches have

demonstrated that exosomes function as transporters of

substances, transmitters of information and biomarkers in the

physiological and pathological processes of the organism (86–88).

Exosomes are extremely significant to tumor growth, metastasis,

angiogenesis and immune regulation, metabolism, and drug

resistance by delivering a variety of biomolecules that mediate

signal transduction (89, 90). Exosomes, as effective biomarkers of

diseases, especially cancer, have become a new research field. It is

reported that the exosome miRNA-103, the tripartite motif

containing three proteins, the glypican-1 protein and the tyrosine

kinase substrate protein regulated by hepatocyte growth factor may

be used to detect liver cancer, gastric cancer, pancreatic cancer and

colon cancer (91). In addition, Some exosomes are involved in the

regulation of CRC metastasis, drug resistance and relapse. These

exocrine molecules can affect the prognosis of CRC patients and

may be useful biomarkers for these individuals (92).
4 CRC cell-derived exosomal ncRNAs
activate CAFs

A variety of molecules have been identified in exosomes,

including proteins, lipids and nucleic acids (93). The bilayer
FIGURE 3

A schematic diagram of cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME). Cancer cells stimulate normal fibroblasts to
become CAFs. CAFs are divided into three subgroups, namely inflammatory CAFs (iCAFs), myofibroblastic CAFs (myCAFs) and antigen-presenting
CAFs (apCAFs). CAFs, especially myCAFs, promote the remodeling of the extracellular matrix (ECM). CAFs (iCAFs and myCAFs) and cancer cells
interact leading to metabolic reprogramming of cancer cells. In contrast, proliferation of apCAFs leads to the recruitment of immunosuppressive
cells and inhibits the growth of immune promoting cells.
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membrane of exosomes protects these molecules from protease,

nuclease and other environmental influences (94). In addition, these

molecules in exosomes are selectively packaged, secreted and

transferred between cells, and highly variable, depending on

parental cells and pathophysiological conditions (95). More and

more evidence shows that the exocrine body is rich in ncRNA,

including microRNA (miRNA), long non-coding RNA (lncRNA),

circular RNA (circRNA), piwi interaction RNA (piRNA) and small

non-coding RNA derived from tRNA, which play an important role

in various pathophysiological processes, especially in cancer (96–

98). In recent years, the development of next-generation sequencing

technology has led to the proliferation of newly discovered non-

coding RNA (ncRNA), such as microRNA (miRNA), linear long

non-coding RNA and circular non-coding RNA. Unlike messenger

RNAs (mRNAs), ncRNAs do not encode proteins, but act as

epigenetic regulators (99), post-transcriptional modifiers (100)

and translation coordinators of gene expression (101). With the

discovery and further research of ncRNA in exosomes, many new

functions and applications have emerged, from new ways of

intercellular communication to promising biomarkers of diseases,
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and considering the biocompatibility of exosomes, there may be

new therapeutic applications.

Studies have shown that exosomal ncRNAs of CRC cell origin

activate CAFs (Table 1). LINC01915 expression is decreased in CRC

tissues as well as in CAFs, and low expression of LINC01915

predicts a poor prognosis for CRC patients. Overexpression of

LINC01915 in CRC cells inhibits tumor angiogenesis, CAF

activation, and normal fibroblasts (NFs) uptake of tumor-derived

extracellular vesicles (EVs). Mechanistic experiments showed that

LINC01915 could regulate the miR-92a-3p/KLF4/CH25H axis and

thus prevent angiogenesis and the conversion of NFs to CAFs and

significantly inhibit the malignant progression of CRC (102) to

inhibit the uptake of NFs to CRC-derived EVs. Expression of miR-

1246 was significantly elevated in CAF-like fibroblasts compared to

normal fibroblasts, and miR-1246 secreted by CRC cells could be

utilized by neighboring fibroblasts and used for CAF

reprogramming. In addition, CAF-like fibroblasts can also secrete

miR-1246 into CRC cells and promote cell migration by activating

Wnt/b-catenin signaling, and high miR-1246 expression also

predicts poor prognosis in CRC patients (103). Investigations
FIGURE 4

The biogenesis, contents, and internalization of exosomes. Exosome formation includes initiation, endocytosis, multivesicular body (MVBs) formation
and secretion. intracellular trafficking of MVBs is mediated by Rab GTPase. The fusion of multivesicular bodies with the plasma membrane is
facilitated by SNAREs. There are three types of interactions between exosomes and cells: direct binding of membrane proteins on exosomes and
target cells, which then triggers an intracellular signaling cascade; transport of exosomes to target cells by fusing with cell membranes to deliver
their contents; and phagocytosis of exosomes by cells and degradation by lysosomes to release signaling molecules. Exosomes are rich in proteins,
lipids, and non-coding RNAs, and have a variety of specific proteins on their surface, such as Alix, TSG101.
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have indicated that epithelial CRC inhibits myofibroblast

differentiation by secreting EVs and transferring miR-200 (miR-

200a/b/c-141) into recipient fibroblasts and by targeting zinc-finger

E-box-binding (ZEB) (104). C-X-C motif chemokine receptor 7

(CXCR7) treatment of CRC cells increased the expression levels of

miR-146a-5p and miR-155-5p in their exosomes. In addition, CRC

cell-derived exosomal miR-146a-5p and exosomal miR-155-5p

were delivered to CAFs and promoted the activation of CAFs by

targeting cytokine signaling 1 (SOCS1) and zinc finger and BTB

domain containing 2 (ZBTB2)-containing cells and regulating

JAK2-STAT3/NF-kB signaling. Activated CAFs can in turn

encourage the invasive capacity of CRC cells (105).
5 Effect of CAFs-derived exosomal
ncRNAs on CRC cells

5.1 CAFs-derived exosomal ncRNAs
modulate the effect of chemotherapy
in CRC

5-Fluorouracil, oxaliplatin and methotrexate are commonly

utilized chemotherapeutic agents as the treatment of CRC, but a

majority of patients develop intrinsic and acquired resistance (106,

107). exosomal ncRNAs of CAFs origin modulate the efficacy of

chemotherapy in CRC (Table 2). h19 expression is significantly

higher in tumor tissues of mice with colitis-associated cancer

(CAC), and high expression of h19 is also positively associated

with CRC The high expression of H19 was also positively correlated

with lymph node metastasis in CRC. Overexpression of H19

significantly promoted the stemness of CSC cells. To explain it

further, H19 was also enriched in CAFs-derived exosomes and

could be phagocytosed by CSC and CRC cells, thus promoting the
Frontiers in Immunology 07
stemness of CSC and drug resistance of CRC cells. Mechanistic

results showed that H19 could activate the b-catenin pathway by

binding miR-141. In a nutshell, CAFs can boost tumor stemness

and drug resistance by transferring exosomal H19 into CRC cells

and activating the b-catenin pathway through binding miR-141

(108). It has been shown that lnc-CCAL is enriched in the exosomes

of CAFs and can be delivered to CRC cells and inhibit apoptosis and

promote chemoresistance by activating the b-catenin pathway. The

results of mechanistic experiments demonstrated that CCAL could

interact with HuR to increase the expression of b-catenin. All in all,

exosomal lnc-CCAL derived from CAFs in the colorectal tumor

mesenchyme can metastasize into CRC cells and promote resistance

to oxaliplatin (Oxa) (109). MiR-24-3p expression was significantly

increased in both colon cancer (CC) tissues and cells, and

concomitant overexpression of miR-24-3p after treatment of CC

cells using methotrexate (MTX) promoted cell viability and colony-

forming ability and inhibited apoptosis. In addition, miR-24-3p was

also enriched in CAFs-derived exosomes and could be transferred

to colon cancer cells. Under MTX treatment, treatment of colon

cancer cells with CAFs-derived exosomal miR-24-3p promoted

tumor growth and malignant progression, and mechanistic

experiments showed that miR-24-3p accelerated the resistance of

colon cancer cells to MTX by targeting the caudal-related

homeobox transcription factor 2 (CDX2)/HPEH regulatory axis

(110). Researchers identify MiR-181d-5p, which is enriched in

CAFs, as a miRNA associated with 5-Fluorouracil (5-FU)

sensitivity. m6A modification and methyltransferase-like 3

(METTL3) expression are significantly elevated in CRC patient

tissues, and METTL3 promotes the methylation modification of

miR-181b 5p and its expression via DiGeorge syndrome critical

region 8 (DGCR8). The results of mechanistic experiments showed

that CAFs-derived exosomes could inhibit 5-FU sensitivity in CRC

cells via METTL3/miR-181d-5p/neurocalcin delta (NCALD) axis
TABLE 2 Potential effects of exosomal ncRNAs derived from CAFs on chemotherapy of CRC.

NcRNAs Expression Biological function Targets Reference

H19 Up Promote the stem cell property of CSC and the drug resistance of CRC cells miR-141/b-catenin (108)

Lnc-CCAL Up Inhibition of cell apoptosis and promotion of Oxa chemoresistance HuR/b-catenin (109)

MiR-24-3p Up Promote tumor growth, malignant progression and MTX resistance CDX2/HPEH (110)

MiR-181d-5p Up Inhibition of 5-FU sensitivity METTL3/miR-181d-5p/NCALD (111)

CricN4BP2L2 Up Promote oxaliplatin resistance and stem cell property and inhibit cell apoptosis EIF4A3/PI3K/AKT/mTOR (112)

miR-200b-3p Down Promote sensitivity of 5-FU HMGB3/bcatenin/c-Myc (113)
f

TABLE 1 Potential effects of exosomal ncRNAs derived from CRC cells on CAFs.

NcRNAs Expression Biological function Targets Reference

LINC01915 Down Inhibition of tumor angiogenesis and activation of CAF miR-92a-3p/KLF4/CH25H (102)

miR-1246 Up Promote CAF reprogramming Wnt/b-catenin (103)

miR-200 family Up Inhibit the differentiation of myofibroblasts ZEB (104)

miR-146a-5p Promote the activation of CAFs SOCS1/ZBTB2-JAK2–STAT3/NF-kB (105)

miR-155-5p
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(111) CricN4BP2L2 was enriched in the exosomes of CAFs and

could be delivered to LoVo cells and promote oxaliplatin resistance

and stemness in LoVo cells while inhibiting apoptosis. The outcome

of mechanistic experiments showed that cricN4BP2L2 could

regulate the PI3K/AKT/mTOR regulatory axis by binding to

EIF4A3. In conclusion, CAFs-exo-cricN4BP2L2 allows regulating

the EIF4A3/PI3K/AKT/mTOR pathway (112). To promote

stemness and oxaliplatin resistance in CRC cells. The expression

levels of miR-200b-3p were significantly lower in CRC tissues than

in normal control tissues, and miR-200b-3p expression levels were

also lower in hypoxic CAFs than in normoxic CAFs. Compared

with the exosomes of normoxic CAFs, the exosomes of hypoxic

CAFs could target HMGB3 and bcatenin/c-Myc regulatory axis by

secreting miR-200b-3p and thus promote the therapeutic effect of 5-

FU on CRC in vivo (113).
5.2 CAFs-derived exosomal ncRNAs
promote radiation therapy resistance
in CRC

Studies have shown that CAFs-derived exosomal ncRNAs

promote radiation therapy resistance in CRC (114, 115). MiR-

590-3p expression was significantly increased in CRC tissues and

cell lines and enriched in CAFs. Treatment of CRC cells with CAF-

derived exosomal miR-590-3p increased cell survival and the p-

PI3K/PI3K and p-AKT/AKT ratios and decreased the expression of

cleaved PARP, cleaved protease 3 and gH2AX in the cells.

Moreover, exosomal miR-590-3p significantly stimulated tumor

growth in CRC mice after radiotherapy (116). It was confirmed

that miR-31 expression was significantly higher in CAFs than in
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normal colorectal fibroblasts (NFs), and overexpression of miR-31

in CAFs inhibited the expression of autophagy-related genes Beclin-

1, ATG, DRAM and LC3. Furthermore, miR-31 in CAFs can be

delivered to CRC cells and promote cell proliferation, invasion, and

radiosensitivity, and inhibit apoptosis (117) MiR-93-5p expression

was significantly higher in CAFs-derived exosomes than in normal

fibroblasts (NFs), and treatment of SW480 cells with exosomal miR-

93-5p promoted cell proliferation and protected them from

radiation-induced apoptosis. The outcome of mechanistic

experiments showed that miR-93-5p could inhibit forkhead box

protein A1 (FOXA1) binding to the promoter of transforming

growth factor beta3 (TGF-b3) and promote the nuclear

accumulation of TGFb3 by targeting FOXA1 and suppressing its

expression. Besides, exosomal-miR-93-5p derived from CAFs

promotes tumor growth in irradiated nude mice (114).
5.3 CAFs-derived exosomal ncRNAs
promote CRC metastasis and progression

Malignant growth and metastasis of CRC is a multistep,

multistage, multigene regulatory process, and exosomal ncRNAs

derived from CAFs can promote malignant progression of tumors

by regulating proliferation, migration and invasion of CRC cells

(Table 3). Cell proliferation, migration, and cell cycle can be

promoted by the use of CAFs co-cultured with CRC cells (130).

The results of mechanistic experiments illustrated that CAFs

delivered UCA1 to CRC cells and promoted the upregulation of

mTOR, while the UCA1/mTOR regulatory axis inhibited the

expression of p27 and miR-143 and promoted the expression of

Cyclin-D1 and Kirsten rat sarcoma (KRAS) thus promoting the
TABLE 3 Potential effects of exosomal ncRNAs derived from CAFs on malignant progression of CRC.

NcRNAs Expression Biological function Targets Reference

UCA1 Up Promote cell proliferation, migration and cell cycle
mTOR/p27/miR-143/Cyclin-
D1/KRAS

(118)

miR-224-5p Up Promote cell proliferation, migration, invasion and inhibit cell apoptosis SLC4A4 (119)

circEIF3K Up Promote cell proliferation, invasion and tube formation miR-214/PD-L1 (115)

miR-135b-
5p

Up Promote the malignant behavior of CRC cells FOXO1 (120)

circN4BP2L2 Up
Promote cell proliferation, migration and tubular formation and inhibit the
apoptosis of CRC cells

miR-664b-3p/HMGB3 (121)

SNHG3 Up Promote the malignant progression of CRC miR-34b-5p/HuR/HOXC6 (122)

CircSLC7A6 Up Promote the proliferation and invasion of CRC cells and inhibit cell apoptosis CXCR5 (123)

miR-17-5p Up Promote the metastasis of CRC RUNX3/MYC/TGF-b1 (124)

LINC00659 Up Promote cell proliferation, migration, invasion and EMT progress miR-342-3p/ANXA2 (125)

miR-135b-
5p

Up Promote CRC cell growth and angiogenesis TXNIP (126)

WEE2-AS1 Up Promote cell proliferation and tumor formation and progression MOB1A/Hippo (127)

miR-625-3p Up Promote the migration, invasion, EMT and chemoresistance of CRC cells CELF2/WWOX (128)

miR-181b-3 Up Enhance cell proliferation and migration and reduce cell apoptosis SNX2 (129)
f
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malignant progression of CRC (118) miR-224-5p expression was

significantly increased in CRC and targeted to suppress SLC4A4

expression. Furthermore, miR-224-5p was also enriched in CAFs-

derived EVs, which could transfer miR-224-5p into CRC cells and

promote cell proliferation, migration, invasion, and inhibition of

apoptosis (119). Hypoxia can induce the secretion of circEIF3K in

CAFs exosomes. Also, cell proliferation, invasion and tube

formation can be facilitated through the use of CAFs exosomes

co-cultured with CRC cells. Mechanistic findings demonstrate that

hypoxia induces the secretion of circEIF3K from CAFs into CRC

cells and promotes malignant growth and metastasis of CRC by

regulating the miR-214/PD-L1 axis (115). It was shown that miR-

135b-5p was enriched in the EVs of CAFs and could be sent to

COAD cells to promote malignant cell behavior as well as COAD

cell-mediated HUVEC proliferation, migration and angiogenesis.

The consequences of mechanistic experiments showed that miR-

135b-5p could target FOXO1 and thus promote malignant

progression of COAD (120). Prior study has shown that

treatment of CRC cells with exosomes derived from CAFs

promotes cell proliferation, migration, tube-forming ability and

inhibits apoptosis of CRC cells. The results of mechanistic

experiments showed that CAFs could deliver circN4BP2L2 to

CRC cells through secreted exosomes and inhibit CRC cell

proliferation and migration by regulating the miR-664b-3p/

HMGB3 pathway (121). There’s a significant increase in SNHG3

expression in CRC cells and CAFs-derived exosomes, while

incubation of CRC cells using CAFs-EVs facilitated cell

proliferation. Mechanistic experiments turned out that CAFs-EVs

can carry SNHG3 into CRC cells and upregulate HuR expression by

competitively binding to miR-34b-5p, which in turn promotes the

binding of HuR and HOXC6 and enhances the transcription of

HOXC6 and promotes the malignant progression of CRC (122).

CircSLC7A6 expression recorded a significant growth in CRC

tissues and promoted proliferation, invasion and inhibited

apoptosis of CRC cells, while CAFs could promote malignant

progression of tumors by secreting exosomal circSLC7A6 into

CRC cells and regulating CXCR5 expression. Treatment of CRC

cells with bitter ginseng alkaloids significantly inhibited cell

proliferation and invasion and increased apoptosis by inhibiting

the secretion of exosomal circSLC7A6 by CAFs (123). Compared to

NFs-exo, the expression of miR-17-5p was significantly higher in

CAFs-exo. In addition, CAFs can deliver miR-17-5p from parental

CAFs to CRC cells via the exosomal pathway. The results of

mechanistic experiments showed that miR-17-5p could regulate

the runt-related transcription factor3 (RUNX3)/MYC/TGF-b1
signaling axis to enhance CRC metastasis. Sustained autocrine

TGF-b1 activates CAF and releases more exosomal miR-17-5p

into CRC cells, thus forming a positive feedback loop for CRC

progression (124) LINC00659 expression was significantly

increased in the exosome of CAFs, which could transfer exosomel

LINC00656 to CRC cells and promote cell proliferation, migration,

invasion and EMT progression. Mechanistic experiments showed

that LINC00659 binds to miR-342-3p and promotes the expression

of ANXA2 (Annexin A2) (125). In CRC tissues and cells, MiR-

135b-5p expression was upregulated, whereas thioredoxin-

interacting protein (TXNIP) expression was downregulated. caF-
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exo and caF-exos upregulated miR-135b-5p, promoted growth in

vivo, proliferation, migration and invasion in vitro, inhibited CRC

cell apoptosis, and promoted HUVEC angiogenesis. It turns out

that txNIP is a miR-135b-5p target, and overexpression of TXNIP

attenuated the pro-CRC effect of exosomal miR-135b-56. It has

been reported that CAF exosomes promote CRC cell growth and

angiogenesis by inhibiting TXNIP upregulation of miR-135b-54

(126). WEE2-AS1 expression is significantly increased in CAFs-

derived exosomes, and high levels of WEE2-AS1 also predict poor

prognosis in CRC patients. CAFs deliver exosomal WEE2-AS1 to

CRC cells and promote cell proliferation as well as tumor formation

and progression. The results of mechanistic experiments show that

WEE2 antisense RNA 1 (WEE2-AS1) inhibits the Hippo pathway

and thus CRC cell growth by binding MOB1A and promoting its

degradation (127) CAFs-Exo can deliver miR-625-3p to CRC cells

and promote CRC cell migration, invasion, EMT and

chemoresistance by inhibiting the CELF2/WWOX pathway (128).

MiR-181b-3p expression was enhanced in CRC, and exosomes

using CAFs promoted miR-181b-3p expression after co-

incubation with CRC cells. In addition, treatment of CRC cells

with exosomes which are derived from CAFs significantly, could be

a great boost to cell proliferation and migration and a decrease to

the proportion of apoptotic cells. The results of mechanistic

experiments showed that miR-181b-3p could promote the

malignant progression of CRC by targeting and inhibiting the

expression of SNX2 (129).
5.4 The current application of CAFs-related
exosomal ncRNAs in the diagnosis and
treatment of CRC

Exosomes function as messengers in the communication

between CRCs and CAFs, whose transported cargoes are relevant

to their parental cells and can be used as markers to determine

disease progression (131). It has been reported that plasma

exosomes extracted from CRC patients and found by assay that

the expression of miR-590-3p was significantly higher in plasma

from CRC patients compared to healthy control plasma, and the

expression of exosomal miR-590-3p was reduced after tumor

resection. In addition, exosomal miR-590-3p expression levels

were significantly higher in radioresistant CRC patients than in

radiosensitive patients (116). Previous study also showed the results

of isolated and examined the expression levels of exosomal WEE2-

AS1 in plasma samples from 50 CRC patients and 50 healthy

subjects. Analysis of clinical characteristics of CRC patients revealed

that exosomal WEE2-AS1 expression correlated with CEA, tumor

size and TNM stage, and high expression of exosomal WEE2-AS1

also predicted poor overall survival and disease-free survival in CRC

patients (127).
6 Conclusions and prospects

CRC, whose trend of incidence and mortality worldwide is

increasing, is a common malignant tumor of the gastrointestinal
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system. The development of colorectal cancer is often a complex

process involving multiple factors, stages, and links, in which CRC

cells interact and evolve synergistically with multiple components of

TME, thus promoting its development (132, 133). The extensive,

multi-level interactions between tumor cells and mesenchymal cells

provide TME to support tumor survival, growth, and metastasis

(134–136). CAFs, one of the most copious mesenchymal cells in

TME, are in an activated state and are phenotypically and

functionally altered to interact with immune cells and cancer cells

through multiple signaling pathways, including autocrine and

paracrine, to form complex molecular networks and perform

their biological functions (137, 138).

Despite the current research on CAFs has been fruitful, many

questions remain ambiguous. For example, are the original sources

of CAFs different in different types of cancer? Which subtypes of

CAFs exist in TME? Do these subtypes of CAFs with different

phenotypes and immune functions have different cellular origins?

What are their specific markers? Why do different subpopulations

of CAFs have opposite results on tumor regulation. Currently,

large-scale randomized clinical trials remain a major gap in the

field of targeted CAFs therapeutics. Consequently, a large number

of original studies targeting CAFs are needed to further elucidate

their clinical value and impact on cancer progression (130, 139).

Exosomes are a communication tool between multiple cells, and

CAFs and tumor-derived exosomes are more extensively studied.

Nevertheless, the mechanism of action of CAFs-derived exosomes

in malignancies still lacks in-depth studies (126, 140), especially in

CRC, where relevant studies are relatively vacant. As a consequence,

research on exosomes of CAFs origin has a broad prospect, and an

in-depth study of the relat ionship between the CRC

microenvironment, CAFs and exosomes of related origin will be

more beneficial to understand the malignant process, drug

resistance and other mechanisms of action in CRC for the benefit

of more patients.

To sum up, exosomes are released from CRC cells and CAFs,

playing a crucial role in regulating cancer progression in the

primary tumor microenvironment. Exosomes of CAFs origin can

regulate the processes of chemoresistance, radiation resistance, and
Frontiers in Immunology 10
malignant progression in CRC, while exosomes of CRC cell origin

can better regulate fibroblasts to better assist tumor cells. Exosomes

secreted by CRC cells and CAFs cells (ncRNA encapsulated in

exosomes) can be used as biomarkers for auxiliary diagnosis of CRC

metastasis, drug resistance and prognosis, and have potential

clinical applications.
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