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Immunotherapy has brought a paradigm shift in the treatment of tumors in

recent decades. However, a significant proportion of patients remain

unresponsive, largely due to the immunosuppressive tumor microenvironment

(TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the

TME by exhibiting dual identities as both mediators and responders of

inflammation. TAMs closely interact with intratumoral T cells, regulating their

infiltration, activation, expansion, effector function, and exhaustion through

multiple secretory and surface factors. Nevertheless, the heterogeneous and

plastic nature of TAMs renders the targeting of any of these factors alone

inadequate and poses significant challenges for mechanistic studies and

clinical translation of corresponding therapies. In this review, we present a

comprehensive summary of the mechanisms by which TAMs dynamically

polarize to influence intratumoral T cells, with a focus on their interaction with

other TME cells and metabolic competition. For each mechanism, we also

discuss relevant therapeutic opportunities, including non-specific and targeted

approaches in combination with checkpoint inhibitors and cellular therapies. Our

ultimate goal is to develop macrophage-centered therapies that can fine-tune

tumor inflammation and empower immunotherapy.
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1 Introduction

Tumor-associated macrophages (TAMs) represent the most

abundant and heterogeneous cell population in the tumor

microenvironment (TME). The M0/M1/M2 model has been

widely adopted to describe their broad spectrum of phenotypes

and functions (Figure 1). Briefly, Toll-like receptors (TLRs) and

type 1 cytokines stimulate the pro-inflammatory M1 phenotype. In

contrast, alternatively activated M2 macrophages are further

classified into subtypes including M2a, M2b, M2c, and M2d.

Anti-inflammatory M2a macrophages with characteristic CD206

and TGF-b expression are induced by interleukin (IL)-4 and IL-13.

M2b is closely associated with type 2 immunity and T helper 2

differentiation in response to parasitic and fungal infections.

Glucocorticoids promote the deactivation of M2c macrophages

(1). In the TME, tumor-associated factors such as adenosine favor

the differentiation of M2d macrophages with high expression of IL-

10 and VEGF (2). In vitro stimulation of cell lines under controlled

experimental conditions often leads to highly reproducible results

in terms of the aforementioned markers. However, these results are

frequently disjointed with real-world situations.

The emergence of high-throughput and multi-omic

technologies has led to advancements in the understanding of

TAMs in patient samples, revealing the heterogeneity and

plasticity of TAMs, particularly in the TME. TAM subtypes are

dynamic spectrums, rather than fixed states of terminal
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differentiation, influenced by both ontogeny and environmental

factors. This complexity exhibits patterns, as large-scale pan-cancer

studies at the transcriptomic level have identified seven subtypes of

TAMs that are conserved across multiple tumor types. These

subtypes include the interferon-primed, immune regulatory,

inflammatory cytokine-enriched, lipid-associated, pro-angiogenic,

resident-tissue-macrophage-like, and proliferating subtypes (3).

While such phenotype-based annotation is informative, it may

not provide a complete understanding of the functional

significance of these TAMs subtypes in tumor progression and

immune activation.

TAMs should be redefined in functional classes that exhibit

either tumor-promoting or tumor-suppressive effects. Multiple

factors, particularly those with similar functional effects, are

under orchestrated regulation and exhibit patterns of co-

expression. Antigen presentation, costimulatory molecules and

activating cytokines, including IFN-g, TNF-a, and IL-2, are

needed for synergistic amplification of the immune response

cascade (4). On the other hand, M2 cytokines (5) such as IL-4,

IL-13, TGF-b, and IL-10, and inhibitory ligands collectively

establish feedback loops where regulatory T cell (Treg)-secreted

IL-13 stimulates M2 to secrete IL-10, further promoting Treg

differentiation (6). Notably, phenotypic markers and function can

be disjointed. CD206+ M2 TAMs conventionally considered to be

tumor-promoting have been shown to be capable of antigen cross-

presentation, stimulation of antitumor immune responses, and
FIGURE 1

Macrophage polarization. The figure is created with BioRender.com.
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tumor regression in mouse models of melanoma and colorectal

cancer, due to concurrent CD80 expression (7). In contrast, M1

alveolar macrophages without CD80/86 expression failed to present

antigens effectively (8). Considering the importance of evaluating

the functional identity of TAMs, we will further highlight several

key pro-inflammatory and immunosuppressive factors (Figure 2).
2 Pro-inflammatory

2.1 TNF-a

Tumor necrosis factor-alpha (TNF-a) is an inflammatory

cytokine produced in large amounts by macrophages upon

pattern recognition receptor (PRR) activation, and is considered a

key antitumor agent responsible for the suppression of tumor

growth by activated macrophages (9–12). However, chronic

exposure to TNF-a in a detrimental inflammatory context has

pro-tumor functions, including angiogenesis, metastasis, T cell

apoptosis, and exhaustion (13–15). Therefore, both activators and

inhibitors of TNF-a have been attempted in clinical use and will be

discussed later in the Therapeutics section.
2.2 IFN-g

Interferon-gamma (IFN-g), plays a crucial role in innate

stimulation, antigen presentation, T cell activation, and effector

function. While activated T and natural killer (NK) cells are the

major sources of IFN-g, TAMs also produce this cytokine (16–21).

IFN-g production is under intricate regulation, as it is enhanced by

NFkB activation downstream of IL-12 and IL-18 stimuli (22–25)

and STAT4 phosphorylation (25), but inhibited by IL-27 treatment

(22). Studies in CAR-T and anti-PDL1 antibody therapies, as well as

a mouse model of bladder cancer, have demonstrated that

antitumor TAMs rely on both antigen presentation and IFN-g
secretion to activate CD4+ T cells. These CD4+ T cells then

secrete IFN-g to stimulate M1 polarization, establishing reciprocal
Frontiers in Immunology 03
amplification that sets the antitumor immune response in motion

(26, 27).
2.3 MHC-II

Macrophages are capable of processing and loading antigens

onto MHC-II, whose variable regions bind to specific antigenic

peptides recognizable by their corresponding T cell receptor (TCR).

Formation of this complex leads to TCR activation as the first signal

of T cell activation. T cells are often localized in TAM-rich regions

due to the ability of TAMs to present tumor-associated antigens and

mediate T cell chemotaxis. However, impaired immunological

synapses between TAMs and T cells can lead to T cell anergy and

notably forming M2-Treg interactions, even in tumor-draining

lymph nodes (28–30). Furthermore, prolonged interaction

between TAMs and CD8+ T cells is a significant factor of T cell

exhaustion (31) and can impede T cell infiltration (32).
2.4 Co-stimulatory molecules

CD80 (B7-1) and CD86 (B7-2) are classical M1 markers and

serve as ligands for both the co-stimulatory CD28 and inhibitory

CTLA-4 of the B7 family expressed by T cells. The expression level

and density of CD80/86 determine their effects. Low-level

expression favors CTLA4 binding and immunosuppression, while

only high-density expression can effectively stimulate T activation

in models of colorectal cancer (33). A study in dendritic cells

revealed a transcription factor, PU.1, with the ability to bind to

the CD80/86 promoter and induce transcription (34). The

expression of CD80/86 is temporally dynamic, peaking after 24-

48 hours of culture and decreasing at 60 hours, in line with the

timeframe of macrophage exhaustion and deactivation (35). In

addition to CD80/86, other costimulatory molecules, such as the

ICOS, OX40, 41BB, and CD40 signaling axis, are induced by

primary activating signals (36–42). Many therapeutic attempts

have been developed based on these checkpoints, which will be

discussed in the Therapeutics section.
FIGURE 2

Co-stimulatory and co-inhibitory molecules on macrophages and their corresponding receptors on T cells. The figure is created with BioRender.com.
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3 Immunosuppressive

3.1 VEGF

Vascular endothelial growth factors (VEGFs) have well-

characterized functions in promoting angiogenesis and TME

remodeling. However, in addition to these functions, VEGF

secreted by TAMs has been shown to exhibit strong

immunosuppressive effects through autocrine signaling that

favors M2 polarization and upregulates PD-L1 expression (43).

Interestingly, VEGF-A and VEGF-C are considered crucial for

angiogenesis and lymphogenesis, respectively (44, 45), while the

expression of latter by perivascular TAMs helps contain lung

metastasis (46). By selectively modulating these processes, it may

be possible to promote good angiogenesis and lymphogenesis over

the undesirable angiogenesis, thereby converting immunologically

“cold,” poorly perfused tumors to “hot” tumors with increased

immune infiltration and better responses to immunotherapies, all

without increasing tumor metastasis.
3.2 TGF-b

Transforming growth factor-beta (TGF-b) is a M2 cytokine

with crucial roles in normal physiology, mediating inflammation

resolution and apoptotic clearance (47–50). TGF-b secreted by

TAMs shapes the TME by monitoring immune cell statuses and

exerting immunosuppressive functions (51). Both TAMs and tumor

cells share the downstream pathway of TGF-b/SNAIL (52–55). In

tumor cells, TGF-b signaling induces thrombospondin-1 (TSP1)

secretion and Treg differentiation (56). In TAMs, TGF-b exhibits

potent pro-M2 functions and promotes its own expression in an

immunosuppressive feedback loop (52, 57–59). However, studies in

injury and inflammatory bowel disease models suggest that the

transient expression and activation of SNAIL is essential for

macrophage recruitment to their site of function by affecting

chemotaxis and motility (60).
3.3 Co-inhibitory molecules

TAMs, rather than tumor cells, are the primary source of PD-L1

with CD8 suppressive functions and a key driver of response to

anti-PD1/PDL1 therapy (61–70). However, TAM PD-L1 expression

may result from a reactive response to various inflammatory stimuli

in an immunologically “hot” tumor (65), such as GM-CSF (71),

S100A8/TLR4/MyD88 (69, 72), IL10 and IL-27 (73), IL32/PFKFB3

(74), TGF-b/PKM2 (75), and classical M1 TNF-a/NFkB and

MAPK (73, 76–78) through the activation of STAT1 and, in

particular, STAT3 (79, 80). TAMs are also known to take up

tumor cell PD-L1 for expression (81). In addition to inhibiting T

cell function, TAM PD-1 suppresses phagocytosis and impairs

antigen presentation (82). However, it also mediates pro-

inflammatory macrophage differentiation and secretion (83).

Apart from PD-L1, several other molecules have been identified
Frontiers in Immunology 04
as potential targets for fine-tuning the immunomodulatory

functions of TAMs. SLAMF7 and VISTA/PSGL1 are novel

checkpoint molecules expressed by TAMs to drive T cell

exhaustion (84–86). CLEVER-1 and B7-H4 have been identified

as specific to suppressive TAMs correlated with dysfunctional

cytokine production and T cell dysfunction (87, 88).
4 TME remodeling

4.1 Fibroblast

Cancer-associated fibroblasts (CAFs) are mesenchymal cells

that undergo reshaping by the TME to achieve activation,

differentiation, metabolic and epigenetic programming. CAFs

display a high level of heterogeneity and dynamism and can be

classified into three major subtypes with different capacities in

stromal remodeling and inflammatory modulation, including

inflammatory CAFs (iCAFs), myofibroblastic CAFs (myCAFs),

and antigen-presenting CAFs (apCAFs) (89, 90). Despite their

heterogeneity, CAFs are widely regarded as pro-tumorigenic and

immunosuppressive cells that hinder immune cell infiltration,

impair T cell activation and effector function, and promote T cell

exhaustion. As the two primary components of the tumor stroma,

TAMs and CAFs are extensively co-localized, collaborating to

promote immunosuppressive desmoplasia (91) (Figure 3).
4.1.1 T cell suppression through ECM remodeling
TAMs and myCAFs work together in extracellular matrix

(ECM) deposition and remodeling, creating a desmoplastic

microenvironment that acts as a barrier to T cell infiltration. A

subset of TAMs expressing SPP1, also known as osteopontin

(OPN), has been identified as markers of poor prognosis and

immune checkpoint blockade (ICB) resistance in several types of

tumors, including lung adenocarcinoma, hepatocellular carcinoma,

and colorectal cancer (92–100). These SPP1+ TAMs are also

characterized by high expression of the S100 family proteins,

ECM-associated genes, and lipid metabolism features (101) and

are often regarded as pro-inflammatory M1 macrophages.

However, due to their low MHC-II expression and lack of co-

stimulatory molecules, their antigen presentation capability is

impaired, resulting in futile inflammation that fails to stimulate T

cells effectively. Instead, SPP1+ TAMs interact with FAP+ CAFs to

activate ECM deposition and inflammatory desmoplasia through

SDC2 and MMP-2 interaction (94), IL-1, TGF-b (93), and CSF-

induced granulin (102). Similar pro-fibrotic functions have also

been reported in lung (103) and liver fibrosis (101, 104). Further

studies have shown that the expression of SPP1 is induced by IL-17

or type 3 inflammation (104), metabolic reprogramming such as

HIF-1 (93) and PGC-1a (105), and contact with tumor cells (106)

or chemerin+ TGFb+ CAFs (93). In vitro experiments in a mouse

lung adenocarcinoma model have suggested that SPP1 mediates M2

polarization and the expression of IL-10, Arg1, and PD-L1,

ultimately inhibiting CD4 T cells (106).
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Much effort aimed at alleviating the immunosuppressive effects of

the ECM (107, 108). The ECM provides not only integrin cross-talk

(109) but also structural-biological coupling of mechanical sensing

and signal transduction (110). Stiffness has extensive effects on T cell

activation and antigen reactivity, cellular processes that are highly

dependent on the spatial arrangement and proximity of receptors

(111). High-density matrix hinders T cell proliferation and effector

functions, favoring an immunosuppressive high ratio of CD4+/CD8

+T cells (112), potentially through metabolic reprogramming (113).

TAMs are a major source of matrix-remodeling enzymes: TAM-

derived lysyl hydroxylase and lysyl oxidase mediate collagen cross-

linking, matrix stiffening, and worse prognosis in breast cancer (114).

The boundary between matrix-remodeling stromal cells has been

further blurred by the discovery of SMAD3-dependent macrophage-

myCAF transition (115).

4.1.2 Direct suppression of T cells
TAMs can activate CAFs, resulting in the direct suppression of

T cells. In pancreatic cancer, FAPa+ IL-6+ iCAF, TAMs and T cells

form “reactive areas”, which inhibit T cell proliferation via both

contact-dependent PD-L1 and PD-L2 mediated T cell exhaustion,

as well as contact-independent PGE2 secretion (116–118). This

ultimately leads to poor patient survival. In triple-negative breast

cancer, CXCL12+ iCAF-induced T cell dysfunction is evidenced by

a decoupling between survival benefit and T cell infiltration (119).

In esophageal cancer, FGF2+ iCAF upregulates SPRY1 expression

in T cells, a potent transcription factor for T cell exhaustion (120).

Recent studies have reported the presence of a rare subset of

MHC-II+ CD74+ apCAFs in pancreatic (121–123), lung (118),

breast, and colorectal (124) cancer, but not in prostate cancer.

MSLN+ apCAFs from pancreatic cancer lack co-stimulatory
Frontiers in Immunology 05
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fashion to promote Treg differentiation. Targeted depletion of these

cells is a major mechanism behind the therapeutic effect of anti-

MSLN antibodies (122). In lung cancer, apCAFs express co-

inhibitory molecules (CD73, IL-6, and IL-27) under the

stimulation of CD39+ exhausted T cells, thereby creating a

negative feedback loop of T cell exhaustion (125). Additionally,

conditioned-medium from colorectal cancer cells up-regulates

CTSS and immunosuppressive antigen cross-presentation in

apCAFs (124).

Targeting these reciprocal interactions between TAMs, CAFs,

and T cells to break the detrimental feedback loops may produce

leveraged effects in alleviating immunosuppression (126). Overall, a

deeper understanding of the complex interplay between TAMs,

CAFs, and T cells in the TME could lead to novel therapeutic

approaches for cancer treatment.
4.2 TEC function and angiogenesis

Endothelial cells play a crucial role in initiating immune

responses and facilitating T cell trafficking. The three-step process

of T-cell adhesion, extravasation, and infiltration relies on the

expression of cell-cell interaction molecules such as ICAM-1,

VCAM-1, and E/P-selectin, as well as secreted factors including

CCL2 and CXCL10, by activated endothelial cells (127–129).

However, tumor-associated endothelial cells (TECs) are

reprogrammed by the TME into the first line of defense against

incoming T cells (Figure 3). Secretions from TAMs, particularly the

well-studied TNF-a and VEGF, play a critical role in determining

the success or failure of angiogenesis (130).
FIGURE 3

Macrophage as the key remodeler of TME inflammation by interacting with different cells. The figure is created with BioRender.com.
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4.2.1 T cell recruitment by endothelial cells
TAMs can promote “good angiogenesis,” as TAM-dependent

pro-inflammatory angiogenesis forms reactive areas of TAMs, T

cells, and tumor endothelial cells (TECs) in pancreatic

adenocarcinoma. TAMs are the major source of TNF-a in the

TME, which activates TECs to allow for immunosurveillance (15,

131, 132). Inadequate TNF-a stimulation has been reported to

reduce the expression of ICAM-1 on TECs, leading to impaired

survival in patients with gut microbiota dysbiosis (133, 134). IFN-g
stimulates antigen presentation by tumor-associated lymphoid

endothelial cells (135). Moreover, high endothelial venules

(HEVs), which are essential for immune cell entry and ICB

response, are supported by a specialized perivascular niche of

enriched TAMs and sialomucin+ E/P-selectin+ TECs (136, 137).

Such arrangements have been shown to potently attract CD8 T cell

chemotaxis in cerebral malaria (138) and tumors, leading to

markedly perivascular primed CD8 T cells and better survival in

breast cancer (139).
4.2.2 Pro-metastatic angiogenesis
On the other hand, TAMs are also the major source of VEGF in

the TME. The combined use of anti-VEGFR and ICB has achieved

impressive success in multiple clinical settings (140). VEGF

stimulation leads to the development of immunosuppressive

tumor endothelial cells (TECs) expressing GPNMB (141) and

PD-L1 (142) in hepatocellular carcinoma and melanoma,

respectively, resulting in T cell exhaustion. The combination of a

VEGF inhibitor and ICB led to high endothelial venule (HEV)

formation and T cell infiltration (143). Specific delivery of LIGHT

to tumor vessels through vascular targeting peptide (VTP), known

as the LIGHT-VTP therapy, potently induced tertiary lymphoid

structures (144). Macrophages, which naturally express LIGHT in

adipose inflammatory responses (145) and atherogenesis (146), are

promising targets for the induction and amplification of

LIGHT expression.

TAMs are the key to promoting good angiogenesis over

immunosuppressive and pro-metastatic angiogenesis (147, 148).

Specific targeting of VEGF+ TAM subsets responsible for

immunosuppressive angiogenesis, while sparing the T cell

attractant FOLR2+ and peri-HEV TAMs, may improve the TME

and sensitize the tumor to ICB treatment (149).
4.3 Crosstalks with other immune cells

TAMs actively interact with other immune cells through surface

molecules and cytokine secretions. These powerful engines are

central to the formation, amplification and maintenance of

inflammation in the TME. Such activities warrant antitumor

immune response, but also end up in inflammation-mediated

immunosuppression and exhaustion. The concept of tertiary

lymphoid structures (TLS) refers to organized clusters of immune

cells, including TAMs, dendritic cells, B cells, and T cells, which

play a crucial role in refreshing adaptive immunity (150, 151). In

this context, TAMs act as amplifiers and sustainers of inflammation
Frontiers in Immunology 06
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including the recruitment of B cells, which produce IgG to further

activate TAMs (152). Interestingly, TAMs and TLS exhibit different

prognostic values across different types of cancer: while they are

favorable in pancreatic and hepatocellular cancer, they are

considered hazardous in breast and colorectal cancer (153). This

suggests that the effects of inflammation are context-dependent:

TAMs have the potential to promote immune cell infiltration into

immunologically “cold” tumors, but for tumors challenged by

chronic inflammation, inhibiting sustained TAM activation may

alleviate inflammatory fibrosis and T cell exhaustion (154).

4.3.1 NK cells
As part of the innate immune system, the activation and effector

function of NK cells depend on a balance of inhibitory and

stimulatory signals, allowing them to recognize and kill MHC-I

deficient tumor cells, and at the same time rendering them

susceptible to modulation by macrophages (155) (Figure 3). The

cooperation between M1 macrophages and NK cells is crucial for

effective immune response in both infection and tumor settings (156–

158). Mechanistically, cytokines produced by M1 macrophages, such

as IL-15, IL-18, and IFN-b, can upregulate NKG2D expression on

NK cells and enhance their cytotoxic activity (159). However, in the

TME, tumor cells and VCAM1+ CAFs can polarize macrophages

towards anM2 phenotype, indirectly suppressing NK cell activity and

promoting immune evasion (160, 161).

4.3.2 Neutrophils
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of cells of myeloid origin that are capable of potently

suppressing T and NK cells. This population is often immature and

exists in various states of differentiation, making consensus

classification and therapeutic development challenging. MDSCs can

be broadly classified into two major groups: polymorphonuclear

(PMN-MDSC) and monocytic (M-MDSC) (Figure 3). Unlike

TAMs or tumor-associated neutrophils (TANs), which refer to

macrophages and neutrophils infiltrating into the TME, MDSCs

are derived from the bone marrow under the remote influence of

tumors and can be found outside the TME in peripheral blood and

spleen. Despite differences in origin and cellular markers, MDSCs

share many similarities in effector functions and extensivel cross-talks

(162, 163). M-MDSCs and TAMs have been reported to be more

potent in immunosuppression than PMN-MDSCs and TANs,

although neutrophils usually outnumber macrophages in the TME

(164). The myeloid-rich immunosuppressive landscape in liver,

stomach, and breast cancer is constituted by reciprocal induction

and synergistic action between CCR5+ TAMs and CCL4+ TANs

(164–168). However, mutual exclusion of the two species has also

been reported in breast cancer, with TANs being the more resistant

group to ICB (169).

4.3.3 Mast cells
Mast cells, a type of myeloid cell with specialized granules

containing histamine and heparin, have been relatively overlooked

in tumor immunology despite their importance in immune
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surveillance of normal tissue. In lung cancer, the formation of

TAM-mast cell islets allows for mutually enhancing, synergized

CXCL1/2 secretion, which has potent immune attracting and

antitumor effects that are beneficial for survival (170–172).

However, mast cells have been shown to exert pro-tumor

functions in prostate, stomach, and pancreatic cancers,

mechanistically through IL33-mediated M2 polarization (173–

176). A deeper understanding of the dual roles of TAM-mast cell

interaction in the TME may reveal novel therapeutic opportunities

(Figure 3).
5 Metabolism

5.1 Glucose metabolism

Tumor cells primarily rely on aerobic glycolysis to produce

energy, leading to the accumulation of lactate, acidic pH, and

limited glucose availabil ity in a metabolically hosti le

microenvironment (177, 178). Altered pathway activities, such as

the key pathways AMPK/PGC1, HIF-1a, AKT/mTOR, and MAPK,

lead to profound changes in metabolic preferences between

glycolysis and oxidative phosphorylation. Subsequent metabolic

adaptations give rise to phenotypic and functional outcomes in

terms of pro- and anti-inflammatory activities, as summarized in

the introduction section. These intricately regulated processes are
Frontiers in Immunology 07
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molecular mechanisms across diverse cellular contexts, resulting in

context-specific consequences. These phenotype-function

correlations highlight the importance of master metabolic

regulators and the crosstalk between pathways (Figure 4).

5.1.1 TAMs
Different signaling pathways and metabolic programs can

independently upregulate either M1 or M2 specific characteristics

without affecting each other, indicating a mutually-independent

regulation mechanism (179, 180). Signaling through HIF-1a, AKT/
mTOR, and MAPK pathways promotes aerobic glycolysis and

converge on the downstream effector JAK/STAT, leading to

subsequent M1 features, while the stress-responsive AMPK/PGC1

pathway and PDK signaling promotes mitochondrial function and

oxidative phosphorylation, leading to M2 polarization (52, 65, 179,

181–196).

However, single cell sequencing studies have identified anti-

inflammatory TAMs that perform both glycolysis and oxidative

phosphorylation (197). Also, hypoxia also lead to increased

production of M2 secretions by TAMs, especially VEGF and

TGF-b, as yin and yang to keep immune reactions in check (47,

198, 199). However, such mechanisms in the TME exacerbate

glucose and oxygen deficiency and further metabolic challenges

(183, 187, 200–204). Interestingly, HIF-2a has the opposite role and

stimulates the production of secreted VEGF receptor (sVEGFR-1)
FIGURE 4

Metabolic interplay between macrophages, tumor cells, and T cells, and their effects on the inflammatory state of the TME and on T cell functions.
Molecules in red and blue are clear pro-inflammatory and anti-inflammatory mediators respectively. The figure is created with BioRender.com.
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to neutralize the biological activity of VEGF-A, reducing

angiogenesis and tumor growth (205–207). However, the effects

of some stimuli are dependent on the baseline activation status of

TAMs, leading to differing outcomes between M1 and M2 (47, 208).

The response to external stimuli is coupled to finely regulated

signaling pathways, with multiple targetable points and well-

developed activators and inhibitors. Therefore, understanding the

links between these pathway activities, metabolic states, and

functional phenotypes in TAMs would guide the development of

TAM-centered metabolic regulators to modulate the inflammatory

state of the TME (181, 191, 209, 210).
5.1.2 T cells
High oxygen consumption in the oxidative phosphorylation

process of TAMs in the TME can lead to hypoxia, which inhibits the

function of T cells in several ways. The hypoxic TME leads to

abnormal angiogenesis and dysfunctional endothelial cells that

express lower levels of cell adhesion molecules, making it difficult

for T cells to attach and infiltrate (134). Adenosine accumulation

activates the inhibitory A2A receptor on CD8+ T cells (211, 212).

Hypoxia also leads to long-lasting interactions between TAMs and

CD8+ T cells, eventually causing T cell exhaustion (31). The acidic

pH of a hypoxic TME decreases the expression of TCR and IL-2Ra

and leads to T cell inhibition, reversible with proton pump

inhibitors (213). Mechanistically, lactate accumulation in the

extracellular compartment directly prevents the secretion of

lactate from T cells, driving the glycolysis equilibrium to the left

and hindering T cell functions (214).

Upon activation, T cells switch from oxidative phosphorylation

to aerobic glycolysis to meet the high energy demands while

minimizing reactive oxygen species (ROS) production (215).

However, in response to the metabolic challenges of TME,

activated T cells preferentially utilize the AMPK/PGC1 pathway

instead of the HIF-1a and PAM pathways, suppressing glycolysis

(216). Subsequent ROS overproduction and mitochondrial stress

lead to T-cell exhaustion (217), while decreased availability of a key

metabolite phosphoenolpyruvate alleviates SERCA inhibition to

disrupt Ca2+-dependent NFAT signaling and impair effector

function (218). Despite these detrimental effects of oxidative

phosphorylation, it is also essential for the viability and activity of

T cells. PPAR-a improves the metabolic competitiveness of T cells,

indicating the importance of a balanced metabolic state for T cell

function (216, 219).
5.2 Amino acid metabolism

5.2.1 Glutamine
TAMs express glutamine synthetase (GS), an important enzyme

in the conversion of glutamate secreted by tumors to glutamine,

which is then released back into the TME as a building block for

tumor cells (189, 220–222). This process not only supports tumor

anabolism but also affects TAM polarization. Inhibiting GS and

allowing succinate to accumulate promotes HIF-1a signaling,
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resulting in increased glucose flux through glycolysis and the pro-

inflammatory M1 phenotype, restoring the proliferation of co-

cultured T cells and promoting good angiogenesis in vivo (189,

223). Additionally, high levels of glutamine in the TME directly

suppress T cells, possibly by competing with glucose transporters

and suppressing glycolysis (224).

5.2.2 Arginine
Under metabolic challenges of the TME, TAMs can be polarized

to preferentially express arginase-1 (ARG1) or inducible nitric oxide

synthase (iNOS), resulting in different functional phenotypes (200,

225). iNOS-produced nitric oxide (NO) is a pro-inflammatory

product of M1 phenotype, whereas ARG1 converts arginine into

ornithine and urea, making it an immunosuppressive M2 marker

due to competition with iNOS for the limited arginine pool (226–

228). High expression of the arginine transporter and ARG1 in

TAMs can deplete arginine from the TME, leading to the loss of the

zeta-chain of CD3 in activated T cells and impaired antitumor

immune activity (228). Surprisingly, arginine-depletion therapy

paradoxically increases CD8+ T cells and pro-inflammatory

TAMs in the TME, possibly due to the fact that T cells expressing

argininosuccinate synthase 1 (ASS1) can synthesize arginine from

citrulline and succinate, whereas ARG1+ TAMs and tumor cells are

more dependent on extrinsic arginine (229–231). Moreover, recent

studies have shown that citrulline depletion by ASS1 activity in the

urea cycle is important for the pro-inflammatory functions of

macrophages, which could partly explain how arginine depletion

may potentially help reprogram TAMs (232, 233). Thus, the

competition for arginine between TAMs and T cells in the TME

is a critical metabolic checkpoint that can influence the balance

between immunosuppressive and inflammatory responses.

5.2.3 Tryptophan
Tryptophan is an essential amino acid required by T cells. Its

metabolism by indoleamine 2,3-dioxygenase (IDO) through the

kynurenine pathway generates immunosuppressive catabolites,

particularly kynurenine. The expression of IDO is induced by

inflammatory stimuli to prevent excessive immune responses.

However, this process is often exploited by tumors and

immunosuppressive cells in the TME. TAMs interaction with

specific CD69+CD8+ T cells enhances IFN-g secretion to

upregulate IDO in TAMs, creating a negative feedback loop to

keep T cell activities in check (234–236).

Tryptophan starvation and catabolites decrease mTOR and

PKC-q signaling, resulting in reduced CD3z expression and cell

cycle arrest in T cells (237–239). L-Kynurenine, the major

kynurenine pathway metabolite, enters cells through transporters

SLC7A8 and PAT4 to activate the aryl hydrocarbon receptor

(AHR), a cytoplasmic transcription factor expressed in T cells

and TAMs (240–242). In T cells, AHR activity inhibits cytokine

secretion and promotes PD-1 expression (240). In TAMs, AHR

lowers MHC-II expression but enhances interaction with regulatory

T cells (241). Notably, L-Kynurenine is produced not only by IDO+

TAMs or tumor cells but also by microorganisms such as

Lactobacillus from pancreatic cancer (243). In this case, a low-
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tryptophan diet is beneficial by increasing the number of cytotoxic

CD8+ T cells in the TME (243).
5.3 Lipid metabolism

5.3.1 Fatty acids
Pro-inflammatory TAMs are characterized by active lipid

biosynthesis, which is coupled to the PAM pathway and

glycolysis, as previously described in the section on glucose

metabolism (191, 202). In contrast, fatty acid oxidation (FAO) is

associated with other immunosuppressive and pro-M2 factors

including oxidative phosphorylation, IL4/STAT6 signaling,

AMPK/PGC1 pathways, and ROS activity (190, 192, 244, 245).

The accumulation of long-chain unsaturated fatty acids, oxLDL,

and lipid droplets in the lipid-enriched TME allows preferences of

FAO over other methods of energy production (49, 246, 247).

Active FAO depends on several important factors involved in lipid

transport, metabolic enzymes, and regulatory molecules. The

transcription factor PPAR-a drives the expression of FAO and

OXPHOS genes (248). ABHD5 is a coactivator for HSL, the rate-

limiting enzyme in triacylglycerol hydrolysis, and a stimulator of

PPAR-a (249–252). APOE lipid transporter (253) and CD36 fatty

acid translocase (49) both mediate the accumulation of intracellular

fatty acids. The activity of NFkB and RIPK3 promotes the

degradation of the aforementioned molecules and counters FAO

(209). These molecules are often highly expressed in tumor cells and

some TAM subsets, while downregulated in specific inflammatory

TAMs, mediating differential reprogramming of lipid metabolism

in a context-dependent fashion. Therefore, further research on

these key molecules may enable the differentiation of TAMs from

tumor cells and the cell-type-specific metabolic rewiring.

Understanding the regulation and role of FAO in TAMs is critical

as it can shape the tumor microenvironment and the

immune response.

5.3.2 Phospholipids and derivatives
Phospholipids and their derivatives are not only major

components of the plasma membrane with structural functions,

but also important bioactive molecules with potent signaling

functions. Different species of phospholipids have distinct effects,

whose production and metabolism are often harnessed by tumor

cells and TAMs in the TME. For example, phosphatidylserine (PS)

exposure on the outer plasma membrane is a key feature of

apoptotic cells. Together with other “eat me” signals, PS promotes

phagocytosis and TGF-b production, making it a targetable point to

stimulate inflammation (254, 255). Lysophosphatidic acid (LPA)

has dual effects depending on the available receptors. In models of

colorectal cancer, secreted LPA by cancer cells is recognized by

LPAR1-3 on TAMs, driving the expression of inflammatory genes.

However, in the ascites of patients with ovarian cancer, LPA

binding to LPAR5/6 is associated with M2 polarization,

immunosuppression, tumor metastasis, and poor outcomes (256).

AGPA4 expressed by cancer cells converts TME LPA to

phosphatidic acid, undermining its pro-inflammatory effects
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(257). 15-LOX-2+ TAMs from renal cell carcinoma catalyze the

degradation of arachidonic acid into 15-HETE, which stimulates

CCL2 and IL-10 production to recruit immunosuppressive TAMs

(258, 259). In murine bladder and prostate cancer, specific TAMs

express mPGES1 and COX-2 to produce large amounts of

prostaglandin E2 (PGE2), a molecule with well-investigated

immunosuppressive effects through NFkB-mediated PD-1/PD-L1

expression in both TAMs and T cells, unleashing the inhibitory

effect of PPAR-g on fatty acid oxidation and oxidative

phosphorylation, and increasing secretion of immunosuppressive

factors especially VEGF (260–265). In colorectal cancer, tumor-

induced downregulation of monoacylglycerol lipase (MAGL) in

TAMs is associated with the accumulation of tri-, di-, and mono-

glycerides along with arachidonoylglycerol, enhancing CB2

receptor activity to antagonize TLR4 signaling and mediate

immunosuppression (266).

5.3.3 Cholesterol
Cholesterol and its derivatives have been shown to have

immunomodulatory effects. In the context of metastatic ovarian

cancer, cholesterol is considered beneficial. Tumor-derived

hyaluronic acid has been shown to stimulate TAMs to express

ABC transporters, which facilitate cholesterol efflux and lipid raft

depletion, leading to IL-4 signaling and immunosuppressive

reprogramming (267, 268). The liver X receptor (LXR), which is

activated by cholesterol derivatives, has been shown to favor the

expression of pro-inflammatory genes in TAMs. Pharmacological

manipulation of the cholesterol represents a promising strategy for

reprogramming TAMs towards an anti-tumor phenotype (269,

270). However, in certain situations, the cholesterol family may

also have immunosuppressive and pro-tumor effects.

6 Therapeutics

Therapeutic targeting of TAMs by antibody/cytokine

administration or depletion is rather unspecific. However, recent

drug developments attempted more precise approaches to achieve

better efficacy and reduce off-target effects.
6.1 Polarization

Despite the phenotypical diversity of TAMs, the classical model

of M1-inflammatory and M2-immunosuppressive TAMs remains a

useful reference framework for the overall polarization direction,

which is closely linked to the functional and phenotypic status of

the TAMs.

6.1.1 Chemotherapy, radiation therapy and TKI
Conventional therapies are generally considered immunostimulatory

(271–276) by inducing cancer cell death and increasing the release of

damage-associated molecular patterns (DAMPs) into the TME (277,

278). TAMs express several PRRs such as TLR4, which can recognize

DAMPs and activate downstream signaling pathways including NF-kB

and inflammasome, leading to phenotypical, metabolic and functional
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changes, and the expression of pro-inflammatory genes (191, 202, 279).

The synergistic effect between conventional therapies and

immunotherapies, with the former priming for the latter, leads to

improved efficacy of combined therapy compared to monotherapy.

However, the suboptimal effect and non-specificity, along with the

exhausting effect of chronic futile inflammation, highlight the need for

further development of regulated immune stimulation (280, 281).

6.1.2 Innate activation
Numerous natural and synthetic compounds have been found

to activate the innate immune system, making them potential

therapeutic agents that are currently under active pre-clinical

development and clinical translation (282). PRR agonists have

shown promising results in preliminary clinical trials (283, 284),

particularly when combined with other immunostimulatory agents.

For example, the TLR4 agonist monophosphoryl lipid A (MPLA)

has been combined with IFN-g (285), and the TLR7/8 agonist has

been linked to anti-HER2 to form PRR-antibody-drug conjugates

(286) (Table 1). These agonists are capable of promoting M1

polarization and TME inflammation. STING agonists have also

been widely used in pre-clinical and clinical studies. They are

administered through direct intratumoral injection or

nanoparticle-based intravenous administration to increase the
TABLE 1 Clinical trials of representative macrophage-centered therapies.

Name Type Combination

BDC-1001 Anti-HER2 conjugated TLR 7/8 dual
Agonist

+/- Nivolumab

SBT6050 Anti-HER2 conjugated TLR 8 Agonist +/- Pembrolizumab/Cem

NIR178 A2AR Inhibitor PDR001

Ciforadenant A2AR Inhibitor Ipilimumab + Nivolumab

CB-839 GS Inhibitor +/- Everolimus

CB-1158 ARGI Inhibitor +/- Pembrolizumab

Metformin Respiratory Complex I Inhibitor N/A

TPST-1120 PPAR-Alpha Antagonist +/- Nivolumab

FP-1305 Anti-CLEVER-1 Antibody N/A

GSK3359609 ICOS Agonist Antibody Pembrolizumab + 5FU-Pl

JTX-2011 ICOS Agonist Antibody +/- Nivolumab/Ipilimum
Pembrolizumab

MEDI-570 ICOS Agonist Antibody N/A

KY1044 ICOS Agonist Antibody +/- Atezolizumab

GSK3359609 ICOS Agonist Antibody +/- Pembrolizumab/Othe

Magrolimab Anti-CD47 Antibody Cetuximab

TG-1801 Anti-CD47 Antibody Ublituximab

MK-4830 Anti-ILT4 Antibody +/- Pembrolizumab/Othe

CT-0508 CAR Macrophage Against HER2 Pembrolizumab
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specificity of delivery to tumor cells or TAMs (287, 288).

Recently, a STING agonist derived from microbiota has been

identified to be associated with improved response to ICB in

mouse models, thus implicating it as a potential mechanism

underlying the benefits observed in high-fat diet or fecal

transplantation of human responder (289).

Systemic administration of TNF-a has been limited by adverse

reactions, as phase 1 studies have generally been disappointing due

to sepsis-associated symptoms and dose-limiting toxicities with

little or no favorable antitumor activity (290–295). Intratumoral

administration or delivery into specific arteries (isolated limb or

hepatic perfusion) has achieved some therapeutic effects in selected

tumors such as Kaposi’s sarcoma (296), high-grade soft tissue

sarcoma (297), and liver cancer (298, 299). More targeted delivery

into the TME via engineered malignant cell homing has improved

response in mouse models of breast cancer and melanoma (300).

TAMs can also be engineered to produce inflammatory cytokines

under specific TME conditions, with the IFN-g gene construct

controlled by a synthetic promoter inducible by hypoxia (HRE3x-

Tk) (301). Interestingly, anti-TNF-a antibodies, which are

extensively used in the treatment of autoimmune diseases, are

also potentially applicable in the treatment of inflammatory

tumors (302). The combined use of Infliximab and ICB, first to
Trial
Number

Phase Cancer Type

NCT05091528 I/II HER2 positive solid tumors

iplimab NCT04278144 I HER2 positive solid tumors

NCT03207867 II Different Solid Tumors

NCT05501054 I/II Renal Cell Carcinoma

NCT03163667 II Clear Cell Renal Cell Carcinoma

NCT02903914 I/II Different Solid Tumors

N/A II Esophageal Squamous Cell
Carcinoma

NCT03829436 I Different Solid Tumors

NCT03733990 I/II Different Tumors

atinum NCT04428333 II/III Head and Neck Squamous Cell
Carcinoma

ab/ NCT02904226 I/II Different Tumors

NCT02520791 I Different Lymphomas

NCT03829501 I/II Different Solid Tumors

r Arms NCT02723955 I Different Tumors

NCT02953782 I/II Sarcoma and Colorectal Cancer

NCT03804996 I B-cell Lymphoma

r Arms NCT03564691 I Different Tumors

NCT04660929 I HER2-Overexpressing Solid
Tumors
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control ICB-related adverse effects such as colitis, did not impair

antitumor effects but rather demonstrated synergistic effects and

enhanced response in animal models, melanoma, and further

clinical trials (303–306).

6.1.3 CSF-1/CSF-1R
CSF1R, a receptor tyrosine kinase, plays a crucial role in the

differentiation and maintenance of M2 TAMs. Many small

molecules inhibitors and antagonistic antibodies against CSF-1R

have been developed, among which PLX3397 (pexidartinib) has

been FDA-approved for treating tenosynovial giant cell tumor in

2019 (307, 308). These agents serve as a valuable foundation for

anti-TAM therapeutic strategies, exhibiting synergistic effects with

chemotherapy, radiotherapy, and ICB. Anti-CSF-1R antibody is

promising as an addition to reverse resistance to anti-VEGF therapy

and taxane chemotherapy (309, 310). A study in pancreatic cancer

demonstrated that CSF-1/CSF-1R blockade up-regulated PD-L1

and CTLA-4, justifying that the combination of TAM

reprogramming therapy with ICB may yield maximum effect

(311). However, the effect of CSF-1R-targeted TAM depletion in

the context of the heterogeneous TME requires further

investigation, as preferential depletion of inflammatory TAMs but

sparing pro-angiogenic/tumorigenic TAMs may lead to unwanted

effects (94).

6.1.4 Others
CD206, an M2 macrophage marker, has been utilized as a

guidepost for precise targeting of immunosuppressive TAMs (312).

Various approaches such as nanoparticle-based mRNAs of IRF5,

IKK-b, and miRNA-155, Fe3O4-based poly(lactic-co-glycolic) acid

(PLGA) nanoparticles conjugated with anti-CD206, and RP-182

peptide, a small molecule inhibitor of CD206, have been developed

(313–315). However, it is important to consider the heterogeneity

and dynamic nature of TAMs, and to note that CD206 expression

alone may not fully define immunosuppressive TAMs. Recent

studies have shown that CD206-expressing TAMs are also

capable of cross-presenting tumor-associated antigens to activate

T cells (7), suggesting that CD206-directed therapies may

inadvertently deplete beneficial TAMs. Advancements in high-

throughput technologies have identified additional markers

providing novel targets for intervention. For example, anti-

MARCO-antibody and anti-Clever-1 antibody (FP-1305) were

both capable of causing a phenotypic switch in TAMs from

immunosuppressive to pro-inflammatory, and the combination of

anti-Clever-1 antibody (FP-1305) with ICB showed synergistic

benefits in aggressive tumors that were unresponsive to ICB (158,

316, 317).
6.2 Metabolism

The metabolic state of TAMs is closely linked to their

phenotypical and functional polarization, as they both respond to

and influence the inflammatory microenvironment. Many therapies
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have been developed targeting the metabolism of TAMs and their

associated effects on T cells.

6.2.1 A2AR antagonism
Both pro- and anti-inflammatory TAMs have been found to

exacerbate TME hypoxia, leading to the accumulation of adenosine,

which in turn acts on A2AR to suppress T cell activity (211, 212).

A2AR antagonists have shown promising therapeutic responses in

various pre-clinical studies, particularly in the setting of chimeric

antigen receptor T (CAR-T) cell therapy (211, 318). Currently,

several phase I/II clinical trials investigating A2AR inhibitors, some

in combination with ICB, are ongoing (see Table 1).

6.2.2 Amino acid metabolism
Targeting glutamate-glutamine metabolism (189, 319) with

glutamine antagonists, GS blockade, and glutamine transporter

inhibition, effectively drives M1 polarization and antitumor

response, especially when used in combination with ICB (189,

224, 319, 320). A promising GS inhibitor, CB-839/Telaglenastat,

is currently being evaluated in several phase I/II clinical trials.

Preliminary of results have shown decreased mortality but

increased incidence of serious adverse events when combined

with the mTOR inhibitor Everolimus (Table 1). Moreover,

glutamine antagonism has been found to reduce the expression of

IDO in both tumor cells and TAMs, which suggests an intrinsic link

between glutamine and tryptophan metabolism (319).

Restoring tryptophan availability and depleting kynurenine by

inhibiting IDO has been an attractive therapeutic approach (239–

241). However, the combination of the IDO inhibitor Epacadostat

with Pembrolizumab failed to show antitumor activity in a phase II

trial as compared to monotherapy (320). The lack of efficacy may be

attributed to enzymes with redundant functions, such as IDO1,

IDO2, and tryptophan 2,3-dioxygenase (TDO), indicating the need

for dual- or pan-inhibitors.

The ARG1 inhibitor CB-1158 has demonstrated promising

results in pre-clinical models, both as a monotherapy and in

combination with ICB as well as adoptive T or NK cell therapy

(226, 228, 321). A phase I/II clinical trial of CB-1158 monotherapy

suggested good tolerability (Table 1), but paradoxically, better

antitumor response was observed with CB-1158 monotherapy

compared to combination with pembrolizumab. The reason

behind the compromised effect of combinatorial therapy requires

further investigation.

6.2.3 Modulation of OXPHOS and lipid
metabolism

OXPHOS and FAO are associated with immunosuppression in

the TME (188). In preclinical models, the inhibition of FAO by

etomoxir, a drug that targets the rate-limiting enzyme carnitine

palmitoyl-transferase 1a (CPT1a), led to a reduction in tumor

growth (190). Similarly, CD36 knockout had a similar effect,

indicating the potential of CD36-based therapies for TAM-

specific inhibition of OXPHOS. Conversely, the CB2 cannabinoid

receptor has been shown to inhibit TLR4 signaling and promote
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fatty acid oxidation, and pharmacological antagonism of this

receptor reduced tumor growth independently of CB2 expression

in tumor cells (266).

Direct inhibition of the electron transport chain can also reduce

OXPHOS in TAMs (322). The respiratory complex I inhibitor

metformin, an anti-diabetic drug that has been repurposed to

treat cancer, has shown promising results in preclinical studies

(Table 1). In a phase II trial, low-dose metformin was able to

reprogram an inflammatory TME by increasing the number of anti-

tumor TAMs and CD8+ T cells infiltration while decreasing

infiltration of Treg cells. However, there was no significant

change in the growth or apoptosis markers of tumor cells (323).

Future clinical trials that combine metformin with other

therapeutics, particularly ICB and cellular therapy, may reveal any

potential synergistic effects.

Phospholipids and cholesterol also play a crucial role in

regulating TAM phenotypes (260–262, 266–268). Inhibitors of

COX2 or antagonists of PGE2 receptors in combination with ICB

have been shown to reprogram the TME and increase T cell

infiltration (324). Additionally, in patients with colorectal cancer,

treatment with the DNA methyltransferase (DNMT) inhibitor 5-

aza-2’-deoxycytidine (5Aza) decreased cholesterol efflux from the

ABC transporter of TAMs, leading to pro-inflammatory effects and

improved function of CD4 and CD8+ T cells (325).

It is important to remember that most metabolic pathways and

corresponding drugs lack cell type selectivity. Since tumor cells,

TAMs, and T cells depend on similar non-specific metabolic

pathways, targeting TAM glycolysis with such drugs may hinder

the proliferation and activity of T cells and promote tumor growth

simultaneously. For example, activated T cells generally rely on

aerobic glycolysis, but in low-glucose and hypoxic conditions like

the TME, OXPHOS is crucial for their survival and function.

Animal models have shown that a PPAR-a agonist can stimulate

OXPHOS and FAO, leading to increased CD8+ T cell cytotoxicity

and enhanced efficacy of anti-PD1 (219). Conversely, the pro-M2

effects of PPAR-a on TAMs justify the use of PPAR-a antagonists

in combination with nivolumab in a phase I clinical trial (Table 1).

Therefore, it is essential to keep this limitation in mind and explore

nanoparticle- or antibody-based delivery systems to achieve

precision therapy and maximize therapeutic efficacy.
6.3 Interactions

6.3.1 Checkpoints
Anti-PD1/PDL1 therapies have shown remarkable efficacy in

multiple tumor types, but their effectiveness is largely limited to

patients with high PD-L1 expression prior to treatment, leaving a

significant portion of the patient population in need of alternative

immune checkpoint inhibitors. Chronic inflammation can induce

the expression of various immune checkpoint molecules, including

PD1/PDL1, SLAMF7, CLEVER1, B7H4, and VISTA, which all have

potential as therapeutic targets. For instance, the VISTA-PSGL1

axis has been extensively studied, and both anti-VISTA and anti-

PSGL1 are currently being developed (85, 86, 326, 327). In a mouse
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model of lung cancer, an anti-Clever-1 antibody demonstrated

superior performance to anti-PD-1 antibodies, reducing tumor

growth in a TNBC model that is resistant to anti-PD-1 treatment

(328). Phase I/II trials (NCT03733990) in patients with advanced

solid tumors further demonstrated safety, tolerance, and

preliminary immunostimulatory and antitumor activity (329, 330).

Phagocytosis and antigen uptake by TAMs are essential for

subsequent immune stimulation. Targeting the “don’t-eat-me”

signal CD47 and its receptor, SIRPa, enhances phagocytosis and

antigen presentation by TAMs (331, 332 NCT02953782). Dual

recognition antibodies are being investigated to improve

specificity and avoid off-target effects; for example, anti-

CD47&CD20 treatment is under clinical investigation in B-cell

lymphoma (NCT03804996). LILRB on TAMs binds to MHC-I on

cancer cells and inhibits macrophage phagocytosis. LILRB is

reported to mediate resistance to various immunotherapies, and

anti-LILRB1 (MK-4830) has demonstrated promising antitumor

effects, along with a potent ability to reprogram TAMs and

increase CD8+ T cells, as monotherapy or in combination with

anti-CD47 or pembrolizumab (333, NCT03564691). Anti-

SIGLEC10-mAb prevents the interaction between SIGLEC10

and another “don’t-eat-me” signal CD24, improving TAMs’

phagocytosis of tumor cells (334).

6.3.2 Stimulatory
As discussed in detail in previous sections of this review, co-

stimulatory interactions between TAMs and T cells are

indispensable for effective antitumor immunity. Among the co-

stimulatory molecules investigated, CD40, OX40, ICOS, and 4-1BB

have been extensively studied (335).

The development of CD40 agonists has experience diverse

molecular modification and optimization, evolving from CD40L-

like structures to agonistic antibodies. However, most of these

available agents demonstrated acceptable adverse effects but

limited antitumor responses in monotherapy (336). Selicrelumab

is an exception with promising therapeutic effects, reported to

achieved a PR of 27% in patients with advanced melanoma (337).

Combination with chemotherapeutic agents, other mAbs against

PD-1, PD-L1, Flt3L, and VEGF, and MEKi are under active clinical

investigation (32, 338–341). Interestingly, the combination of anti-

CSF-1R antibody and agonistic anti-CD40 antibody transient TAM

hyperpolarization and subsequently T cell activation before final

depleting effect, emphasizing the importance of time (342, 343).

OX40 agonist preferentially drives M1 polarization over M1

(344, 345). A study in the Pan02 model of mouse pancreatic cancer

revealed that the combination of agnostic anti-OX40 and inhibitory

anti-CTLA4 led to transient decrease in ARG1 expression in TAMs,

giving a therapeutic window for gemcitabine (346). However, other

voices have suggested that OX40 agonist therapy actually increase

ARG1 in TAM, justifying its combination with ARG1 inhibitor to

improve efficacy (347). Additionally, the pro-inflammatory effects

of OX40 agonist is further enhanced by Gal-3 inhibitior

(belapectin) (348).

ICOS/ICOSL has dual roles with both pro- and anti-tumor

activities, leading to T cell activation but also Treg differentiation,

justifying the development of both anti-ICOS agonists
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(GSK3359609, JTX-2011) (NCT04428333, NCT02904226) and

antagonists (MEDI-570, KY1044/Alomfilimab/SAR445256)

(NCT02520791, NCT03829501). INDUCE-1 trial (NCT02723955)

of agonist anti-ICOS-mAb in monotherapy or in combination with

Pembrolizumab in patients with advanced solid tumors reported

promising tolerability and antitumor activity (349). As patients

treated with anti-CTLA-4 or anti-PD-1 had expanded the ICOS

+FoxP3+ T cells, which are reported to be an important biomarker

for clinical response, suggesting optimal response with combined

therapies (350, 351). However, ICOS-ICOSL has also been

considered immunosuppressive, mediates repair processes in liver

damage (352) and skin wounding (61, 353), mechanistically

through induction of Th2 cytokines (IL-4, IL-6, IL-10), M2 (61)

and Tregs (354), leading to fever in developing anti-ICOSL

immunotherapies (354, 355). Antagonistic anti-ICOS-mAbs had

limited antitumor activity (356) but anti-inflammatory wound

healing effects (61).

Intratumoral administration of 4-1BB agonistic Ab led to

increased T cell infiltration not only through T and NK cell

activation (65, 357, 358), but also activating effects in TAMs (359).
6.4 Cellular therapy

T cell-based cellular therapies have demonstrated success in

treating hematogenous tumors but not solid tumors. Macrophage-

based cellular therapy is a promising approach due to their superior

ability to infiltrate into the hostile TME of solid tumors and potent

secretory capacity. Similar to CAR-T, macrophages can also be

loaded with a CAR construct against specific antigens. However,

instead of direct cytotoxicity, CAR-M relies primarily on

phagocytosis and antigen presentation to modulate the TME

rather than directly eliminating tumor cells (360). As drivers of

inflammation, CAR-M can synchronize an amplified anti-tumor

immune response, transforming an immunologically cold TME into

an inflamed battlefield.

Advancements in macrophage-related technologies have largely

overcome their inherent resistance to expansion and genetic

manipulation (361). Induction of macrophage differentiation from

iPSC allowed for efficient in vitro amplification, making large-scale

production for clinical application possible (362). CAR-M has

demonstrated promising results in preclinical studies with cellular

and animal models. Anti-HER2-CAR-M was safe and tolerable with

optimistic therapeutic effects in early clinical trials (NCT04660929).

CAR-Ms, similar to endogenous macrophages, are also

dynamically polarized to display pro- or anti-inflammatory

functions and phenotypes. Combination with other macrophage

polarization methods help prevent immunosuppressive

polarization with pro-tumor effects. Adoptive cellular transfer has

extra advantages as in vitro amplification provides a chance for

precise genetic manipulation. Chimeric vector with co-stimulatory

domains, engineered constitutive expression of IFNa (363, 364,

NCT03866109), and knockout of pro-M2 genes are potential

methods to maintain the desired M1 phenotype, coming into

clinical testing. Similar to fourth-generation CAR-T, or TRUNKS,
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CAR-M can also be loaded with cytokines such as IL-12 to amplify

type 1 immune response (365), or even with drug-containing

nanoparticles to take advantage of their superior efficiency in

tumor homing and improve drug delivery (366).

Furthermore, macrophages not only serve as tools of cellular

therapy but also as targets. Despite challenges due to the

heterogeneity of TAMs, CAR-Ts have the potential to specifically

deplete detrimental TAMs while sparing inflammatory TAMs

needed for antitumor immunity. Anti-F4/80 CAR-T in a mouse

tumor model unselectively depleted all TAMs (367), while anti-FRb

CAR-T, an M2 marker, allowed for specific targeting of

immunosuppressive TAMs and restrained tumor growth (368).

7 Perspective

Immunotherapy revolutionized the clinical courses of tumor

treatment, prolonging survival and offering patients with previously

considered unresectable tumors a chance at surgery. However, only

selected tumor types and a limited population of patients are

responsive to anti-PD1/PDL1 antibodies, largely due to the

hostile, immunosuppressive microenvironment. Much effort has

been devoted to elucidating the mechanism of resistance and

subsequently developing interventions, all leading to the

importance of tumor immunogenicity and local inflammation.

Inflammation has a dual role in antitumor immunity,

complicated by spatial-temporal factors and immune cells under

influence. This double-edged sword is indispensable for the priming

and activation of anti-tumor immunity, but also responsible for

exhaustion and reactive desmoplasia. TAMs not only are the major

cellular population of the TME, but also have superior secretory

capacities. As the master regulators of TME inflammation, TAMs

are capable of initiating and fine-tuning the cascade amplification of

immune response, making them valuable targets. However, TAMs

are highly heterogeneous and dynamic, existing in an almost

inseparable spectrum of statuses, rather than the distinct M1/2

characteristics defined by in vitro stimulation or a state of terminal

differentiation. TAMs are constantly affected by environmental

factors including metabolic availability, stress, and cellular

crosstalk through both direct contact and secreted factors. Upon

sensing these stimuli, activation of coupled signaling pathways leads

to transcriptional and epigenetic reprogramming, ultimately

achieving functional and phenotypical polarization.

Such complexity and plasticity offer many therapeutic

opportunities but at the same time pose challenges for precise

and effective targeting, especially in the translation from

bioinformatic data mining to experimental validation and further

therapeutic strategy development. Still in the prime of its age, the

development of TAM-centered therapies must adopt novel

approaches to seek convergent points, striving to produce the

butterfly effect in addition to specific targeting of each individual

factor. In this review, we integrated recently published

bioinformatic data, experimental studies, and advancements in

clinical trials to provide a comprehensive understanding on the

TAM polarization-inflammation process and potential therapeutic

development. TAMs are promising tools to regulate TME
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inflammation, optimizing antitumor immune activation while

minimizing protumor exhaustion and desmoplasia.
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