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Antônio, de Lima, Kurtenbach, Silva,
Fontes-Dantas, Passos, Figueiredo,
Coutinho-Silva and Savio. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Brief Research Report

PUBLISHED 11 April 2023

DOI 10.3389/fimmu.2023.1158460
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Janeiro, Brazil, 2Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
RJ, Brazil, 3Instituto de Bioquı́mica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil, 4Departamento de Farmacologia e Psicobiologia, Instituto de Biologia
Roberto Alcântara Gomes Institute Biology (IBRAG), Universidade Estadual do Rio de Janeiro (UERJ),
Rio de Janeiro, Brazil
Despite long-term sequelae of COVID-19 are emerging as a substantial public

health concern, the mechanism underlying these processes still unclear.

Evidence demonstrates that SARS-CoV-2 Spike protein can reach different

brain regions, irrespective of viral brain replication resulting in activation of

pattern recognition receptors (PRRs) and neuroinflammation. Considering that

microglia dysfunction, which is regulated by a whole array of purinergic

receptors, may be a central event in COVID-19 neuropathology, we

investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic

signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed

to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12,

NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis

shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and

P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals

(6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12,

NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high

expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions

after spike infusion. These findings suggest that SARS-CoV-2 Spike protein

modulates microglial purinergic signaling and opens new avenues for investigating

the potential of purinergic receptors to mitigate COVID-19 consequences.

KEYWORDS

SARS-CoV-2 spike protein, COVID-19, ectonucleotidase, P2 receptors, CD39,
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1 Introduction

COVID-19, the disease caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), is associated with variable

outcomes. Beyond the respiratory complications produced by the

viral infection, a range of neurological complications may occur in

the acute phase of COVID-19, including confusion, strokes, and

neuromuscular disorders. Additionally, about 35% of infected

patients with different ages and severity of the disease experience

persistent attention and memory deficits, called as Long COVID (1,

2). Several studies have proposed that neurological dysfunctions

seen in COVID-19 may be due to different mechanisms, including

ischemic and inflammatory events. Moreover, SARS-CoV-2 may

lead to pro-inflammatory and cytotoxic scenarios in the central

nervous system regardless of local viral replication, induced only by

its presence in the tissues (3). Nevertheless, whether the brain

presence of SARS-CoV-2 viral particles and/or its products is a

crucial event for the development of cognitive impairment in post-

COVID patients remains unknown.

Microglia are the most prominent immune and cytokine-

producing cells in the brain that respond to pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) to drive innate immune responses and

neuroinflammation. Viral infections modulate microglial

functions resulting in pathological synaptic remodeling, which

culminates in altered cognition and behavior (4, 5). Matschke and

colleagues (6) showed that post-mortem analysis of brain tissue

from COVID-19 patients presented intense microgliosis and

neuroinflammatory response. Microglial activation in SARS-CoV-

2 infections has also been demonstrated in vivo and in vitro models

(7–10). Recently, we and others demonstrated that SARS-CoV-2

Spike protein S1 subunit appears to act as a pathogen-associated

molecular pattern through TLR4, activating microglia and inducing

secretion of proinflammatory mediators (8, 10–13). Our group also

demonstrated that mice brain infusion of Spike protein induces late

cognitive dysfunction, recapitulating post-COVID syndrome,

through microglia-dependent engulfment of synapses (13).

Purinergic system is one of the fundamental signaling systems

that establish microglial behavior in a wide spectrum of conditions

(14). Purinergic signaling is a preserved pathway across several

species stimulated by nucleotides and nucleosides such as ATP and

ADP and involves purinergic receptors and purinergic enzymes

called ectonucleotidases. Purinergic receptors differ in their ligands

and specificity. They are classified into three types: P1, mobilized by

adenosine (composed of four subtypes: A1, A2A, A2B, and A3), and

the subtypes that are mobilized by nucleotides: P2X(1–7) and P2Y

(1,2,4,6,11–14) receptors (14–16).

P2X7, P2X4, P2Y4, P2Y6, P2Y12, A2A, and A3 are the primary

purinergic receptors expressed by microglial cells. These receptors

are associated with neurodegenerative events and may act as

protective or degenerative mediators, depending on the disease

and its progression (15, 17, 18). Many classes of purinergic

receptors (P2Y12, P2Y6, P2Y4, P2X4, P2X7, A2A, and A3) can

influence microglial behavior. Of note, P2X7 receptor is critical

for microglial activation and secretion of proinflammatory

cytokines, such as IL-1b, IL-18, and IL-6 (19, 20). P2Y12 and A3
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receptors are primary participants after neuronal damage,

modulating microglial activation and extension process (18).

Furthermore, P2Y12 acts on microglia migration (18).

Nevertheless, no studies have addressed the effects of SARS-CoV2

on microglial purinergic signaling. Therefore, to further investigate

the impact of microgliosis in SARS-CoV-2 pathology, we

investigated the effect of Spike protein on microglial purinergic

signaling. Our findings suggest that SARS-CoV-2 Spike protein,

independently of viral replication, is able to modify the expression

of purinergic receptors involved in neuroinflammation,

highlighting the relevance of these targets to managing long

COVID symptoms.
2 Material and methods

2.1 Cell culture

BV-2 cells were cultured in RPMI-1640 medium (Sigma-

Aldrich, MO, USA) supplemented with 10% fetal bovine serum

(Sigma-Aldrich, MO, USA), antibiotics (100 IU penicillin/mL and

100 mg streptomycin/mL; Gibco®). Cells were tested for

mycoplasma contamination.
2.2 Animals

In this study, we used 8–12-week-old male Swiss mice. Animals

were housed in groups of five per cage with free access to food and

water, a 12-h light/dark cycle, and controlled temperature and

humidity. All procedures followed the Principles of Laboratory

Animal Care (US National Institutes of Health) and were

approved by the Institutional Animal Care and Use Committee of

the Federal University of Rio de Janeiro (protocol number: 068/2).
2.3 SARS−CoV−2 spike protein in vitro and
in vivo stimulation

The trimeric spike protein (1–1208aa) of SARS-CoV-2 was

purified according to Cunha et al. (21) and obtained from the Cell

Culture Engineering Laboratory of COPPE/UFRJ. Spike protein

purity and antigenicity have already been confirmed in previous

studies (21, 22). For in vitro experiments, BV-2 cells were plated in

6- or 24-well tissue culture plates (TPP AG, Switzerland) at 1 x 106

or 2 x 105 cells per well. Cells were left untreated or stimulated with

0.5 or 1 µg/mL SARS−CoV−2 spike protein. After spike protein

stimulation, cell supernatants were tested for endotoxin

contamination using the Pierce™ Chromogenic Endotoxin Quant

Kit (Thermo Scientific, NJ, USA). Endotoxin levels were < 0.05

EU/mL.

To evaluate the effects of spike protein in vivo, adult male Swiss

mice were anesthetized with 2.5% isoflurane (Cristália; São Paulo,

Brazil) using a vaporizer system (Norwell, MA) and 6.5 µg spike

protein or vehicle (saline) were slowly infused using a Hamilton

syringe into the lateral ventricle (ICV). After 45 days of SARS−CoV
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1158460
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alves et al. 10.3389/fimmu.2023.1158460
−2 spike protein ICV infusion, animals were euthanized, and

hippocampal tissues of each group were quickly separated and

stored in liquid nitrogen before use.
2.4 ATP release assay

BV-2 cells were plated in 6-well tissue culture plates (TPP AG,

Switzerland) at 1 x 106 cells per well. Cells were left untreated or

stimulated with 0.5 or 1 µg/mL SARS−CoV−2 spike protein for 2 h.

The measurements of eATP from the culture supernatant were

per formed us ing the ATP de te rminat ion ki t (L i f e®

Probes; #A22066) by real-time luminometry, according to the

manufacturer’s instructions. The luminescence of samples plated

onto black 96-well plates was read in a SpectraMax®M5/M5e

Multimode Plate Reader (Molecular Devices), and results were

expressed as picomoles of ATP.
2.5 RNA isolation and real-time
quantitative PCR

The total RNA was isolated using the ReliaPrep™ RNA

Miniprep Systems kit (Promega Corporation, WI, USA)

according to the manufacturer’s instructions. RNA samples were

quantified, and the purity was assessed using a Nanodrop Lite

spectrophotometer (Thermo Scientific, NJ, USA). The synthesis of

cDNA was performed using 1 µg of total RNA using the High-

Capacity Reverse Transcription Kit with RNase Inhibitor (Thermo

Fisher Scientific, NJ, USA) according to the manufacturer’s

instructions in a Master Cycler Gradient thermocycler

(Eppendorf, Hamburg, Germany).

The real-time quantitative PCR reactions (RT-qPCR) were

performed using the GoTaq® qPCR Master Mix (Promega

Corporation, WI, USA) in a QuantStudio 1 Real-Time PCR

System (Thermo Scientific, NJ, USA). The reactions were

performed in a final volume of 10 ml, using 2 ml of diluted cDNA

(1:10) and 300 nM of each primer (5’-3’): P2rx4 forward

AGACGGACCAGTGATGCCTAAC and reverse TGGAG

TGGAGACCGAGTGAGA; P2rx7 f o rward AATCGG

TGTGTTTCCTTTGG and reverse CCGGGTGACTTTGT

TTGTCT; P2ry1 forward GACTGACTGGATCTTCGGGGA and

reverse CCACCACAATGAGCCACACC; P2ry2 forward

TGACGACTCAAGACGGACAG and reverse GTCCCCTAC

AGCTCCCCTAC; P2ry4 forward ACTGGCTTCTGCAAGT

TCGT and reverse AGGCAGCCAGCTACTACCAA; P2ry6

forward TGCTGCTTGGGTAGTGTGTGG and reverse

GTAAGGCTATGAAGGGCAGC; P2ry12 forward CACAG

AGGGCTTTGGGAACTTA and reverse GATTCAGCAGA

AGCAGGACCA; Entpd1 forward AGCTGCCCCTTATGGA

AGAT and reverse TCAGTCCCACAGCAATCAAA; Entpd2

forward TTCCTGGGATGTCAGGTCT and reverse GTCTCTG

GTGCTTGCCTTTC; Entpd3 forward ACCTGTCCCGTGC

TTAAATG and reverse AGACAGAGTGAAGCCCCTGA; Nt5e

forward CAGGAAATCCACCTTCCAAA and reverse AACCTTC

AGGTAGCCCAGGT; Actb forward TATGCCAACACAGTGCTG
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TCTGG and reverse TACTCCTGCTTGCTGATCCACAT. The

relative cDNA expression was calculated using the comparative

cycle threshold method. The b-actin gene (Actb) was used as an

endogenous control. The results were expressed as relative

expression of the gene of interest/Actb.
2.6 Ectonucleotidase activity assays

Ecto-nucleoside triphosphate diphosphohydrolases (E-

NTPDases) activities were estimated in a reaction medium

consisting of a 20 mM Hepes buffer (pH 7.5) containing 1 mM

CaCl2, 120 mM NaCl, 5 mM KCl, 60 mM glucose, 1 mM sodium

azide and 0.1%mM albumin (all reagents from Sigma-Aldrich, MO,

USA). BV2 cells (2 x 105) were used in a final volume of 200 µl of

reaction medium, and enzymatic reactions were started by the

addition of ATP for a final concentration of 2 mM, followed by

incubation for 30 minutes at 37 °C. Reactions were stopped by the

addition of 200 µl of 10% trichloroacetic acid (TCA) (Sigma-

Aldrich, MO, USA). Incubation times, protein concentrations,

reaction mixtures, and substrate concentrations were chosen

based on a previous study (23, 24). The amount of inorganic

phosphate (Pi) released was measured using the colorimetric

method described by Chan et al. (25). Controls to correct for

non-enzymatic Pi in the samples were performed. All reactions

were performed in triplicates, and enzyme activities were expressed

in nmol Pi released per minute per number of cells.
2.7 Immunocytochemistry and cell
microscopy analysis

BV-2 cells were plated in 24-well plates at a density of 2 x 105

cells per well and stimulated with 1 µg/mL SARS−CoV−2 spike

protein for 24 h. After stimulation, cells were fixed with 4%

paraformaldehyde and 4% sucrose for 15 min at room

temperature, permeabilized with 0.5% Triton X-100 for 30

minutes (except for cells were stained with extracellular anti-

P2X7 antibody), and then blocked with 10% horse serum and 1%

bovine serum albumin (BSA) in phosphate-buffered saline (PBS) for

30 min at room temperature. Samples were then incubated

overnight with the following primary antibodies diluted in 0.1%

BSA in PBS: rabbit anti-P2X7 #APR-008 (1:100), rabbit anti-P2Y1

#APR-009 (1:100), rabbit anti-P2Y4 #APR-006 (1:300), rabbit anti-

P2Y6 #APR-011 (1:500), rabbit anti-P2Y12 #APR-012 (1:50)

(Alomone Labs, Jerusalem, Israel), goat anti-CD39 #AF4398

(1:200) (R&D Systems, Minneapolis, MN), rabbit ENTPD2/

CD39L1 # BS-11515R (1:100) (Thermo Fisher Scientific, NJ,

USA). Cells were then washed and incubated at room

temperature for 1 h with the secondary antibody (diluted to

1:300, in 0.1% BSA in PBS): anti-rabbit IgG (H+L)-Alexa Fluor®

594 (Thermo Fisher Scientific, NJ, USA). Samples were stained with

Hoescht nuclear dye (1:10,000) (Life Technologies, Eugene, OR)

and then mounted and examined in a fluorescence microscope

Zeiss AxioVert 200M. Three-dimensional images (Z-stack) were

obtained on a Spinning Disk Confocal Microscope ZEISS Cell
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Observer SD (Peabody, MA, USA). Mean fluorescence intensity was

measured using Zen Lite Blue software (Carl Zeiss). For this

quantification, the background was initially subtracted, and the

region of interest was selected in individual cells using the software’s

freehand selection tool to calculate the mean fluorescence intensity

in the presence of different treatments. The software calculated

these results based on the intensity of the corresponding pixels. The

experiments were performed in triplicate, and 70–90 cells per field

were evaluated in ten fields per coverslip.
2.8 Immunofluorescence assay
and analysis

Slides containing the hippocampal formation were

deparaffinized, and antigen retrieval was carried out by incubation

in citrate buffer solution (pH 6.0) at 95 °C for 40 min. Then, samples

were incubated with blocking buffer (PBS containing 0.025%

Triton, 3% BSA, and 5% normal goat serum) for 2 h. Slides were

then incubated overnight with primary antibody rabbit anti-Iba-1

(FUJIFILM Wako Pure Chemicals Corporation, Osaka, Japan;

#019-19741). On the following day, samples were washed and

incubated at room temperature for 1 h with the secondary

antibody (diluted to 1:300, in 0.1% BSA in PBS): anti-rabbit IgG

(H+L)-Alexa Fluor® 546 (Thermo Fisher Scientific, NJ, USA). For

the second staining, samples were washed, blocked again, and

incubated overnight with primary rabbit Anti-P2X7 (Alomone

Labs, Jerusalem, Israel; #APR-008). On the third day, samples

were washed and incubated at room temperature for 1 h with the

secondary antibody (diluted to 1:300, in 0.1% BSA in PBS): anti-

rabbit IgG (H+L)-Alexa Fluor® 488 (Thermo Fisher Scientific, NJ,

USA). Negative controls with secondary antibodies were performed.

Images were acquired using a fluorescence microscope Zeiss

AxioVert 200M. The three-dimensional images (Z-stack) were

generated on a Spinning Disk Confocal Microscope ZEISS Cell

Observer SD (Peabody, MA, USA). Mean fluorescence intensity was

measured using Zen Lite Blue software (Carl Zeiss). For this

quantification, the background was initially subtracted, and the

fluorescence of the entire field corresponding to the tissue was

analyzed. The demarcation of the region was performed using the

software’s freehand selection tool to calculate the average

fluorescence intensity in the presence of different treatments. The

software calculated these results based on the intensity of the

corresponding pixels. Four fields per coverslip were evaluated

with four animals per group.
2.9 Statistical analysis

Results were expressed as mean ± standard error of the mean.

Statistical analysis was performed using the t-test or one-way

analysis of variance followed by Tukey multiple range tests, using

the Prism 8.0.1 software (GraphPad Software, La Jolla, CA, USA).

Differences between groups were considered statistically significant

when p < 0.05.
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3 Results

Extracellular ATP and its derivatives (i.e., ADP and adenosine)

have been shown to modulate microglial cell activation and

function through purinergic receptors. We observed that

stimulation of BV-2 cells with SARS-CoV-2 Spike protein (1 µg/

mL) induced ATP secretion (Figure 1A) and increased P2ry6,

P2ry12, Entpd2, and Entpd3 transcript levels (p < 0.05;

Figures 1G, H, J, K, respectively). No significant differences were

observed for P2rx7, P2rx4, P2ry1, P2ry2, Entpd1, and Nt5e

transcript levels (p > 0.05; Figures 1B–F, I, L, respectively) in cells

treated with Spike protein at the time point evaluated. No

significant changes were detected after 0.5 µg/mL Spike protein

treatment (p > 0.05; Figure 1). Immunocytochemistry analysis

showed that the presence of Spike protein (1 µg/mL) increased

the protein expression of P2X7 (p < 0.05; Figures 2A–C), P2Y1 (p <

0.0001; Figures 2D–F), P2Y6 (p < 0.01; Figures 2J–L), and P2Y12

(p < 0.0001; Figures 2M–O) receptors in BV2 microglial cells. No

differences were observed for P2Y4 (p>0,05; Figures 2G–I). These

data suggest a crucial role of purinergic signaling through

diphosphonucleosides (as ADP and UDP) in SARS-CoV-

2 infection.

Ectonucleotidases are critical enzymes that control the

availability of purinergic receptors ligands. We observed that BV-

2 cells stimulated with Spike protein (1 µg/mL) increased E-

NTPDase-1/CD39 (p < 0.0001; Figures 2P–R) and E-NTPDase2

(p < 0.0001; Figures 2S–U) membrane protein expression. In

addition, ectonucleotidase assay showed an increased ATP

hydrolysis in these cells stimulated with Spike protein (p <

0.05; Figure 2V).

Using hippocampal tissue of Spike-infused mice (6.5 µg/site,

ICV), we found an increase in mRNA levels of P2rx7, P2rx4, P2ry6,

and P2ry12 receptors (Figures 3A, B, F, G, respectively; p < 0.05).

Likewise, we also found and up-regulation of ectonucleotidases

Entpd1 and Entpd2 in the hippocampus of mice hippocampus after

Spike brain infusion (Figures 3H, I; p < 0.05). No significant

differences were observed for P2ry1, P2ry2, P2ry4, Entpd3, and

Nt5e transcripts (p > 0.05; Figures 3C, D, E, J, K, respectively).

The P2X7 receptor is the most relevant in neuroinflammatory

diseases. Our immunofluorescence analysis confirmed an increase

in microglial P2X7 expression in CA3 (Figures 4A, C; p > 0.01) and

DG (Figures 4B, C; p < 0.001) hippocampal regions from spike-

infused mice, suggesting that ATP-P2X7 signaling might be

involved in neurological alterations induced by SARS-CoV-

2 infection.
4 Discussion

The emergence of SARS-CoV-2 triggered substantial efforts to

understand its pathophysiology and long-term sequelae. Among

COVID-19 manifestations, one of the most worrying is the

development of multiple neurological complications (8, 26).

Microglia are vital cells for inflammatory responses against

central nervous system-invading pathogens. We and others
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previously found that SARS-CoV-2 spike protein induced microglia

activation and cytokine secretion via TLR4 receptor activation (10,

13). In addition to TLRs, purinergic receptors modulate microglia

activation and migration (18) and are critical for the host’s defense

against infections (15, 27, 28). This study provides the first

experimental evidence that SARS-CoV-2 spike protein induces

ATP secretion and alters purinergic receptors and nucleotide

metabolizing enzymes in vitro and in vivo in microglial cells.

Among the P2 receptors, P2X and P2Y11 receptors are

chiefly activated by extracellular ATP; ATP and UTP activate
Frontiers in Immunology 05
P2Y2; while ADP activates P2Y1, P2Y12, and P2Y13. P2Y4, P2Y6,

and P2Y14 are activated by uridine nucleotides UTP, UDP, and

UDP-glucose, respectively (14, 16). Of note, the rat and mouse

P2Y2 and P2Y4 are equipotently activated by ATP and UTP,

and P2Y11 has not been cloned in rodents (29, 30). P2X7, P2X4,

P2Y1, P2Y4, P2Y6, and P2Y12, are the central P2 receptors that

modulate microglial function in health and disease. Even

though P2X4 and P2X7 are similar in their structure, P2X4 is

high ly sens i t ive and can be sens i t i zed by low ATP

concentrations (16).
B C D

E F G H

I J K L

A

FIGURE 1

SARS−CoV−2 spike protein increases ATP secretion and purinergic signaling components transcript levels in microglial cells. BV-2 cells were left
untreated (Ctrl) or stimulated with 0.5 or 1 µg/mL SARS−CoV−2 spike protein for 2h for ATP quantification in culture supernatants or 24 h for qPCRs.
(A) ATP concentration in cell supernatants. The levels of transcripts for (B) P2X7, (C) P2X4, (D) P2Y1, (E) P2Y2, (F) P2Y4, (G) P2Y6, (H) P2Y12, (I) E-
NTPDase1, (J) E-NTPDase2, (K) E-NTPDase3, and (L) CD73 were analyzed by RT-qPCR. Data are representative of three independent experiments
(n=3) performed in triplicates and expressed as mean ± SEM. Statistically significant differences between Ctrl and treated groups are represented by
asterisks (*, p < 0.05). One-way analysis of variance, Tukey’s test.
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P2X4 and P2X7 receptors are ion channels upregulated in

neuroinflammatory conditions (17, 31, 32). These receptors

induce the production of free radicals and increase oxidative

stress in inflammatory and neurodegenerative diseases (33, 34).

TLR4 stimulation increases P2X7 expression in microglial cells and

astrocytes (35–37). P2X7 receptor inhibition decreases LPS-induced

cytokine production in cultured human microglial cells and brain

tissue of septic mice (33, 36). Notably, the P2X7 receptor is the

second signal for NLRP3 inflammasome activation and IL-1b
secretion, a cytokine intimately related to synaptic loss and

depressive-like behavior following inflammatory and chronic

stress conditions (38–40).

Therefore, the increase in P2X7 receptor levels in BV2 microglial

cells and the hippocampus of mice injected with SARS-CoV-2 spike

protein suggests that P2X7 might contribute to neuroinflammatory

events related to COVID-19. Indeed, the P2X7 receptor is involved in

microglial-related neurological conditions, including Alzheimer’s

disease, HIV-related dementia, and sepsis-associated encephalopathy

(41–43). In Alzheimer’s disease, the characteristic accumulation of b-
amyloid peptide may induce neuroinflammation through P2X7

receptor mobilization and subsequent activation of NLRP3/caspase-1

pathway (42). Furthermore, the aggregation of these peptides,

associated with stimulation by LPS, activates microglia to an M1

proinflammatory profile characterized by TLR4/MyD88/nuclear

factor-kappa B signaling pathway activation and cytokine release.

Pharmacological or genetic ablation of the P2X7 receptor shifts
Frontiers in Immunology 06
microglial cells toward an anti-inflammatory and neuroprotective

M2 profile, with a reduction in IL-1b production and better

cognitive outcomes (42). Interestingly, the HIV glycoprotein gp120

also increases P2X7 receptor protein and mRNA levels in BV2

microglial cells, contributing to nuclear factor-kappa B activation and

secretion of inflammatory molecules, leading to microglial loss and

neurological alterations such as memory loss and cognitive impairment

(41, 44).

Our analysis revealed an increased expression of P2Y1, P2Y6,

and P2Y12 receptors (in addition to the P2X7 receptor) in BV2 cells

and mice hippocampus. The P2Y12 receptor is deeply involved in

microglia motility (18, 45, 46). P2Y12 expression and levels of

inducible nitric oxide synthase (iNOS) increase in mouse brain

following nitroglycerin treatment in the chronic migraine murine

model. Furthermore, inhibition of the P2Y12 receptor reduced iNOS

expression in mouse medulla and decreased iNOS, IL-1b, and TNF-
a concentrations in BV2 cells pretreated with LPS (47).

The P2Y6 receptor plays a crucial role in microglia after brain

injury, promoting the clearance of damaged cells and dangerous

debris by stimulating phagocytosis. This phenomenon occurs

primarily in brain lesions caused by an ischemic stroke,

accelerating the recovery of the damaged area (48, 49).

Nonetheless, this phagocytic process can be unspecific and

culminates in destroying viable cells. Indeed, knockout of the

P2Y6 microglial receptor inhibits phagocytosis of these intact cells,

preventing neuronal loss and memory difficulties in two models of
B C D E F

G H I J K L

M N O P Q R

S T U V

A

FIGURE 2

SARS−CoV−2 spike protein increases the expression of P2 receptors and ectonucleotidases in microglial cells. BV-2 cells were left untreated (Ctrl)
or stimulated with 1 µg/mL SARS−CoV−2 spike protein for 24 h. Representative images and quantitative analysis for (A–C) P2X7, (D–F) P2Y1, (G–I)
P2Y4, (J–L) P2Y6, (M–O) P2Y12, E-NTPDase1 (P–R), and E-NTPDase2 (S–U). Data are representative of three independent experiments (n=3) and
expressed as mean ± SEM of 10 fields per condition. (V) ATP hydrolysis assay. Data are representative of three independent experiments (n=3) and
expressed as mean ± SEM. Statistically significant differences between Ctrl and treated groups are represented by asterisks (*p < 0.05; **p < 0.01;
****p < 0.0001). Student’s t-test. Scale bars: 20 mm.
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neurodegeneration linked to Alzheimer’s disease, related to b-
amyloid peptides or tau proteins (50). Inhibition of P2Y6/UDP

signaling using exogenous apyrases, reactive Blue 2 (a general P2

inhibitor), or a P2Y6 receptor-specific inhibitor prevents neuronal

loss after LPS stimulation (51). LPS treatment coupled to a

purinergic ligand (2-methylthioladenosine-5′-diphosphate;
2MeSADP) increased the expression of ionized calcium-binding

adapter molecule 1 (Iba-1), a marker of microglia activation, and

increased P2Y6 receptor, CD11b and DAP12 expression, which

are proteins involved in microglial phagocytosis (52). Indeed, LPS

stimulation induces UDP secretion in BV2 cells, increasing the

production of inflammatory cytokines. The knockdown of the

P2Y6 receptor improves neuronal cell viability and diminishes

apoptosis in cells (SH-SY5Y, N2a, and PC12 cells) exposed to a

conditioned medium from LPS-stimulated BV-2 cells. These

findings suggest that these P2Y receptors might be involved in
Frontiers in Immunology 07
neuroinflammatory and neurological consequences of SARS-

CoV-2 infection.

Ectonucleotidases are critical enzymes that regulate the

composition and magnitude of purinergic signaling by controlling

extracellular nucleotide levels. These enzymes differ in their

functionality and substrate preferences. E-NTPDase1/CD39 has

catalytic properties for the hydrolysis of ATP and ADP at the same

ratio (1:1). In contrast, E-NTPDase2 and E-NTPDase3 prefer to

hydrolyze ATP over ADP in a proportion higher than 30-fold and

3-fold, respectively (53, 54). In the current work, we found that the

relative expression of the enzymes that prefer to hydrolyze triphosphate

nucleotides (i.e., E-NTPDase2 and E-NTPDase3) were upregulated

after spike protein stimulation in vitro, probably favoring ADP/UDP

generation and (therefore) a diphosphate nucleotide signaling pathway

by activating P2Y1, P2Y6, and P2Y12 receptors. In vivo, E-NTPDase1

and 2 were also upregulated, agreeing with our in vitro data.
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FIGURE 3

SARS−CoV−2 spike protein increases purinergic signaling components transcript levels in mice hippocampus. The levels of transcripts for (A) P2X7,
(B) P2X4, (C) P2Y1, (D) P2Y2, (E) P2Y4, (F) P2Y6, (G) P2Y12, (H) E-NTPDase1, (I) E-NTPDase2, (J) E-NTPDase3, and (K) CD73 in hippocampus of mice
post-spike ICV injection were analyzed by RT-qPCR. Data are expressed as mean ± SEM. Statistically significant differences between the control
(Ctrl) and treated group are represented by asterisks (*, p < 0.05). Outliers were identified and excluded using Prism 8.0.1 software (GraphPad
Software, La Jolla, CA, USA). Student’s t-test (Control group n = 3; Spike group n = 5–7).
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Although these P2Y receptors are related to neuroinflammation,

the rise of ADP production could be correlated with a mechanism to

prevent the disease progression because infected neurons secrete

nucleotides that activate purinergic receptors in microglia to digest

and eliminate compromised cells, as seen in herpes simplex virus-1

encephalitis (55); these authors observed increased E-NTPDase 1

activity which degrades ATP into ADP and activates the P2Y12

receptor in microglia, extending and migrating to damaged sites

and eliminating virus-infected neurons. Future studies with knockout

animals and specific inhibitors for these P2 receptors and
Frontiers in Immunology 08
ectonucleotidases are required to understand their role in SARS-

CoV-2 infection. Further studies are also required to evaluate

purinergic signaling in other cell types using different Spike

concentrations or the active virus because the amount of

circulating Spike during the course of infection, as well as the

extent of its persistence in the blood, varies considerably among

COVID patients (56, 57), making it difficult to replicate it in cell

cultures. Nevertheless, the concentrations of Spike protein used in our

in vitro and in vivo studies were in the same order of magnitude used

in previous studies (8, 10, 58, 59).
B

C

A

FIGURE 4

SARS−CoV−2 spike protein increases P2X7 receptor expression in hippocampal microglial cells. Representative images of P2X7 receptor and Iba-1
immunostaining in the CA3 (A) and dentate gyrus (DG) (B) hippocampal regions of Ctrl or spike-infused mice. Scale bar = 20 mm. (C) Quantification of
P2X7 receptor fluorescence in Iba-1-positive cells from control (Ctrl) or spike-infused mice in CA3 and DG hippocampal regions. Data are expressed
as mean ± SEM. Statistically significant differences between Ctrl and treated groups are represented by asterisks (**, p < 0.01; ***, p < 0.005). Student’s
t-test (n = 4).
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In summary, this study provides the first evidence that SARS-CoV-

2 infection alters purinergic signaling. SARS-CoV-2 spike protein

upregulates purinergic receptors involved in neuroinflammatory and

neurodegenerative diseases (i.e., P2X7, P2X4, P2Y6, and P2Y12). In

addition, spike protein increased the expression of E-NTPDase1 and

2, which favors the formation of diphosphate nucleotides and,

consequently, the activation of P2Y6 and P2Y12 receptors. Our

findings suggest that these receptors have substantial potential to

serve as therapeutic targets to treat or limit neurological changes and

cognitive impairments following SARS-CoV-2 infection. Such

findings open new avenues for future studies evaluating the specific

roles of purinergic receptors in SARS-CoV-2 infection.
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