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Inflammasomemolecules make up a family of receptors that typically function to

initiate a proinflammatory response upon infection by microbial pathogens.

Dysregulation of inflammasome activity has been linked to unwanted chronic

inflammation, which has also been implicated in certain autoimmune diseases

such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus

erythematosus, and related animal models. Classical inflammasome activation-

dependent events have intrinsic and extrinsic effects on both innate and adaptive

immune effectors, as well as resident cells in the target tissue, which all can

contribute to an autoimmune response. Recently, inflammasome molecules

have also been found to regulate the differentiation and function of immune

effector cells independent of classical inflammasome-activated inflammation.

These alternative functions for inflammasomemolecules shape the nature of the

adaptive immune response, that in turn can either promote or suppress the

progression of autoimmunity. In this review we will summarize the roles of

inflammasome molecules in regulating self-tolerance and the development

of autoimmunity.
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Introduction

A functioning immune system is characterized by the capacity to distinguish between

self-antigens versus microbial pathogens and foreign molecules. Several mechanisms are in

place regulating both innate and adaptive immunity to establish persistent self-tolerance.

These mechanisms maintain self-tolerance by limiting the activation and maturation of

innate effectors such as monocytes, macrophages and dendritic cells (DC), while regulating

self-specific T and B cells via intrinsic and extrinsic events. Immunoregulation is a

dominant mechanism by which self-tolerance is established and maintained. Multiple

subsets of self-specific T cells, including forkhead box P3 (FoxP3)-expressing regulatory

CD4+ T cells (Foxp3+Treg), as well as regulatory B cells, mediate immunoregulation via 1)

secretion of anti-inflammatory cytokines (e.g. TGF b1, IL-10) and modulatory factors, and
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1154552/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1154552/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1154552/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1154552&domain=pdf&date_stamp=2023-04-04
mailto:rmtisch@med.unc.edu
https://doi.org/10.3389/fimmu.2023.1154552
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1154552
https://www.frontiersin.org/journals/immunology


Ke et al. 10.3389/fimmu.2023.1154552
2) cognate interactions with T and B cells and/or DC and

macrophages serving as antigen-presenting cells (APC) by

engagement of various ligand-receptor molecules. Subsets of DC

and macrophages also contribute to immunoregulation through

secretion of cytokines and factors. Breakdown of self-tolerance leads

to autoimmunity, typically characterized by chronic inflammation

driven by autoreactive T and B cells, autoantibodies, and/or

activated macrophages, DC and other innate effectors (1).

Autoimmune diseases are characterized as: 1) organ-specific

autoimmunity, such as multiple sclerosis (MS), rheumatoid

arthritis (RA) and type 1 diabetes (T1D), or 2) systemic

autoimmune diseases, such as systemic lupus erythematosus

(SLE) (2). Events leading to the failure of self-tolerance are

complex and influenced in a polygenic manner, while involving a

host of ill-defined environmental factors including microbial

infections, toxins, ultraviolet (UV) irradiation, diet, and dysbiosis

of the gut microbiota.

The immune system has also evolved to detect and rapidly

respond to invading pathogens via innate cell-driven events. This

early inflammation leads to subsequent expansion and

differentiation of effector T and B cells, typically resulting in

clearance of the pathogen, and establishment of long-lasting

immune protection. Recognition of an invading microbial

pathogen is mediated by surface and cytoplasmic pattern

recognition receptors (PRRs) which recognize: 1) conserved

pathogen-associated molecular patterns (PAMPs), and 2)

endogenous-derived danger-associated molecular patterns

(DAMPs) induced by tissue damage and cellular activities

mediated by microbial virulence factors (3).

Inflammasomes are oligomeric complexes that play an

important role in initiating inflammation in response to PAMPs

and DAMPs (4). Appropriately regulated activation of

inflammasomes protects against microbial infection. However,

aberrant inflammasome activity has been associated with severe

inflammat ion-d r i v en pa tho log i e s (5–7) , a s we l l a s

autoinflammatory and autoimmune diseases (8). Notably,

inflammasome receptor molecules regulate the properties of

different immune cell effectors as well as non-immune cell types

that is independent of classical activation and inflammation-

inducing events (9). This alternative function of inflammasome

molecules has also been directly linked to autoimmunity and sterile

inflammation. In this review, we will discuss how inflammasomes

contribute to autoimmunity: 1) by inflammation driven by classical

inflammasome activation, and 2) via alternative functions

inflammasome molecules display.
Inflammasome-mediated
inflammation- an overview

Inflammasome-driven inflammation in the context of innate

immunity generally entails the production of proinflammatory

cytokines such as IL-1b and IL-18, as well as induction of

programmed cell death. The typical inflammasome complex

consists of three components; namely 1) a sensor molecule such

as a nucleotide oligomerization domain-like receptor (NLR),
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Absent in melanoma 2-like receptors (ALR) or pyrin, 2) the

adaptor molecule apoptosis-associated speck-like protein (ASC)

that contains a caspase activation and recruitment domain

(CARD), and 3) pro-caspase-1 (Figure 1) (4). The assembled

inflammasome provides a platform for cleavage of pro-caspase-1

(4). Once activated via an autolytic processing event, caspase-1

mediates maturation of pro-IL-1b and pro-IL-18 precursors, as well

as initiating pyroptosis (4).

Pyroptosis, a lytic form of programmed cell death, is induced

through caspase-1-mediated cleavage of gasdermin D (GSDMD),

which removes the autoinhibitory C-terminus portion of the

protein (10). Cleaved GSDMD also forms pores in the cell

membrane, which facilitate the secretion of mature IL-1b and IL-

18 (11). Cleavage of GSDMD and induction of pyroptosis is also

achieved by a nonconical pathway in which murine caspase-11 or

human caspase-4/5 are activated by cytosolic lipopolysaccharide

(LPS), a gram-negative bacteria endotoxin (11, 12). In addition to

pyroptosis, certain inflammasome molecules such as NLR family

pyrin domain containing 3 (NLRP3) and absent in melanoma 2

(AIM2), have been associated with PANoptosis-driven cell death in

response to microbial infection and changes in cellular homeostasis

(13). PANoptosis is regulated by the PANoptosome, which is a

multimeric complex consisting in part of effector molecules

involved in pyroptotic (caspase 1), apoptotic (caspase 8), and

necroptotic (receptor-interacting protein kinase 1 (RIPK1),

receptor-interacting protein kinase 3 (RIPK3)) cell death

pathways (14). The composition of the PANoptosome varies with

the nature of the stimulatory response, and complexes consisting of

the ASC adaptor and NLRP3 or AIM2 sensor molecules have been

identified (15).

Inflammasome activation is achieved in response to a broad

range of stimuli derived from microbial infection, tissue damage,

and/or dysregulation of metabolic events (Figure 1). The process of

inflammasome activation typically entails two sets of signaling

events that prime (signal 1), and activate (signal 2) the

inflammasome (11). This multiple-step pathway ensures robust

regulation of inflammasome activity. Signal one, induced by PRR

(e.g. toll-like receptors (TLR)) primes inflammasome assembly via

activation of NF-kB, upregulation of pro-IL-1b and pro-IL-18

expression, and induction of post-translational events that favor

the formation of an inflammasome complex (11, 12). Signal two is

specific for a given sensor molecule and induces inflammasome

activation (12). Binding of an agonist to the leucine-rich repeat

containing receptor (LRR) portion of the sensor protein leads to

oligomerization via homotypic pyrin (PYD) interactions with the

ASC adaptor molecule. ASC is important for linking the sensory

protein with caspase-1 via CARD interactions (11, 12). Events

driving caspase-1 activation, IL-1b and IL-18 maturation, and

induction of pyroptosis and/or PANoptosis then follow (11, 12).

To date, the role of inflammasomes in autoimmunity have largely

focused on NLRP3 and AIM2, but other inflammasome molecules

such as NLRP1, and NLR family CARD domain-containing protein

4 (NLRC4) have also been implicated in autoimmunity (16, 17).

The respective inflammasomes are defined by the sensor protein.

NLRP3 has been the most extensively studied inflammasome, in

general and in autoimmunity (18). NLRP3 agonists are structurally
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and chemically diverse: such agonists include 1) PAMPs expressed

by bacteria, virus, and fungi, and 2) DAMPs including cholesterol,

extracellular ATP, microbial pore-forming toxins, and particulate

matter such as uric acid crystals (19). Consequently, it is believed

that these agonists are indirectly sensed by NLRP3. Here, agonist-

induced K+ and Cl- effluxes, Ca2+ fluxes, lysosomal damage, and

mitochondrial damage and/or dysfunction coupled with the release

of reactive oxygen species (ROS) are directly sensed by NLRP3 (20).

For instance, noncanonical-induced activation of GSDMD results

in K+ efflux, which activates NLRP3 and leads to caspase-1-

mediated IL-1b and IL-18 production via the classical pathway

(21–23). Gain of function variants in the NLRP3 gene resulting in

aberrant NLRP3 inflammasome activation cause a family of diseases

referred to cryopyrin-associated periodic syndromes (CAPS), which

are marked by reoccurring systemic inflammation (20). NLRP3

activation has also been linked to diseases of the central nervous

system (CNS) such as Alzheimer’s Disease (AD) (24, 25). In AD, the

accumulation and subsequent uptake of amyloid-b by microglia

residing in the brain results in lysosomal destabilization and NLRP3

activation (24). Production of IL-1b also has neurotoxic effects on

microglia and astrocytes (25).
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The process of NLRP1 activation is distinct from other

inflammasomes (26). Here, motif-dependent ubiquitination

followed by degradation of the N-terminal subunit by proteasome

are required for activation of NLRP1 (27, 28). Various bacterial

toxins and viral proteases have been reported to activate NLRP1 in

mice and humans (29–33). However, since mice encode several

NLRP1 orthologues with sequences that differ from the single

human encoded NLRP1 gene, specific PAMPs and DAMPs

triggering NLRP1 activation are variable and not fully defined

among the species (34–37). The NLRC4 inflammasome is also

distinct compared to other inflammasomes, in which the sensor

protein functions as an agonist receptor. Instead, the NLRC4

protein associates with NLR family apoptosis inhibitory proteins

(NAIPs) that act as cytosolic innate immune receptors, and which

bind bacterial flagellin and type III secretion system components

(T3SS) (38, 39). Gain-of-function variants in NLRC4 lead to

periodic fever syndromes marked by increased systemic IL-18 (40).

AIM2 is responsive to cytosolic double-stranded DNA

(dsDNA) from bacteria and DNA viruses. Notably, AIM2 binds

both endogenous and microbe-derived dsDNA independent of

nucleic acid sequence (41). Expression of AIM2 is upregulated by
FIGURE 1

Inflammasome assembly and activation. Canonical activation of the inflammasome pathway begins with a primary signal, such as PAMPs,
endogenous-derived DAMPs, or dsDNA, that are recognized by pattern recognition receptors (PRRs), such as toll-like receptors (TLRs). PRR activation
induces NF-kB and subsequent expression of NLRP, pro-IL-1b and pro-IL-18, and post-translational events. Formation of the inflammasome complex
occurs when the sensor protein, such as NLRP3, binds to ASC, driving caspase activation and inflammasome assembly. Caspase enzymes cleave pro-
IL-1b and pro-IL-18 as well as the C terminus from gasdermin D, allowing the gasdermin D N-terminal domain to form pores necessary for
pyroptosis. IL-1b and IL-18, as well as cellular contents are released to establish a proinflammatory response. In autoimmune disease, inflammasome
activation can occur via activation in a noncanonical matter including agonist-induced ion flux and lysosomal and mitochondrial reactive oxygen
species (ROS). The figure was prepared using Biorender software licensed to the UNC Lineberger Comprehensive Cancer Center.
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type I interferon (IFN), and the AIM2 inflammasome is key in host

defense against bacterial and viral pathogens such as Francisella

tularensis and Listeria monocytogenes, and vaccinia virus and

cytomegalovirus, respectively (42). In addition, the AIM2

inflammasome promotes caspase-1-driven death of intestinal

epithelial cells and hematopoietic bone marrow cells upon

recognition of dsDNA breaks due to ionizing radiation or

chemotherapeutic drugs (43).
The roles of IL-1b and IL-18
in inflammation

Inflammasome generated IL-1b and IL-18 enhances both innate
and adaptive immunity against microbial pathogens. However,

dysregu la ted product ion of these two cytok ines by

inflammasomes is also linked to chronic autoimmune diseases.

IL-1b is produced largely by monocytes, macrophages, and DC

(44). Local release of IL-1b amplifies inflammation by inducing

increased expression of 1) adhesion molecules and chemokines for

recruitment of immune effectors, as well as 2) proinflammatory

mediators such as cyclooxygenase type 2 (COX-2) and

prostaglandin-E2 (PGE2) (44–46). IL-1b production can also lead

to systemic inflammation via induction of the acute phase response,

vasodilatation, angiogenesis, and leukocyte activation (44, 45).

T cell responses are also regulated both indirectly and directly

by IL-1b. For instance, IL-1b enhances the stimulatory capacity of

DC by driving maturation and upregulation of co-stimulatory

molecules needed for efficient T cell activation and expansion

(47). Increased IL-12 secretion by IL-1b stimulated DC favors

differentiation of antigen-stimulated T cells towards a type 1

phenotype, marked by IFNg production by CD4+ Th1 and CD8+

Tc1 cells (48). On the other hand, IL-1b has direct effects on CD4+

and CD8+ T cells, influencing expansion and subset differentiation

depending on the extracellular milieu (49). In mice, IL-1b
synergizes with IL-6, IL-21 and IL-23 to induce the differentiation

of CD4+ T cells into IL-17-secreting Th17 cells (49). In humans, IL-

1b has a more potent role in driving Th17 differentiation. Both Th1

and Th17 cells play key roles in several autoimmune diseases.

Furthermore, IL-1b can suppress the function and/or reduce the

stability of Foxp3+Treg (50, 51). Dysregulation of the Foxp3+Treg

pool leading to skewed differentiation and pathogenic function of

autoreactive effector T cells (Teff) is associated with a number of

autoimmune diseases (52–56). CD8+ T cell expansion and

differentiation are also regulated by IL-1b (57).

IL-1b has regulatory effects on the B cell compartment by

enhancing B cell proliferation and antibody production (45). In

addition, IL-1b increases proliferation and secretion of IL-4 and IL-

21 by CD4+ T follicular helper cells (Tfh) (58). Tfh cells play a

critical role in regulating antibody production by B cells and have

also been implicated in the production of autoantibodies during

autoimmunity (59).

IL-18 is expressed by a variety of cells such as Kupffer cells,

macrophages, DC, and non-hematopoietic cells that include

intestinal epithelial cells, keratinocytes and endothelial cells (60).
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Locally, IL-18 stimulates myeloid and endothelial cells to upregulate

nitric oxide (NO) synthesis, and expression of cell adhesion

molecules and chemokines to recruit and activate additional

immune effectors at the site (60). In addition, IL-18 has potent

regulatory effects on T cells and natural killer (NK) cells (60). IL-18

along with IL-12 drives the differentiation of Th1 cells and induces

IFNg production by CD8+ T cells and NK cells (60, 61).

Furthermore, IL-18 stimulation upregulates 1) perforin- and Fas

ligand (FasL)-dependent cytotoxicity in CD8+ T cells and NK cells,

and 2) IL-17 secretion by gd T cells (62). Not only is IL-18 linked to

autoimmune diseases such as T1D and SLE, IL-18 has also been

shown to play a key role in the maintenance of the intestinal

epithelial barrier and regulation gut microbiota composition (63,

64). Dysbiosis of gut microbiota has been suggested as a risk factor

for the development of autoimmunity (65, 66).
Classical inflammasome activation-
dependent events in autoimmunity

In view of highly potent proinflammatory effects, it is not

surprising that classical inflammasome activation is linked to a

host of autoimmune diseases. Inflammasome activation is detected

in innate and adaptive immune effectors thereby having indirect

and direct effects that shape and maintain the proinflammatory

response either locally and/or systemically in autoimmunity. In

addition, inflammasome activation in non-immune cell types that

makeup a given organ can initiate and/or exacerbate an

autoimmune response. Finally, evidence indicates that

inflammasome activation can have a protective role and

contribute to maintenance of self-tolerance. In the following, we

will describe the different roles classical inflammasome activation

has in common tissue-specific and systemic autoimmune

diseases (Table 1).
Multiple sclerosis and inflammasome-
mediated neuroinflammation

MS is a demyelinating autoimmune disease marked by chronic

inflammation of the CNS, leading to variable neurological

symptoms and heterogenous clinical outcomes (143, 144). MS

susceptibility and disease progression are influenced by both

genetic and environmental factors (145). Although ill-defined, the

autoimmune response in MS is believed to be initiated in the

periphery, involving stimulation of CD4+ and CD8+ T cells

specific for myelin proteins (146, 147). Differentiation of the

encephalitogenic CD4+ T cell pool is skewed towards Th1 and

Th17 subsets. This pool coupled with CD8+ T cells and B cells

migrate across the CNS microvascular endothelium and into the

brain and spinal cord (148, 149). The CNS infiltrate includes

peripheral monocytes/macrophages and DC that further amplify

the autoimmune response. Upon activation, microglia, which are

tissue-resident macrophages as well as resident astrocytes also

contribute to inflammation (144, 150) by production of: 1)
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1154552
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ke et al. 10.3389/fimmu.2023.1154552
proinflammatory cytokines such as IL-1b, which has neurotoxic

and immunomodulatory effects in the CNS, as well as 2)

chemokines that promote recruitment of immune effector cells

(151, 152).

Studies of MS patients and rodent experimental autoimmune

encephalomyelitis (EAE), a model of MS, demonstrate that

inflammasomes such as NLRP3, are associated with various

aspects of the autoimmune process (153–155) (Figure 2). mRNA

expression of NLRP3 and IL1B are detected in MS lesions as well as

increased levels of IL-1b and IL-18 in blood and cerebrospinal fluid

(CSF) (150, 156). Furthermore, the P2X7 purinergic receptor

(P2X7R), a ligand-gated ion channel regulated by extracellular

ATP that activates the NLRP3 inflammasome (157), is elevated in

the spinal cord of MS patients. Indeed, increased extracellular levels

of ATP and uric acid are found in the CSF and serum of MS patients

(158, 159). ATP is normally abundant in the extracellular space of

the CNS, where it functions as an excitatory neurotransmitter.
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Interestingly, various drugs used to clinically treat MS such as

recombinant IFNb, glatiramer acetate and natalizumab suppress

NLRP3mRNA expression, and decrease IL-1b in the blood and CSF
of MS patients (160–162). In the brain lesions of MS patients,

NLRP9 protein is also up-regulated in microglia but not astrocytes,

suggesting a role for NLRP9 in modulating the encephalitogenic

response (76).

The functional role of inflammasomes and inflammasome-

related molecules has been investigated using EAE and other

demyelinating rodent models. Earlier studies have shown that the

progression and severity of EAE are reduced in mice deficient in

NLRP3 (NLRP3-/-), ASC (ASC-/-) and to a lesser extent caspase-1

(Caspase1-/-) (83, 163). Attenuated EAE in NLRP3-/- and ASC-/-

mice coincides with decreased infiltrates of Th1 and Th17 cells,

macrophages and DC in the brain and spinal cord (83). This

reduction in CNS infiltration is attributed to decreased

production of IL-1b and IL-18 by APC (83). The latter are
TABLE 1 Intrinsic-effects of classical inflammasome-mediated inflammation in autoimmunity.

Autoimmune
Disease

Associated environmental
trigger events

Genetic variants
involved in

inflammasome
pathways

Inflammasome
intrinsic effects on
innate immune

cells

Inflammasome
intrinsic effects
on adaptive
immune cells

Inflammasome
intrinsic effects
on non-immune/
tissue resident

cells

MS

Epstein-Barr virus (EBV), human herpes
virus 6 (HHV-6), human endogenous
retrovirus (HERV), cytomegalovirus
(CMV), varicella zoster virus (VZV) (67,
68)
Helicobacter pylori, Chlamydia
pneumoniae, Staphylococcus aureus (69)
Mouse hepatitis virus (MHV) (70),
Semliki Forest virus (SFV) (71)

NLRP1: p.G587S
(72), Gly587Ser (73),
p.Ile601Phe,
p.Ser1387Ile (74)
NLRP3: Q705K (75),
p.Leu832Ile (74)
NLRC4:
p.Arg310Ter,
p.Glu600Ter (74)
NLRP9: rs10423927
(76)

Microglia: ↑NLRP3,
NLRC4 (77), ↑NLRP9
(76), ↓NLRX1 (78, 79),
↓NLRP12 (80, 81)
PBMC: ↑Caspase-1 (82)
DC/macrophage: ↑NLRP3
(83), ↓NLRC3 (84)
Peripheral myeloid cells:
↑ GSDMD (85)

T cells: ↑ASC (86),
↓NLRP12 (87, 88)

Oligodendrocytes:
↑Caspase-1 (89)
Astrocytes: ↑NLRP3,
↑NLRC4 (77),
↓NLRX1 (90)

RA

Porphyromonas gingivalis, Prevotella
nigrescens, Tannerella forsythensis,
Prevotella intermedia (91, 92)
Aggregatibacter actinomycetemcomitans,
Treponema denticola (93)
Decreases in a-diversity (94, 95)

NLRP3: rs10754558
(96), rs4612666 (97,
98)

Monocytes/macrophages/
DC: ↑NLRP3, ↑ASC,
↑caspase-1 (99–104),
↑NLRC4 (105), ↑AIM2
(106, 107)
Neutrophil: ↓NLRP3
(108)

T cells: ↑NLRP3
(109), ↓NLRP12
(110)

FLS: ↑AIM2 (111),
↓NLRP6 (112),
↑NLRP3 (113) (114),
↑NLRC5 (115),

T1D

Enteroviruses (116), Mycobacterium avium
subspecies paratuberculosis (117)

NALP1: rs12150220
(118), rs11651270,
rs2670660 (119)
NLRP3: rs10754558
(120), rs3806265,
rs4612666 (121)
NLRC4: rs212704,
rs385076 (122)

APC: ↑NLRP3 (123) b cells: ↑NLRP3 (123)
Intestinal tissues:
↓AIM2 (124),
↑NLRP3 (125, 126)

SLE

EBV, parvovirus B19 (B19V), HERVs
(127)
Gut virome (128)
Dysbiosis in gut microbiota (129)
Dysbiosis of oral microbiota (130)

NLRP1: rs12150220
(131), rs2670660
(131)
NLRP3: rs4612666,
rs10754558,
rs6672995,
rs3806268,
rs35829419,
rs4352135 (132)

Macrophages/PBMC/
monocytes: ↑NLRP3
(133–137), ↑AIM2 (135,
138, 139)

Tfh: ↓P2X7R and
GSDMD-induced
pyroptosis (140)

Glomerular podocytes:
↑ NLRP3 (141, 142)
Multiple sclerosis (MS); rheumatoid arthritis (RA); type 1 diabetes (T1D); systemic lupus erythematosus (SLE); experimental autoimmune encephalomyelitis (EAE); antigen presenting cells
(APC); dendritic cells (DC); fibroblast-like synoviocytes (FLS); germinal center (GC); human peripheral blood mononuclear cells (PBMC); interferon (IFN).
“↑” indicates increased activity of a given molecule. “↓” indicates reduced activity of a given molecule.
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needed to adequately activate and upregulate T cell expression of

osteopontin (OPN), and chemokine receptors CCR2, and CXCR6

for efficient migration into the CNS (83). In addition, lack of

NLRP3 and ASC expression also limits DC and macrophages to

upregulate matching receptor/ligands for OPN (a4b1 integrin),

CCR2 (CCL7/CCL8), and CXCR6 (CXCL16) (83), resulting in

aberrant APC migration into the CNS. These findings support a

role for APC-expressed NLRP3 in mediating chemotactic

recruitment of immune effectors to the CNS.

Peripheral APC also regulate the progression of EAE via

inflammasome-mediated pyroptosis. EAE is attenuated in mice

lacking GSDMD expression by peripheral myeloid cells (85). On

the other hand, selective deletion of GSDMD in microglia has no

effect on EAE, indicating that pyroptosis of CNS-resident APC may

have only a limited role. The T cell stimulatory capacity of

GSDMD-/- APC is reduced, which is marked by diminished

numbers and effector function of Th1 and Th17 cells in the CNS.

Notably, selectively blocking GSDMD-mediated pyroptosis with the

inhibitor disulfiram, also attenuates EAE, demonstrating a direct

role for pyroptosis (85). It is believed that pyroptosis of APC

heightens local inflammation to promote efficient T cell
Frontiers in Immunology 06
activation, and subset differentiation needed to generate a robust

encephalitogenic T cell pool.

In addition to APC, inflammasome activity intrinsic to T cells

impacts EAE progression (Figure 2). Selective ASC-deficiency in T

cells attenuates EAE marked by reduced infiltration of CD4+ T cells,

B cells, and neutrophils (86). ASC-/- T cells are readily activated and

undergo normal in vitro and in vivo differentiation into Th1, Th2,

Th17 and Foxp3+Treg subsets. However, ASC-deficiency affects the

properties of Th17 but not Th1 cells. ASC-/- Th17 exhibit reduced

survival and pathogenicity reflected by decreased secretion of IL-

17A, IFNg, TNFa, as well as IL-1b. Here, IL-1b plays a key role in

an autocrine manner, by enhancing the survival and effector

function of Th17 cells residing in the CNS. Interestingly, cleavage

of pro-IL-1b in Th17 cells is mediated via a noncanonical pathway

involving caspase 8 activation. In this scenario, increased

extracellular ATP levels due to release by stressed and dying cells

drives activation of the NLRP3-ASC-caspase-8 complex,

establishing a feed-forward loop promoting Th17 cell-

mediated pathogenicity.

In addition to NLRP3, the activity of other inflammasome

molecules in non-immune CNS resident cell-types have been
FIGURE 2

The role of inflammasomes in multiple sclerosis (MS) and experimental autoimmune encephalitis (EAE). The autoimmune response for MS is believed
to begin in the periphery. Activation of NLRP3 and NLRC4 inflammasome pathways in antigen-presenting cells (APC) enhance stimulation and
differentiation of pathogenic CD4+ Th1/Th17 and CD8+ Tc1 subsets. On the other hand, NLRC3 activation in dendritic cells (DC) is protective against
disease by inhibiting DC maturation. Secretion of IL-1b and IL-18 increase T cell expression of osteopontin (OPN), CCR2 (binding CCL7/8), and
CXCR6 (binding CXCL16) to promote infiltration to the central nervous system (CNS). Upon activation and differentiation, CD4+ and CD8+ T cells,
and B cells migrate to the CNS. In the CNS, peripheral DC, macrophages (MP), and monocytes (MO) further amplify inflammation. CNS resident cells
such as microglia and astrocytes also promote inflammation. Lysophosphatidylcholine (LPC) activates NLRP3 and NLRC4, causing secretion of IL-1b
and chemokines, leading to further inflammation and demyelination. NLRP9 expression is increased in microglia. NLRX1 and NLRP12 serve to down-
regulate neuroinflammation and provide protection against disease as indicated by the red arrows. Reduction of NLRX1 and NLRP12 can lead to
exacerbated disease states. Purinergic receptor (P2X7R). The figure was prepared using Biorender software licensed to the UNC Lineberger
Comprehensive Cancer Center.
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found to promote neuroinflammation. Both NLRP3 and NLRC4

regulate the activity of microglia and astrocytes in a cuprizone

model of inflammation-induced demyelination (77). Both cell types

are known mediators of neuroinflammation through secretion of

proinflammatory cytokines and chemokines. Cuprizone-induced

pathology is prevented in NLRP3- and NLRC4-deficient mice

characterized by microglia and astrocytes lacking IL-1b
production, and exhibiting reduced expression of G2A, the

receptor for lysophosphatidylcholine (LPC) (Figure 2). LPC,

known for proinflammatory properties, is rapidly metabolized

under homeostasis but accumulates under pathological conditions

in the CNS (77). Following cuprizone treatment, LPC levels are

increased, and LPC functioning as a DAMP, activates NLRP3 and

NLRC4 expressed by microglia and astrocytes (77). In MS patients,

expression of G2A and NLRC4 are increased, suggesting a role in

the MS autoimmune response (77).

Interestingly, inflammasomes have also been shown to play a

protective role in EAE. For instance, deficiency of NLRC3

exacerbates EAE (84). Lack of NLRC3 results in DC producing

increased proinflammatory cytokines such as IL-12, IL-6, and IL-23,

that in turn enhance differentiation of encephalitogenic Th1 and

Th17 cells (84). NLRC3 negatively regulates DC maturation by

inhibiting activation of the p38 signaling pathway (84). The ligand

(s) regulating NLRC3 activity in DC is currently undefined (84).

Also serving a protective function is NLR family member X1

(NLRX1), a more recently characterized NLR that is ubiquitously

expressed and located in the mitochondria (78, 90). NLRX1 inhibits

proinflammatory pathways, including type I IFN and TLR-

mediated NF-kB signaling events, and may play a role in

regulating mitochondria oxidative damage (78). Mice deficient of

NLRX1 have increased T cell infiltration of the CNS, and

consequently develop more severe EAE (79). Microglia exhibit a

hyperactivated phenotype characterized by elevated expression of

MHC class II molecules and production of IL-6 and chemokines,

which in turn aid T cell recruitment and expansion (79).

Accordingly, NLRX1 function is predicted to attenuate the

proinflammatory properties of microglia. On the other hand,

NLRX1-deficiency has no intrinsic effect on the pool of

encephalitogenic T cells (79). NLRX1 may also play a protective

function in astrocytes; NLRX1-/- astrocytes release excess glutamate

in a Ca2+ dependent manner and contain reduced ATP levels

compared to wild-type astrocytes, suggesting that NLRX1

promotes mitochondria ATP production (90). Furthermore, ROS

levels in NLRX1 deficient astrocytes are increased compared to

wild-type astrocytes, which may explain the reduced glutamate

uptake (90). Recent evidence suggests that NLRX1 inhibits

microglial activation in the early stages of EAE, which prevents

activation of neurotoxic astrocytes (78).

NLRP12 has also been shown to regulate the progression and

nature of CNS inflammation in EAE (87, 88, 153). NLRP12

mediates classical inflammasome driven inflammation in innate

effector cells to certain microbes (164, 165), but also serves as a

negative regulator of the NF-kB signaling pathway (80, 87, 88, 166,

167). In mice deficient of NLRP12, a more rapid and severe EAE

develops (81). This exacerbated disease is characterized by

inc r ea s ed mRNA leve l s encod ing IL -1b and o the r
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proinflammatory molecules in the CNS, as well as activated

microglia producing heightened levels of inducible NO synthase

(iNOS), NO, TNFa, and IL-6 (81). A second study reported that

EAE induction in NLRP12-/- mice results in neuroinflammation

that promotes ataxia and poor balance, rather than the ascending

paralysis that normally develops in wild-type mice (87).

Furthermore, NLRP12-deficiency has intrinsic effects on T cells.

In the absence of NLRP12 expression, T cells exhibit increased

proliferation, and secretion of IFNg, IL-17 and IL-4, that is in part

due to hyperactivation of NF-kB (87). Therefore, NLRP12

negatively regulates various aspects of innate cell activation, as

well as CD4+ T cell expansion and effector function via blocking

NF-kB signaling (88).
Rheumatoid arthritis and inflammasome-
mediated joint inflammation

RA is a chronic autoimmune disease characterized by the

inflammation of the joints, leading to synovial tissue proliferation,

cartilage erosion and joint destruction (168–170). Pathology is in

part driven by Th1 and Th17 CD4+ T cells and B cells, as well as

innate effectors such as monocytes, DC and neutrophils that traffick

into the synovium (171–173). Joint-resident cells such fibroblast-

like synoviocytes (FLS) also promote local inflammation (174).

Normally, FLS play a key role in maintaining joint homeostasis

via production of the extracellular matrix and matrix

metalloproteinases (MMPs) (175).

The autoimmune response of RA also involves high levels of

serum complement and the production of autoantibodies that target

the Fc region of IgG (i.e. rheumatoid factor), cartilage components,

nuclear proteins and proteins post-translationally modified by

citrullination (176, 177). Key proinflammatory cytokines driving

RA include IL-1b and IL-18, as well as IL-6 and TNFa (178). In

addition to having immunomodulatory effects, IL-1b mediates

cartilage erosion and prevents chondrocyte matrix formation

(179). Furthermore, the severity of RA correlates with elevated

serum IL-18 (180, 181). Moreover, during the early-stages of RA,

FLS proliferate and differentiate into distinct subsets of activated

synovial fibroblasts that produce inflammatory cytokines, matrix-

degrading enzymes and proangiogenic factors which lead to the

release of inflammatory mediators, bone destruction and

angiogenesis (182–184). FLS also promote T cell survival, Tfh and

Th17 cell differentiation, and can function as antigen presenters to

autoreactive T cells (185–193). The etiology of RA is ill-defined but

genetic and a host of environmental factors are known to influence

disease susceptibility and progression. Evidence also suggests that

inflammasomes likely have an important role in RA

pathogenesis (Figure 3).

In RA patients, NLRP3 and NLRP3-inflammasome-related

proteins are upregulated in a cell-specific manner among innate

effectors. For instance, expression of NLRP3, ASC, and caspase-1 as

well as IL-1b secretion is generally increased in monocytes,

macrophages, and DC from RA patients (99–102) (Figure 3).

CD4+ T cells from RA patients also exhibit increased NLRP3

expression, which correlates with elevated serum IL-17A
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concentrations and disease activity (109) (Figure 3). Notably,

differentiation of Th17 cells is inhibited by NLRP3 knockdown

(109), suggesting that NLRP3 regulates the proinflammatory

activity of both innate and adaptive effectors in RA. Interestingly,

NLRP3 activation in monocytes is mediated via multiple

mechanisms in RA patients. C1q binding to pentraxin 3, a key

regulator of complement activity and which is increased on the

surface of RA CD14+ monocytes, leads to NLRP3 activation,

enhanced IL-1b and IL-6 secretion, and GSDMD-induced

pyroptosis (178). In addition, due to elevated extracellular Ca2+ in

the joint and concomitant heightened activity of calcium-sensitive

receptors, macropinocytosis of calciprotein particles (CPPs) is

elevated by local monocytes (194). After uptake, CPPs disrupt

lysosome integrity resulting in enhanced NLRP3 activation and

IL-1b secretion (194).

Whereas NLRP3 and related inflammasome proteins are

typically elevated in various innate and adaptive immune

effectors, neutrophils from RA patients exhibit reduced NLRP3,

ASC and pro-caspase-1 expression (108). Here, NLRP3 mRNA

levels in neutrophils negatively correlate with disease severity
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(108). This suggests that NLRP3 may serve a protective role in

the context of neutrophil function via an il l-defined

mechanism (108).

Various inflammasome molecules, in addition to NLRP3, have

been found to be involved with RA (Figure 3). NLRC4 activity is

increased in DC residing in the synovial membrane of RA patients

(105). These DC secrete elevated IL-1b, have increased expression

of CD64, an IgG Fc receptor, and display an enhanced capacity to

stimulate Th1 and Th17 subset differentiation (105). This capacity

is due to a novel mechanism of upregulation of NLRC4 expression

and activity. Here, dsDNA-IgG complexes bind to CD64, are

internalized, and the combination of CD64 signaling and

intracellular sensing of the dsDNA increases NLRC4 activity

(105). AIM2 expression is increased in synovial tissue of RA

patients, and knockdown of AIM2 mRNA inhibits in vitro

proliferation of FLS derived from RA patients (111). On the other

hand, NLRP6 levels are reduced in FLS from patients with RA

versus osteoarthritis (112). Furthermore, increased ectopic

expression of NLRP6 in RA patient-derived FLS blocks the

production of inflammatory cytokines such as IL-1b, IL-6, and
FIGURE 3

Events in dysregulated inflammasome activation in rheumatoid arthritis (RA). NLRP3 and NLRC4 activity are increased in monocytes (MO) and DC by
Fc-receptor (FcR) binding of DNA-IgG immune complexes and complement component 1q (C1q) binding to pentraxin 3 (PTX3). Uptake of elevated
levels of calciprotein particles (CPPs) in the joint by resident DC also leads to NLRP3 activation. Resulting pyroptosis and secretion of
proinflammatory cytokines promote RA progression by favoring Th1 and Th17 differentiation and development of autoantibodies and RA factor
producing plasma cells. NLRP3 activation is also increased in Th17 cells. Aberrant lysosomal processing of endocytosed dsDNA can lead to AIM2
activation in joint resident macrophages (MP). Neutrophils exhibit reduced expression of inflammasome molecules, which correlates with decreased
disease severity. NLRP3, NLRC5 and AIM2 are associated with proinflammatory properties of fibroblast-like synoviocytes (FLS), while NLRP6 and
NLRP12 serve protective roles, indicated by the red arrows. NLRP6 limits FLS cytokine production, and NLRP12 negatively regulates Th17 subset
differentiation. Reduced expression of NLRP6 and NLRP12 leads to pathology. Matrix metalloproteinases (MMP). The figure was prepared using
Biorender software licensed to the UNC Lineberger Comprehensive Cancer Center.
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TNFa, as well as MMP via inhibition of the NF-kB pathway. The

latter indicates that NLRP6 serves a protective role in RA (112), and

is consistent with NLRP6 having a negative regulatory function in

colitis (195).

Animal studies further support the notion that the role for

inflammasomes in RA is complex, and that cell type-dependent,

inflammasome molecules can have distinct effects on immune cells

and effector molecules depending on the RA model (103, 196)

(Figure 3). Mice deficient of ASC are resistant to collagen induced

arthritis (CIA), in part due to a reduced T cell stimulatory capacity

of ASC-/- DC (103). However, CIA develops in both NLRP3–/– and

Caspase1–/– mice suggesting that ASC has caspase 1-independent

effects in DC (103). On the other hand, NLRP3 and caspase-1 play a

key role in the spontaneous polyarthritis that develops in mice in

which the RA susceptibility gene A20/Tnfaip3 is selectively ablated

in myeloid cells (A20myel-KO mice) (104). Here, macrophages

lacking A20 have increased constitutive and LPS-induced

expression of NLRP3 and pro-IL-1b. The latter is indicative of

the established role A20 has as an inhibitor of NF-kB activation

(197), which is needed for NLRP3 and pro-IL-1b transcription

following inflammasome priming. Furthermore, activation of

NLRP3 in A20-deficient macrophages results in enhanced

caspase-1 activation, IL-1b secretion, and pyroptosis. Notably,

pathology in A20myel-KO mice is blocked by ablation of NLRP3,

caspase-1 and the IL-1 receptor (IL-1R), demonstrating a direct role

for classical NLRP3 inflammasome activation in this spontaneous

autoimmune model of cartilage destruction (104). NLRP3 is also

associated with the proinflammatory properties of FLS. NLRP3

expression is increased in FLS isolated from mice with adjuvant-

induced arthritis (AA) (113), and knockdown of Nlrp3 mRNA

expression in FLS reduces disease severity in a monosodium urate-

induced model of gout arthritis in rats (114).

AIM2 has also been shown to have a key role in joint

inflammation. Mice deficient in expression of lysosomal

endonuclease DNase II and type I IFN receptor (IFNaR) develop
polyarthritis marked by production of autoantibodies, and

macrophage secreted proinflammatory cytokines such as IL-1b,
IL-6 and TNFa (106). Lack of lysosomal endonuclease DNase II

results in aberrant processing of dsDNA in lysosomal

compartments, and translocation of undigested DNA into the

cytoplasm of macrophages (106, 107). AIM2-deficiency limits

joint inflammation marked by reduced caspase-1 activity, IL-1b
and IL-18 expression, and macrophage infiltration (106, 107).

Notably, however, autoantibody production is unaffected by

AIM2-ablation indicating a tissue-specific role for AIM2.

Furthermore, AIM2-ablation has no effect on the transfer of

arthritogenic serum from K/BxN mice (107). In this passive

model, arthritis is induced by the deposition of immune

complexes within the joint, leading to complement fixation and

ensuing pathology (106, 107). Therefore, AIM2 regulates

inflammation when cytosolic DNA is the key driving event. A

contribution for NLRC5 in joint inflammation has been reported

(115). NLRC5 expression is elevated in the synovium and FLS in rat

AA (115), and knockdown of Nlrc5mRNA blocks FLS proliferation

and production of TNFa and IL-6, due to suppressed NF-kB
activation (115).
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Similar to NLRP6, NLRP12 has been shown to negatively

regulate joint inflammation (110). The severity of antigen-

induced arthritis in NLRP12-/- mice is increased, marked by

elevated levels of joint infiltrating Th17 cells (110). Notably, in

vitro Th17 cell differentiation is enhanced in NLRP12-/- CD4+ T

cells marked by elevated IL-6-induced activation of signal

transducer and activator of transcription (STAT) 3 (110).
Type 1 diabetes and inflammasome-
mediated pancreatic islet inflammation

T1D is characterized by chronic inflammation of the pancreatic

islets (insulitis) that results in the dysfunction and/or destruction of

the insulin producing b cells (198–200). Despite life-long insulin

therapy, T1D patients typically develop a variety of complications

including retinopathy, neuropathy, and nephropathy related to

hyperglycemia and inflammation. The autoimmune response

involves islet infiltration of CD4+ and CD8+ T cells, B cells,

macrophages, and DC. b cell-specific CD4+ and CD8+ T cells are

generally believed to be the key drivers of pathology (198–200).

Diabetogenic CD4+ and CD8+ T cells typically exhibit a type 1

effector phenotype, although Th17 cells are also implicated in the

disease process (199). In addition to serving as APC, islet-

infiltrating macrophages and DC, mediate b cell destruction

through secretion of proinflammatory mediators and cytokines

such as IL-1b, IFNg and TNFa that have direct b cell-cytotoxic

effects (199). The initiation and progression of T1D are influenced

by genetic and poorly defined environmental factors (201–204).

The latter include viral infections, and dysbiosis of gut microbiota,

which are events that can be impacted by inflammasome activity

(16, 201, 205).

Studies using murine models of T1D show that NLRP3

regulates the diabetogenic response (Figure 4). In non-obese

diabetic (NOD) mice, which spontaneously develop b cell

autoimmunity and overt diabetes, NLRP3 deficiency results in a

reduced incidence of diabetes (123). This attenuated diabetes is due

in part to NLRP3-/- APC having a decreased capacity to promote

Th1 cell differentiation; Th17 cell differentiation, however, is

unaffected. Importantly, NLRP3-/- b cells exhibit decreased

production of IL-1b and chemokines such as CCL5, and CXCL10

(123). The latter limits migration into the islets by immune effectors

including diabetogenic T cells (123) (Figure 4). Interestingly,

limited IL-1b production leads to reduced activation of interferon

regulatory factor 1 (IRF1) that is needed for b cell expression of

CCL5 and CXCL10. Diminished IL-1b secretion by b cells is also

expected to aid b cell viability and function, as well as enhance the

maintenance and function of protective Foxp3+Treg in the islets.

Notably, upregulation of NLRP3 and IL-1b is also detected in

human b cells upon LPS and ATP stimulation in vitro (206). A

regulatory function for NLRP3 in the disease process is also seen in

a multiple low dose streptozotocin (MLD-STZ)-induced model of

T1D. Here, progression of b cell autoimmunity is reduced in MLD-

STZ treated C57BL/6 mice lacking NLRP3 expression (207). In this

model NLRP3 is activated in macrophages residing in the draining

pancreatic lymph nodes (PLN) by mitochondrial DNA (mtDNA)
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that is released following STZ treatment. NLRP3 activation results

in increased caspase-1 activity, and IL-1b production, which drives

expansion of pathogenic Th1 and Th17 cells and the induction of

diabetes. The PLN are a key site for priming of diabetogenic CD4+

and CD8+ T cells. Interestingly, plasma levels of mtDNA are

increased in T1D versus healthy subjects, which is expected to

contribute to systemic inflammasome activation (208). Indeed,

circulatory mtDNA induced by MLD-STZ in mice activates

NLRP3 in endothelial cells via Ca2+ influx and mitochondrial

ROS generation, which leads to endothelial dysfunction and

vascular inflammation (208). Vascular inflammation is a key

driver of complications that develop in T1D. Together these

studies indicate that NLRP3 promotes pathological events driving

b cell autoimmunity. Nevertheless, mechanisms by which NLRP3

mediate effects are likely to be complex and cell dependent. For

instance, disease progression in NODmice is unaffected by caspase-

1 deficiency (209, 210), and only minimally affected by IL-1R

ablation (211).

In contrast to NLRP3-deficient C57BL/6 (207), MLD-STZ

enhances diabetes development in AIM2-deficient C57BL/6 mice

(124). Interestingly, disease exacerbation in the AIM2-/- mice is

mediated by enhanced intestinal permeability, alterations in the gut

microbiota, and increased bacterial translocation to the PLN where

CD4+ Th1 and CD8+ Tc1 are readily expanded (Figure 4).

Importantly, AIM2 deficiency results in decreased maturation of

IL-18 which is needed to maintain intestinal barrier function (124).

On the other hand, reduced NLRP3 expression in colonic NOD
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mouse tissue is associated with decreased microbiota dysbiosis,

enhanced intestinal barrier function and diabetes prevention (125,

126). It is well established that dysbiosis within the gut microbiota

significantly affects disease progression in NOD mice, and clinical

findings suggest similar effects may also occur in T1D subjects (16,

205, 212–215). These studies provide evidence that inflammasomes

may play a key role in regulating T1D progression in part via effects

on gut microbiota and intestinal barrier function (16). Studies have

reported that gut microbiota composition and/or intestinal barrier

permeability are also influenced by other inflammasome molecules

such as NLRP6 (216), NLRC4 (217), NLRX1 (218, 219), and

NLRP12 (220, 221). Further investigation is necessary to elucidate

the connection between inflammasomes, gut microbiota

homeostasis, and autoimmunity.
Systemic lupus erythematosus and the
role of inflammasome activity in
widespread inflammation

SLE is a chronic autoimmune disease with diverse clinical

manifestations. Development of SLE is influenced by genetic,

hormonal, and environmental factors that lead to dysregulation of

mechanisms of innate and adaptive-mediated self-tolerance. The

autoimmune response is characterized by the generation of anti-

nuclear autoantibodies, tissue deposition of immune complexes,

increased type I IFN production, and inflammation in multiple
FIGURE 4

The roles of inflammasomes in type 1 diabetes (T1D). Under homeostasis, healthy intestinal epithelial cells maintain intestinal barrier function and
regulate permeability to prevent passage of harmful elements such as microorganisms and toxins. AIM2 serves a protective function (indicated by the
red arrow). Dysregulation of inflammasome function, such as AIM2 deficiency, leads to reduced production of IL-18, which is necessary for
maintaining intestinal barrier function. Consequently, inflammasome dysregulation enhances intestinal permeability and triggers inflammation. On the
other hand, NLRP3 is linked to dysbiosis within the gut microbiota, which can exacerbate T1D progression. In the pancreatic lymph node (PLN),
upregulation of NLRP3 in APC promotes IL-1b production that ultimately drives differentiation of diabetogenic CD8+ Tc1, CD4+ Th1, and Th17 cells. In
the pancreatic islets, NLRP3 hyperactivity in b cells induces release of cytokines and chemokines. These conditions combined with other
immunomodulatory factors establish a positive feedback loop to further perpetuate pancreatic inflammation. Macrophage (MP), dendritic cell (DC),
antigen-presenting cell (APC). The figure was prepared using Biorender software licensed to the UNC Lineberger Comprehensive Cancer Center.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1154552
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ke et al. 10.3389/fimmu.2023.1154552
organs with the kidneys being the most commonly affected (222).

CD4+ T cells such as Tfh cells are key drivers of the autoantibody

response, and Th17 cells, found infiltrating the kidneys and skin

contribute to tissue damage (223). Innate effectors such asmonocytes,

macrophages, DC and neutrophils also play roles in mediating the

systemic inflammation and tissue damage in SLE (223).

The etiology of SLE is not fully understood but evidence from

humans and animal models indicate that inflammasomes

contribute to disease progression (Figure 5). Inflammasome

components are typically upregulated in kidney biopsies from

SLE patients, and NLRP3, IL-1b and IL-18 are increased in SLE

patient macrophages, peripheral blood mononuclear cells (PBMC),

and serum (133, 134). A critical meditator of pathology in SLE are

anti-nuclear autoantibodies (ANA) that target endogenous dsDNA

and ribonucleoproteins (RNP) (224). Immune complexes (IC) of

dsDNA upregulate NLRP3 and caspase-1 activity leading to

increased IL-1b production by monocytes and macrophages of

SLE patients (225). Here, the IC activates TLR9, a DNA sensor,

which subsequently upregulates NF-kB and primes inflammasome

assembly via increasing NLRP3 and pro-IL-1b (225). Upon IC
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binding, TLR9 also promotes mitochondrial ROS production and

K+ efflux and subsequent NLRP3 activation. Notably, SLE

monocytes stimulated with dsDNA-antibody complexes readily

promote differentiation of Th17 cells, which is also seen in vivo in

lupus-prone NZBW/F1 mice injected with anti-dsDNA

autoantibodies from SLE patients (224). Similarly, autoantibody

complexes of U1-small nuclear RNP (U1-snRNP) activate the

NLRP3 inflammasome involving cytoplasmic RNA sensors TLR7

and TLR8 signaling in human monocytes (226). Antibody

complexes of endogenous snRNP also induce production of

macrophage migration inhibitory factor (MIF) in human

monocytes, which enhances NLRP3 activation and IL-1b
production (227). Interestingly, the context of nucleic acid uptake

appears to determine the identity of the inflammasome molecule

being engaged. For instance, unbound dsDNA, normally found at

high levels in SLE patient serum, is taken up by monocytes via

macropinocytosis, which activates AIM2 as well as NLRP3 (135).

Uptake of free nucleic acid, however, requires antibody to be

internalized by macropinocytosis but not Fc receptor (FcR) (135).

On the other hand, internalization of dsDNA/snRNP autoantibody
FIGURE 5

The roles of inflammasomes in systemic lupus erythematosus (SLE). Upregulation of NLRP3 inflammasome in macrophages (MP) and DC by DNA or
RNA immune complexes (IC) or small nuclear ribonucleoprotein (snRNP) leads to release of proinflammatory cytokines such as IL-1b, IL-18 and
IFNa. Dysregulation of inflammasomes in APC also promotes Th17 and Tfh cell differentiation. Tfh cells and IFNa facilitate B cell maturation and
autoantibody production. However, production of IFNa is regulated by AIM2-mediated pyroptosis (indicated by red arrows). Deposition of IC,
infiltrating Th17 cells, and production of autoantibodies and cytokines all contribute to tissue damage. IL-18 activates NETosis in neutrophils and in
turn upregulates NLRP3 and IL-1b and IL-18 secretion in macrophages via cathelicidin antimicrobial peptide (LL37)-driven K+ efflux mediated by the
P2X7 receptor (P2X7R). These cytokines further induce pyroptosis and release of cellular and nuclear contents, leading to the production of anti-
nuclear autoantibodies and further amplifying systemic inflammation. Inflammasome activation in cells of target tissues, such as kidney resident
podocytes also contributes to disease pathology by producing IL-1b. The figure was prepared using Biorender software licensed to the UNC
Lineberger Comprehensive Cancer Center.
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complexes via FcR may favor activation of NLRP3, and possibly

NLRC4 as seen in RA (105). In each of the aforementioned

scenarios, IL-1b and IL-18 are secreted to maintain/amplify

inflammation. Furthermore, induced pyroptotic death and release

of cellular and nuclear contents lead to the production of ANA to

further fuel the autoimmune response (228, 229).

Aberrant clearance of neutrophil extracellular traps (NETs) is also

linked with the pathogenesis of SLE and inflammasome activation

(Figure 5). NETs are a network of chromatin fibers containing anti-

microbial peptides such as LL37 and enzymes that participate in host

defense (230). NETs are primarily released by activated neutrophils

that undergo NETosis, a programmed cell-death mechanism (231).

Notably, NETs activate NLRP3 inflammasome and IL-1b and IL-18

secretion inmacrophages from SLE patients via LL37-driven K+ efflux

mediated by the P2X7R (136). Furthermore, IL-18 activates NETs and

promotes NETosis suggesting that a feed-forward loop exists that

helps to maintain inflammation (136).

Monocytes from SLE patients versus healthy controls exhibit

enhanced NLRP3 activation and IL-1b secretion (138, 139). This

hyperactivity is attributed to chronic IFNa stimulation of

monocytes. Elevated type I IFN-induced gene expression

“signatures” correlate with the presence of autoantibodies,

nephritis, and disease activity (232). Prolonged IFNa exposure in

vivo induces NLRP3 hyperactivity by an IRF1 signaling pathway

(138). However, consistent with other studies (233), short-term

IFNa exposure of monocytes blocks NLRP3 activation (138). The

latter, importantly, indicates that chronic type I IFN stimulation can

have distinct effects on inflammasome activation.

The study of different murine lupus models provides further

evidence that inflammasomes regulate SLE pathogenesis. Mice

deficient in caspase-1 expression versus wild-type mice exhibit

reduced autoantibody production, a limited IFN signature, as well

as diminished NETosis and kidney pathology induced by pristane

administration (136). In addition, blocking the P2X7R significantly

impacts the development of spontaneous lupus in MRL/lpr mice.

Here, limiting NLRP3 activation reduces the production of anti-

dsDNA autoantibodies and IL-1b, and decreases Th17 cell expansion
and the severity of nephritis (234). Furthermore, various drugs that

inhibit NLRP3 inflammasome activation attenuate disease severity in

different lupus mouse models (137, 235–237). On the other hand,

nephritis induced by pristane treatment is exacerbated in mice in

which myeloid cells selectively express a transgene encoding a

hyperactive Nlrp3R258W mutant protein (238).

In addition to immune effector cell types, inflammasome

activation in target tissues also contributes to disease pathology

(Figure 5). Endothelial cells, basement membrane, and podocytes

form a glomerular filtration barrier, which is essential for

maintaining kidney function (239). In NZM2328 mice, which

spontaneously develop lupus nephritis, severe proteinuria

correlates with increased activation of NLRP3 and caspase-1 as

well as IL-1b secretion by glomerular podocytes (141, 142).

NZM2328 mice treated with MCC950, an NLRP3 inhibitor,

exhibit reduced NLRP3 activation by podocytes, and attenuated

renal tissue damage and proteinuria (141, 142).

Depending on the lupus model, inflammasome molecules have

also been shown to play a protective role. In C57BL/6lpr/lpr mice,
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which develop mild lupus, deficiency of NLRP3 or ASC exacerbates

pathology marked by an increase in activated macrophages and DC

and production of proinflammatory cytokines, and T and B cell

proliferation but no effect is seen on autoantibody production (240).

This enhanced pathology is marked by reduced SMAD2/3

phosphorylation during TGF-b receptor signaling, and consistent

with the role of TGF-b1 as a key regulator of immune homeostasis

(240). In this scenario, it is likely that NLRP3 or ASC serve

functions independent of classical inflammasome activation (see

below), consistent with the observation that IL-1R- or IL-18-

deficiency in C57BL/6lpr/lpr mice does not exacerbate pathology.

Studies have indicated that AIM2 may also serve a protective

role in lupus by negatively regulating type I IFN production. In

B6.Nba2 mice, which spontaneously develop lupus nephritis, p202,

another IFN-inducible p200 family member is up-regulated (241,

242). Notably, p202 blocks AIM2 inflammasome assembly, and

pyroptosis-mediated cell death. Consequently, p202 or other

dsDNA sensors such as cyclic GMP-AMP synthase (cGAS), bind

cytosolic DNA to promote prolonged type I IFN production that

would be normally terminated by AIM2-induced pyroptosis (243).

Regulation of pyroptosis has also been found to impact other

aspects of the autoimmune response driving lupus nephritis.

Pristane-induced lupus nephritis is exacerbated in mice lacking T

cell expression of the P2X7R (140). Here, the P2X7R normally

mediates GSDMD-driven pyroptosis of Tfh cells, which then limits

differentiation of autoantibody secreting plasma cells in the

germinal centers. Together these findings demonstrate the

complexity of the roles inflammasomes have in both promoting

and suppressing the autoimmune response of SLE.
Alternative roles of inflammasome
molecule-mediated regulation

Classical inflammasome activation and induction of a

proinflammatory response contributes to autoimmunity in a variety

of ways as described above. It is becoming apparent, however, that

inflammasomemolecules also serve regulatory functions independent

of typical inflammation-driving events (Table 2). Caspase-1 for

instance, in addition to being involved in the maturation of IL-1b
and IL-18, has been shown to modulate protein secretion, cell death,

and lysosomal function in many cell types such as neurons,

hepatocytes, epithelial cells, and cardiomyocytes (244–251). These

alternative roles for inflammasome molecules have been linked to

regulation of immune effector cells such as T and B cells, as well as

non-immune tissue-resident cell types. Accordingly, some of these

events have been reported to be directly involved in the progression of

autoimmunity, and/or can be expected to contribute to an

autoimmune response.
ASC: A regulatory function in CD4+

T cells

ASC has a T cell intrinsic effect regulating the production of IL-

1b needed to maintain CNS-resident Th17 cells in EAE. Recent
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findings indicate that ASC also regulates properties of murine CD4+

T cells independent of classical inflammasome activation and IL-1b
maturation (252). ASC is constitutively expressed in naïve CD4+ T

cells, and after anti-CD3/CD28 antibody stimulated TCR signaling,

ASC is upregulated but no IL-1b or IL-18 secretion is detected

(252). Naïve CD4+ T cells lacking ASC expression normally

differentiate in vitro into Th1, Th2, Th17, Th9, and Foxp3+Treg

subsets under polarizing conditions (252). Notably, recombination

activation gene (Rag)-deficient mice develop more severe colitis

after transfer of ASC-/- CD4+ T cells versus wildtype, NLRP3-/-, or

Caspase1-/- CD4+ T cells (252). This increased pathogenic function

of ASC-/- CD4+ T cells is marked by enhanced TCR signaling in

vitro, elevated lymphopenic proliferation in vivo, and an increased

metabolic state marked by higher glycolytic flux and increased

glucose transporter 1 (Glut-1) surface expression (252). These

findings suggest a negative regulatory function for ASC in CD4+

T cell TCR signaling, proliferation, and metabolism. The

mechanism(s) by which ASC regulates these events still needs to

be defined. Nevertheless, one could envision a scenario in which

dysregulation of alternative ASC function enhances the pathogenic

potential of autoreactive CD4+ (and possibly CD8+) T cells to aid

autoimmune disease progression.
NLRP3 and Th2 cell differentiation

NLRP3 has also been found to have T cell-intrinsic effects

independent of classical inflammasome activation. Specifically,

NLRP3 positively regulates Th2 subset differentiation (253). Upon

TCR stimulation by anti-CD3/CD28 antibody, expression of

NLRP3 is increased in both Th1 and Th2 cells, due in part to IL-

2 induced STAT5 activity (253). However, NLRP3-deficiency

reduces Th2 but not Th1 cell differentiation (253). Importantly,

ASC or caspase-1 deficiency has no effect on NLRP3-mediated Th2

lineage differentiation ruling out a role for classical NLRP3

inflammasome activity (253). Findings indicate that NLRP3

functions as a transcription factor regulating Il4 transcription

(253). Here, NLRP3 forms a complex with the transcription
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factor IRF4, that enhances the binding of the IRF4 to the Il4

promoter; however, NLRP3 alone is insufficient to mediate Il4

transcription (253). Notably, induction of asthma, which is Th2

cell-dependent, is reduced in NLRP3-deficient mice (253).

Furthermore, NLRP3-/- mice also more readily reject implanted

B16F10 tumor cells due to an elevated Th1 cell response (253). In

wildtype recipients, increased differentiation of Th2 cells permits

the progression of B16F10 tumors (253). In the case of

autoimmunity, aberrant Th2 cell differentiation has been

associated with skewed development of Th1 and Th17 cells,

which drive the pathology in MS, RA, T1D and SLE (254).

Accordingly, aberrant expression and/or function of NLRP3 that

is independent of inflammasome activity, may favor the

development of pathogenic autoreactive Th1 and Th17 effectors.

For instance, reduced IL-2 signaling and STAT5 activation, which is

associated with T1D (255), would be expected to limit Nlrp3

transcription and Th2 cell differentiation.
Roles of AIM2 independent of
inflammasome activation

Studies demonstrate that AIM2 displays a number of alternative

functions independent of inflammasome activation in various cell

types, that affect the progression of autoimmunity. Recently, AIM2

was shown to have a T cell-intrinsic role in regulating peripheral

Foxp3+Treg (256). AIM2 is highly expressed in murine and human

Foxp3+Treg, and AIM2 expression is upregulated by TGF-b1
stimulation (256). TGF-b1 is required for peripheral

differentiation of CD4+ T cells into Foxp3+Treg (257). In AIM2-

deficient C57BL/6 mice, MOG35-55-induced EAE is exacerbated

characterized by increased Th1 and Th17 cell infiltration, and a

reduction in the frequency of Foxp3+Treg in the CNS (256). A

diminished local pool of Foxp3+Treg favors the expansion and

effector function of encephalitogenic Teff (256, 257). Foxp3+Treg

are unaffected by ASC-deficiency, indicating that the role for AIM2

is inflammasome-independent (256). Notably, AIM2 in

Foxp3+Treg attenuates AKT activation, and downstream mTOR
TABLE 2 Alternative functions of inflammasome molecules in autoimmunity.

Inflammasome involved Alternative mechanism Associated diseases

ASC Affects Th17, IL-1b maturation MS

NLRP3
↑Th2 differentiation MS

↑TGF-b signaling SLE

AIM2

↓Microglia inflammation

MS↑AIM2 in astrocytes in EAE model
Maintains Foxp3+Treg function

Regulates Th1/Th17 differentiation

↑Tfh differentiation
SLE

↑AIM2 in GC B cell, memory B cells, and plasma cells from SLE patients
Multiple sclerosis (MS); experimental autoimmune encephalomyelitis (EAE); systemic lupus erythematosus (SLE); germinal center (GC).
“↑” indicates increased activity of a given molecule. “↓” indicates reduced activity of a given molecule.
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and MYC signaling that leads to glycolysis (256). Normal

Foxp3+Treg differentiation and lineage maintenance is achieved

under metabolic conditions favoring oxidative phosphorylation of

lipids (256). On the other hand, glycolysis negatively impacts

Foxp3+Treg stability and function (256). AIM2 serves to maintain

Foxp3+Treg under proinflammatory conditions by forming a

complex consisting of the adaptor protein receptor for activated

C kinase 1 (RACK1), and the protein phosphatase 2 (PP2A)

phosphatase that blocks AKT phosphorylation (256).

AIM2 has also been reported to regulate Tfh independent of

inflammasome activation (258). Tfh from blood and skin lesions of

SLE patients express elevated levels of AIM2. In mice in which

AIM2 is conditionally ablated in T cells, the severity of pristane-

induced lupus nephritis is reduced relative to control animals. The

latter corresponds with a decreased Tfh pool. Notably, AIM2

regulates Tfh differentiation through an interaction with

transcription factor c-MAF, that in turn is needed to promote

Il21 gene transcription (258). Interestingly, Aim2mRNA expression

is upregulated by IL-21 stimulation suggesting that AIM2

participates in a feed-forward loop promoting Tfh differentiation

and function.

In addition to T cells, AIM2 has been shown to have a B cell-

intrinsic effect independent of inflammasome activation. SLE

patients exhibit elevated AIM2 expression in germinal center

(GC) B cells, memory B cells and antibody secreting plasma cells

prepared from the tonsils, blood and/or skin lesions (259).

Furthermore, pristane-induced lupus nephritis is attenuated in

mice in which AIM2 is conditionally ablated in B cells. Limited

disease is reflected by diminished numbers of GC B cells, and

plasma cells. Findings suggest that AIM2 is an upstream regulator

of the Blimp1-BCL6 transcriptional axis, which drives GC B cell and

plasma cell differentiation (259).

AIM2 also serves a protective role in EAE by limiting the

inflammatory properties of brain-resident microglia (151).

Whereas ASC-deficiency in mice attenuates EAE as discussed

above, AIM2-deficiency exacerbates EAE severity. Furthermore,

selective ablation of AIM2 in microglia is sufficient to enhance

the encephalitogenic response. In microglia, AIM2 negatively

regulates a proinflammatory phenotype by suppressing the

activity of DNA-dependent protein kinase (DNA-PK) and

downstream activation of AKT3. Inhibition of AKT3 reduces

phosphorylation of the key transcriptional factor IRF3, which

blocks the production of chemokines, type I IFN, and the

expression of antigen presentation molecules by microglia (151).

AIM2 similarly inhibits DNA-PK and AKT activation in colon

epithelial cells to protect mice from colitis and colon cancer (260).

Interestingly, a recent study provides evidence that AIM2 has

an alternative role in an EAE model independent of robust

classical inflammasome activation (152). Through the use of a

novel reporter mouse to track inflammasome activation in situ,

AIM2 activation is seen to be prevalent in astrocytes but not CNS

infiltrating monocytes and macrophages. Despite elevated AIM2

expression, no marked Il1b expression and cell death are detected in

astrocytes (152). The role of AIM2 in this scenario needs to be

further defined.
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Targeting inflammasome molecules to
prevent/treat autoimmunity

Inflammasome molecules offer an appealing target for

immunotherapy and the treatment of autoimmunity. Several

inhibitors targeting inflammasome-related molecules have been

identified, developed, and tested in preclinical studies or clinical

trials (Table 3). MCC950, a small-molecule inhibitor, specifically

binds to the Walker B motif of the NACHT domain of NLRP3 to

block function (287). Therapeutic efficacy and safety of MCC950

and analogs (Inzomelid and Somalix) have been assessed in several

precl inical studies with promising results (288–294)

(TrialTrovelID-368867; TrialTrovelID-360928). Nevertheless, a

phase II clinical trial for RA showed that MCC950 has safety

concerns related to elevated serum liver enzyme levels. Other

NLRP3 inhibitors are currently being evaluated in animal studies

of EAE (264, 266, 272, 279).

Caspase-1 is another key target for therapeutic intervention of

autoimmunity. VX-765 (belnacasan), a caspase-1 inhibitor, blocks

GSDMD-mediated pyroptosis, reduces inflammasome-associated

proteins in the CNS, and attenuates EAE in mice (275). However,

testing of the related caspase-1 inhibitor VX-740 was discontinued

in a RA clinical trial due to the liver toxicity observed in animal

models (295). Inhibiting GSDMD by necrosulfonamide reduces

neuroinflammation and necroptosis in collagenase VII-induced

mouse intracerebral hemorrhage model (277). In addition,

dimethyl fumarate, an immunosuppressive drug used for the

treatment of recurrent remission MS and plaque psoriasis

promotes succination of GSDMD, which in turn disrupts the

interaction with caspase-1 and blocks pyropotosis (278).

Disulfiram, a drug used for alcohol addiction treatment, blocks

pore formation by targeting Cys191/Cys192 in GSDMD (261).

IL-1b, which is associated with the pathogenesis of several

autoimmune diseases, has been therapeutically targeted. Two

FDA-approved biologics that block IL-1 activity have been

clinically tested. Anakinra is a recombinant human IL-1R

antagonist mainly applied for the treatment of RA. Due to a short

half-life and low response rate compared to other treatments

available, the usage of anakinra is limited, and efficacy is selective.

For example, anakinra shows no efficacy for the treatment of T1D

and Sjogren’s disease. Canakinumab is an anti-IL-1b neutralizing

monoclonal antibody and has shown efficacy in RA and systemic

juvenile idiopathic arthritis but no benefit for recent onset T1D

patients (285, 296). IL-18 blockers have also been established but

have not been applied for the treatment of autoimmunity.

Summary/conclusions

The evidence at hand establishes roles for classical

inflammasome activated inflammation and alternative pathways

regulated by inflammasome molecules in autoimmunity.

Inflammasome molecules have been implicated in human MS,

RA, T1D and SLE, and shown in corresponding disease models to

override and/or maintain self-tolerance (Table 1). Intrinsic and
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extrinsic effects on both APC and other innate effectors as well as T

and B cells enables inflammasome molecules to establish the nature

and specificity of an autoimmune response. Similarly,

inflammasome molecules have intrinsic and extrinsic effects that

alter the cellular integrity of tissues, independent of immune

effectors. In a given tissue, inflammasome activity can impact

inflammation by initiating and/or further driving a local

autoimmune response, which in turn may be influenced by

induction of pyroptosis versus PANoptosis cell death pathways.
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Alternatively, dysregulated inflammasome function can have more

broad effects. This is seen with aberrant inflammasome activity

reducing intestinal barrier function, which results in shifts within

the microbiota composition that can impact the production of

systemically released metabolites and favor proinflammatory versus

immunoregulatory events (214).

The key events that drive inflammasome molecule activity in

autoimmunity are poorly understood. What is apparent, however, is

that multiple pathways and mechanisms exist to induce activation,
TABLE 3 Therapeutic strategies targeting inflammasomes for autoimmunity.

Targeted inflammasome-associated molecule Therapeutic Disease Ref

Upstream signal of NLRP3 Disulfiram MS (261)

NLRP3

MCC950

MS (262)

RA (99)

SLE (141)

1,2,4-trimethoxybenzene MS (263)

OLT1177
MS (264)

RA (265)

RRx-001 MS (266)

JC171 MS (267)

Tranilast RA (268)

A20 RA (104)

Curcumin SLE (236)

Melatonin SLE (137)

Piperine SLE (269)

Citral SLE (270)

AIM2 Myricitrin RA (271)

ASC

IC100 MS (272)

Lonidamine MS (273)

Spirodalesol analog 8A MS (274)

Caspase-1
VX-765 MS (275)

VX-740 RA (276)

GSDMD
Necrosulfonamide MS (277)

DMF MS (278)

NF-kB

BAY11-7082
MS (279)

SLE (280)

Methotrexate RA
(281)

NCT04464642

Icariin SLE (282)

Interleukin-1

Anakinra RA (283)

Canakinumab
RA (284)

T1D (285)

Gevokizumab T1D (286)
Multiple sclerosis (MS); rheumatoid arthritis (RA); type 1 diabetes (T1D); systemic lupus erythematosus (SLE); Gasdermin D (GSDMD).
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in part reflecting the specificity of different inflammasome

molecules. Poorly understood environmental factors known to

influence MS, T1D, RA and SLE are likely involved in inducing

inflammasome molecule activity. Release of PAMPs due to

microbial infections or DAMPs due to cytotoxic effects of drugs,

toxins, or UV irradiation for example, are obvious candidates to

engage classical inflammasome-mediated inflammation.

Polymorphisms in various inflammasome genes may also

contribute to the polygenic influence on the development of MS,

T1D, RA and SLE. Genetic analyses show that single nucleotide

polymorphisms (SNPs) in genes encoding sensor molecules (i.e.

NLRP1, NLRP3, AIM2) and inflammasome-related proteins (i.e.

PYCARD, CASP1) are linked with susceptibility to and/or response

to therapy for MS, T1D, RA and SLE (75, 78, 98, 119, 120, 153, 297–

303). However, whether the disease-linked SNPs override the

normally tight regulation of gene expression and/or function of

inflammasome molecules needs to be ascertained. Inflammasome

activity is also the consequence of collateral damage induced by

autoimmunity. Autoimmune-mediated cytotoxicity leads to the

release of DAMPs and a proinflammatory milieu induces local

cellular stress affecting metabolism and mitochondrial function for

instance, that drive inflammasome molecule activity.

The relative contribution(s) inflammasome molecule activity

has in autoimmunity is poorly understood. Questions of whether

inflammasome molecules mediate initiating events and/or

modulate the progression and severity of autoimmunity need to

be addressed. Environmental insults have typically been proposed

to initiate autoimmunity where inflammasome activation is likely to

occur (Table 1). Alternatively, sterile inflammation driven by

metabolically stressed cells may stimulate dysregulated

inflammasome activity and initiate autoimmunity. Pancreatic b
cells are susceptible to metabolic stress due high levels of insulin

expression and secretion (304, 305) that may lead to NLRP3

activation, for example. Reports showing that inflammasome

expression and activity are upregulated in MS, T1D, RA and SLE

patients suggest a role in at least supporting disease progression.

Feed-forward loops in which inflammasome molecule activity are

self-sustaining as well as promoting autoimmune reactivity and

vice versa have been described. The use of murine models

of spontaneous autoimmunity coupled with cell-specific

and inducible expression systems will be helpful in further

defining the contribution in the disease process for a given

inflammasome molecule.

Of keen interest moving forward is defining regulation of

inflammasome molecule-mediated events that are independent of

classical activation of inflammation (Table 2). A hint to the

complexity that is involved is exemplified by AIM2. As discussed

above AIM2 regulates peripheral Foxp3+Treg differentiation by

blocking AKT signaling through a AIM2-RACK1-PP2A complex

(256). On the other hand, AIM2 suppresses colon carcinoma by

binding to and inhibiting DNA-PK and downstream AKT signaling

events needed for colon epithelial cell transformation (260).

Therefore, depending on the cell-type, AIM2 inhibits PI3K-AKT

signaling but via distinct complexes and mechanisms. Furthermore,

AIM2 is reported to interact with the c-MAF transcription factor to

positively promote Tfh differentiation (258). The nature of the
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signaling events that stimulate alternative inflammasome molecule

activity, and the outcome of that activity in immune and non-

immune cel l types are important issues that require

continued investigation.

To date, the therapeutic benefit of inhibiting inflammasome

activation has mostly been demonstrated in animal disease models

with limited success in the clinic (Table 3). The general lack of

efficacy may reflect the timing and relative contribution of an

inflammasome molecule in a given autoimmune disease. For

instance, inflammasome activation may play a prominent role

early in a disease process. Therefore, targeting inflammasome

activity once an autoimmune response is well established, which

is typical in the clinic, may have only a minimal effect. There is the

important concern that inhibiting a given inflammasome molecule,

particularly long-term, may compromise immunity against

pathogens. Therefore, both efficacy and safety may be enhanced

by combining an inflammasome-based approach with other types

of immunotherapies. For example, limiting ongoing inflammation

by blocking inflammasome activity may enhance the efficacy of

antigen-based immunotherapy and induction of protective Treg.

The etiology of MS, T1D, RA and SLE is highly complex, and ill-

defined. Establishing the roles of inflammasome activity in

autoimmunity will aid our understanding of the mechanisms that

drive these disease processes, as well as provide the impetus for the

development of novel strategies of immunotherapy for disease

prevention and treatment.
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