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A high tumor mutation burden (TMB) is known to drive the response to immune

checkpoint inhibitors (ICI) and is associated with favorable prognoses. However,

because it is a one-dimensional numerical representation of non-synonymous

genetic alterations, TMB suffers from clinical challenges due to its equal

quantification. Since not all mutations elicit the same antitumor rejection, the

effect on immunity of neoantigens encoded by different types or locations of

somatic mutations may vary. In addition, other typical genomic features,

including complex structural variants, are not captured by the conventional

TMB metric. Given the diversity of cancer subtypes and the complexity of

treatment regimens, this paper proposes that tumor mutations capable of

causing various degrees of immunogenicity should be calculated separately.

TMB should therefore, be segmented into more exact, higher dimensional

feature vectors to exhaustively measure the foreignness of tumors. We

systematically reviewed patients’ multifaceted efficacy based on a refined TMB

metric, investigated the association between multidimensional mutations and

integrative immunotherapy outcomes, and developed a convergent categorical

decision-making framework, TMBserval (Statistical Explainable machine learning

with Regression-based VALidation). TMBserval integrates a multiple-instance

learning concept with statistics to create a statistically interpretable model that

addresses the broad interdependencies between multidimensional mutation

burdens and decision endpoints. TMBserval is a pan-cancer-oriented many-

to-many nonlinear regression model with discrimination and calibration power.

Simulations and experimental analyses using data from 137 actual patients both

demonstrated that our method could discriminate between patient groups in a

high-dimensional feature space, thereby rationally expanding the beneficiary

population of immunotherapy.

KEYWORDS

clinical immunology, multidimensional tumor mutation burden, multiple instance
learning, categorical decision-making, statistical interpretability, model calibration
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1 Introduction

Tumor mutation burden (TMB), typically reported as the

number of non-synonymous mutations per mega-base (1–4), has

a positive probabilistic link with the neoantigens that embody the

antitumor rejection (5–7). TMB-high is widely recognized as a

clinically available biomarker, driving sustainable responses to

immune checkpoint inhibitors (ICI) and being implicated in

better prognosis (8, 9). However, the fact that it is a one-

dimensional numeric representation has attracted criticism, since

it provides a limited portrayal of genetic potential (10). Single

nucleotide variant (SNV) and insertion/deletion (Indel) are

treated identically by currently accepted TMB assays, with equal

weighting given to each mutation. A numerical index that merely

counts the overall number of sequence alternations may be

insufficient for steering immunotherapy decisions, since many

studies have shown that different genomic mutations trigger

different immunotherapeutic responses. For example, it has been

demonstrated that Indel-derived neoantigens are highly

immunogenic and enriched in mutant-binding specificity relative

to SNV-derived neoantigens (11); this in intuitive, since even a

minor Indel can cause a frameshift variant, yielding additional

neopeptides or neoepitopes. In addition, somatic mutations in

various DNA repair pathways or clonal structures can also cause

the generation of diverse neoantigens with unique antitumor

immune functions (12–14). Niknafs et al. (15) further revealed

that mutations located in single-copy regions or present in multiple

copies in the cancer genome—which are unlikely to be lost—are

referred to as persistent TMB and act as intrinsic drivers of

sustained immunological tumor control. Other potential sources

of neoantigens, such as complex structural alterations, are also not

captured by TMB. Consequently, the TMB index cannot adequately

explain the manifestation of neoantigens.

Given the narrow representativeness, researchers have suggested

separate counts of genomic mutations that are indicative of distinct

forms of antitumor immunogenicity (10). Thus, the one-dimensional

index must be partitioned into vectors with higher dimensions.

Stratification of clinical cohorts is facilitated by a systematic

examination of immunotherapy outcomes based on refined TMB

vectors, yielding a convergent decision-making framework from

multidimensional mutations to multifactorial efficacy. However,

extant statistical models cannot satisfy the requirements for fusion

modeling due to the consequent computational challenges. The

mutual exclusion and co-occurrence of multidimensional mutations

must be considered first (16–18). Meanwhile, the clinical endpoints of

immuno-oncology are often complicated and varied (19, 20). They

typically include measures such as the objective response rate (ORR)

and time-to-event (TTE), and TMB used to predict both (21). Diverse

decision endpoints may be potentially interdependent due to patient

homology, where associations fluctuate with cancer species and

therapeutic regimens (22–24). The intricate reliance between

multidimensional mutant targets and the relationship between

decision endpoints is a key computational hurdle. In addition,

existing mathematical methods struggle to overcome computational

constraints imposed by the nonlinear association between mutations
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and efficacy, especially for high-dimension datasets. For the joint

model previously proposed in TMBcat (25, 26), input modeling

remained linear in functional form, and thus this model

experienced information loss during the capture of nonlinear

information. However, establishing a coupled nonlinear regression

model between high-dimensional inputs and outputs will

significantly strain model parameter estimation. Thus, the TMBcat

formula, together with its explicit analytical solutions, will no longer

be applicable, and will result in prohibitive computational time and

cost expenses to obtain the first-order derivatives of the likelihood

function and the information matrix. This will make the process

unaffordable for practical applications. Furthermore, conventional

statistical methods are model-driven, meaning that their structure

must be specified a priori using empirical or analytical approaches

(27). Improper model assumptions can pose an unacceptable risk of

misspecification. Traditional numerical approaches therefore make it

challenging to establish reasonable, many-to-many, nonlinear

regression models for non-independent high-dimensional input

covariates and non-independent dependent variables.

It is also noteworthy that the objective of clinical practice is

effective categorical decision-making, and there is an urgent need of

a definitive and impeccable decision-supporting criterion based on

dependable predictive biomarkers, i.e., joint multi-categorization

thresholds. Therefore, the focus of this paper is to investigate the

categorization boundaries that form authentic patient subgroups for

immunotherapy cohorts in large populations and to establish a map

of high-dimensional categorization thresholds for patient

subgroups. Undoubtedly, statistical models will confront the

combinatorial explosions that stem from threshold demarcation

of high-dimensional mutational burdens. Models can dichotomize

or multi-categorize patients based on single decision targets if given

specific decision criteria. Yet when more than one decision

biomarker is accessible, the intersection and/or union of multiple

burdens cannot be carried out immediately. As shown in Figure 1,

the fixed cut-offs of two mutation burdens are somewhat arbitrary,

and neither intersection nor union can optimally distinguish

between responders and non-responders. It goes without saying

that as more biomarkers are included, the number of patient

subgroup combinations grows factorially, a rate that standard
FIGURE 1

Differentiation of SNV and Indel burden for patient tumor response.
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models cannot handle effectively. Therefore, exploring the

underlying association between high-dimensional mutational

burdens and ICI presents a key technical challenge.

In summary, here we attempt to build a pan-cancer-oriented

many-to-many nonlinear regression model to rationally map

synergistic mutational burdens to fusion endpoints for the rapid

prediction and classification of unseen patients or patient subgroups.

To solve the technical challenges discussed above, we propose a

convergent categorical decision-making framework called TMBserval

(‘Statistical Explainable machine learning with Regression-based

VALidation’). On one hand, TMBserval leverages machine learning

techniques, such as artificial neural networks (ANN) to map from

multidimensional mutations to multiscale endpoints, thereby

addressing broad associations. It also uses multiple-instance

learning (MIL) concepts to build a prognostic prediction model

based on patient subgroups as opposed to individuals, thereby

facilitating categorical decision-making. On the other hand,

TMBserval also uses standard statistical criteria for discrimination

and calibration measures for the learning phase, which renders the

trained model more statistically interpretable and removes the black-

box phenomenon that is sometimes characteristic of machine

learning. This makes our model more accessible to clinicians. To

verify the predictive capacity of TMBserval, we conducted a series of

simulation experiments; these results supported the superiority of

TMBserval’s predictions for unseen patient/patient groups. We then

gathered a cohort of 73 patients with non-small-cell lung cancer

(NSCLC) and 64 patients with nasopharyngeal carcinoma (NPC)

who were treated at the Sun Yat-sen University Cancer Center

(SYUCC). The results of the cohort dataset further demonstrate the

applicability of the proposed model to clinical practice. Taken

together, TMBserval can achieve the optimization goal of rationally

categorizing patients and refining differences among patient

subgroups even in a high-dimensional feature space. The source

code to reproduce our results can be downloaded from https://

github.com/YixuanWang1120/TMBserval.
2 Materials and methods

This paper aims to establish a reasonable many-to-many

mapping relationship between non-independent input mutations

and non-independent output endpoints, thereby resulting in proper

categorization of ICI patients. In conventional statistical regression,

complex interdependencies across mutational variables and

relationships between decision endpoints can lead to

multicollinearity (28). In regression models showing high

multicollinearity, explanatory variables may exhibit convergence.

This means that different inputs may contribute to the same

variation in the dependent variable (29), making it difficult to

assess the effects of different independent variables and causing

the estimates of regression coefficients to no longer be valid and

unbiased. Furthermore, parameter variance estimates are

proportional to the inverse of the explanatory variables, and

collinearity can cause the matrix to converge to zero, thus

amplifying the magnitude of the variances. In this case, small
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perturbations in the sample can trigger large fluctuations in the

estimates, causing model instability and generalization errors. In

standard statistical analysis, Ridge or Lasso regression is frequently

used to solve this problem (30). However, these strategies produce

fundamentally biased estimators, as they seek equations with more

realistic estimated coefficients that are slightly less effective and

poorly interpretable. In contrast, oncology trials are explicitly

intended to investigate the association between mutational effects

and treatment outcomes; they therefore substantially rely on

coefficient unbiasedness to a greater degree than would otherwise

be the case.

Therefore, we consider the integration of machine learning

concepts with statistical approaches to address modeling

limitations in fusion decision-making. ANNs, as data-driven

methods, can include infinitely approximate nonlinear functions

of arbitrary form due to their nonparametric nature. Meanwhile,

the collinearity between mutations can be discerned within the

network (i.e., as similar weights between the input neurons and

hidden layers) without affecting prediction results and while

remaining free from the ill-conditioned problem that affects

traditional regression modeling (31). Thus, the modeling

intention of this paper is to obtain exhaustive and generalizable

categorization criteria for immunotherapy patients, thereby

identifying associations between mutational features that fall

within a particular threshold boundary and in a specific patient

group. Here we use multiple-instance learning (MIL) to construct a

prognostic prediction model based on patient subgroups instead of

individuals. This is not because individual labels are uncertain but

instead due to the necessity of establishing a broad categorization

standard. Also, information about individual patients is not simply

discarded but described by aggregated subgroup-level features.
2.1 Model specification

The multi-biomarker-multi-endpoint regression model

implemented using MIL concept is defined as follows.

Suppose a given training set consists of a total of N patients,

forming M patient subgroups, i.e., M bags fG1,G2 … GMg, with
subgroup m consisting of nm patients. Thus Gm = fxm1, xm2,…,

xmnmg, o
M

m=1
nm = N. Any individual patient’s feature vector consists of

multidimensional genomic mutations capable of triggering

different degrees of antitumor immunogenicity. In that case,

each pat ient xmi (i = 1,…, nm) i s represented by a d-

dimensional genomic mutation vector, and the ith patient of

the mth subgroup can be represented as: ½xm1, xm2,…, xmid�T .
Formally, a patient x characterized by a d-dimensional

mutational vector corresponds to a point in the instance space

X ⊆Rd , while subgroup G consists of numerous patients in this

space, i.e.,G = {xi∈X | i∈ { 1, ...,n}}. We further assume that each

patient has a prognostic label of yx. However, even in the training

set, these individual-level labels are unknown, and we observe only

the prognostic assessment results y for different patient subgroups.

MIL therefore provides theoretical support to realize the subgroup-

based training purpose of this paper.
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The concept of MIL was first introduced in 1997 by Dietterich

et al. (32) to predict drug activity. The training set consists of several

bags with labels; each bag contains several instances with unknown

labels. If at least one instance in a specific bag is a positive example,

it is labeled positively; otherwise, it is labeled negatively. Therefore,

the package is labeled as y = maxyx
x∈X

. In contrast, in our ICI categorical

decision-making model, the prognosis of each subgroup is

determined by the performance of the patient groups it comprises

and is evaluated using a variety of methods that correspond to

different clinical judgment criteria. The specific subgroup label

definitions that we consider for statistical interpretability are

described in detail in a subsequent subsection.

The task of MIL is to perform concept learning based on bags

with known labels in a training set to correctly label unseen bags

(33). Similarly, here we use a neural network (NN) with d input

units and one output unit for concept learning to properly identify

unseen patients/subgroups by using patient subgroups with known

labels in a training dataset. The structure of the NN can be

abstracted as an objective function f : x ! y. The optimization

goal is to establish a reasonable, many-to-one, or many-to-many,

nonlinear map between the feature vector ½xm1, xm2,…, xmid�T of

patient subgroups Gm = fxm1, xm2,…, xmnmg and their prognostic

label ym by minimizing the loss between the actual and desired

outputs. If successful, this would ensure that for any new patients or

subgroups, their labels can be accurately predicted. In general,

learning using supervised NN learners focuses on predicting

patient prognosis since all training instances are labeled under

supervision; this makes attaining the learning goal feasible.

However, for our categorical decision-making framework, the

emphasis on learning shifts from identifying patients to

distinguishing among subgroups. This is because the overall

prognosis of patients within a subgroup determines the output

label of that subgroup. Hence, the specific loss function for the

training process of TMBserval must be defined distinctly.
2.2 Discrimination and
calibration amelioration

Typically, the evaluation of regression model performance

involves considering both discrimination and calibration power.

Discrimination is the capacity of a model to accurately classify a

cohort of patients as superior or inferior or to identify individuals as

low risk or high risk. Calibration, on the other hand, refers to the

consistency between the likelihood of an outcome occurring and its

probability as predicted by the model; hence, this is also referred to

as consistency or goodness-of-fit. The former reflects whether the

model is capable of discriminating for the patient cohort, while the

latter reflects the accuracy with which a model predicts absolute

risk. For the proposed TMBserval, the discriminative power of the

model is captured by the ability of the prognostic labels used to

discriminate within the patient cohort, while the loss metric

function is responsible for optimizing model calibration.

With respect to discrimination, we obtained subgroup-level

labels by using the following approach. First, for the multi-
Frontiers in Immunology 04
biomarker-multi-endpoint regression model developed here,

repeatedly building joint regression models for prognostic labels

suffers from information redundancy. As stated previously, the joint

statistical model cannot be applied to the investigation of

multidimensional mutation burdens. However, repeatedly

building regression models can cause covariates with significant

effects to dominate the analysis, thereby weakening the effects of the

remaining covariates on regression endpoints, which can lead to

biased inferences. To fix this, multiple methods of labeling patient

subgroup prognostic labels by considering discrimination factors

from the following two perspectives were implemented to optimize

our model.

2.2.1 Specialist labeling based on
prognostic categories

Clinicians typically employ this label to categorize cohort

patients with a specific cancer type and treatment regimen based

on their clinical experience. Thus, patients can be assigned to

different categories (e.g., “effective/ineffective” or “good/moderate/

poor” prognosis) according to the performance of different patient

subgroups with respect to tumor remission and survival. More

specific differentiation criteria can include tumor status, which is

generally classified as complete response (CR), partial response

(PR), stable disease (SD), and progressive disease (PD) according to

the Response Evaluation Criteria in Solid Tumors [RECIST version

1.1 (34)]. Patients with CR or PR are usually labeled as treatment-

effective controls. Moreover, judging TTE benefits after treatment,

including the time from initial dosing to PD or death from any

cause is referred to as progression-free survival (PFS), and the time

from the first dose to death is referred to as overall survival (OS). In

general, a PFS of more than 6 months is deemed to be a favorable

prognosis. Thus, when we must analyze treatment performance by

combining these two efficacy endpoints, we can refer to the joint

model proposed by TMBcat to determine the probability of joint

benefits for patients, as well as the between-group discrepancy

maximization method used to group patients (25, 26). In this

case, label  ∈  f0, 1g or label  ∈  f−1, 0, 1g. This form of

labeling is straightforward, can be easily learned by machine

learning models, and is simple to understand and implement in

clinical practice. The disadvantage, however, is that this kind of data

labeling is highly subjective and dependent on expert experience,

which has some unreasonableness and restrictions.

2.2.2 Prognostic probability labeling based on
objective patient endpoints

Since manual prognostic category labeling suffers from

excessive subjectivity, we also explored labeling based on objective

observations extracted from patient clinical records. For each

patient subgroup’s prognostic label, we integrate the ORR and

TTE endpoints to thoroughly evaluate efficacy. The ORR

endpoint is the proportion of tumor responses in a patient

subgroup that can be used to directly quantify treatment efficacy.

Four distinct interpretations based on the median, maximum,

minimum, and mean are provided in this paper for various

cancer types and ICI treatment regimens on TTE endpoints. This
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is due to the fact that in clinical scenarios, different definition

criteria are chosen for the prognosis definition of a patient subgroup

according to different treatment requirements. For example, a

clinical trial for a class of drugs can be designed to require a

certain level of median survival time for a patient group before the

treatment will be deemed effective. Naturally, the prognostic

labeling of patient subgroups should also be determined based on

the median survival of the patients included, i.e., label  = ½ORR,T
TE _med�T .

In addition, ORR and TTE outcomes for malignancies also have

distinct data scales and measurement units. In particular, the ORR

endpoint, representing the proportion of patients with tumor

response in the subgroup, is a scale value between 0 and 1. When

the unit of measure of the TTE endpoint is days, the span of the

difference in time is significantly larger than the span of the scale

value, which causes the distance between samples to be dominated by

the TTE endpoint. Similarly, if the unit of measure of the TTE

endpoint is changed to years, it may also be difficult for the learner to

learn because differences are too large. Therefore, to reflect the

importance of each dimensional feature simultaneously, the

prognostic labels of the subgroups in this paper are normalized in a

probability mapping style. The survival endpoint TTE is modeled

using standard Cox PH regression to assess the survival risk of

patients given factors related to tumor progression. Consequently, pT
was then generally expressed as the probability of survival beyond a

predetermined time point, at which label = median½pR, pT �T .
Next, to establish the loss function, we propose statistically

interpretable loss metrics for different types of prognostic labels.

First, we employ prognostic categories ym ∈ f0, 1g, which are

manually labeled. Suppose omi is the probability that the network

f predicts a positive prognostic label for patient xmi. When research

data characterizes prognostic performance based on the median

criterion, the output Gm of the network f is ôm = median omi
1≤i≤nm

. This paper

proposes that the global calibration loss of the network on the

training set is defined as:

E = o
M

m=1
Em = o

M

m=1

(ym − ôm)
2

ôm
+
(ym − ôm)

2

1 − ôm
(1)

When the denominator term is eliminated from the loss function,

Eq. (1) approximates the mean square error (MSE) metric utilized

in machine learning. In addition, in Eq. (1), when patient subgroup

efficacy is evaluated entirely using the mean criterion, the

optimization objective of the model is equivalent to the Hosmer-

Lemeshow goodness-of-fit test, where the calibration loss

approximately follows a chi-square distribution with M-2 degrees

of freedom. Therefore, limiting the loss Eq. (1) not only minimizes

the global loss of the training network but also optimizes the

model’s goodness-of-fit, thereby making the trained model f more

relevant and applicable.

However, when the prognostic probability labels ym = median½
pR, pT �Tm for objective patient endpoints are used, the calibration loss

between the actual and expected output must be quantified by the

distance for vector-based labels. For an actual output omi
Frontiers in Immunology 05
corresponding to patient xmi, its magnitude is determined by the

distance to the spatial origin. Similarly, when this paper describes

the prognostic performance of a patient subgroup based on the

median criterion, the global error of the network on the training set

is then defined as:

E = o
M

m=1
Em = o

M

m=1
dist(ôm, ym) (2)

Here, dist(·,·) denotes the distance metric formula and

ôm = median dist(omi,
1≤i≤nm

0). For the ORR and TTE endpoints, this paper

proposes several distance metrics to better quantify their

correlational relationships, including the Euclidean, Mahalanobis,

and Minkowski distances.

When the correlation between the ORR and TTE endpoints is

ignored, or the fluctuation is substantially more minor, we advocate

using the standard Euclidean distance:

dist(y1, y2) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(y1 − y2)(y1 − y2)

T
q

(3)

The Euclidean distance provides a more intuitive measure of the

spatial distance between vectors and is suitable for cases where

the weights of the different endpoints are equivalent. When the

fluctuation in the correlation between the ORR and TTE endpoint

can impact the model inference, the Mahalanobis distance of the

covariance matrix should be used instead:

dist(y1, y2) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(y1 − y2)(V−1)(y1 − y2)

T
q

(4)

Here, V is the covariance matrix between the ORR and the TTE

endpoint, and can be calculated from the observed data of a subgroup

of patients. If the covariance matrix is a unit matrix, then the

Mahalanobis distance is reduced to the Euclidean distance. The

Mahalanobis distance, on the other hand, is scale-independent—

i.e., it is independent of the measurement scale and can take into

account the connection between the endpoints, excluding the

interference of correlation between variables.

When the loss function Eq. (2) is measured using the Euclidean

distance, the loss is equivalent to the explained sum of squares used

in multivariate statistical analysis. Furthermore, after dividing by

the total sum of squares, the optimization objective of the model is

equivalent to the coefficient of determination R2 in the goodness-of-

fit test. Therefore, a network using the loss function Eq. (2) as the

optimization objective both minimizes global loss and ensures the

goodness-of-fit of the model. making the trained regression model

more statistically interpretable.

After an acceptable loss function definition, we employ a back

propagation technique based on gradient descent to minimize the

loss function E and output the optimized objective function.

Minimizing global loss is itself a convex optimization problem;

therefore, hence a global optimal solution must exist. Since both the

Euclidean and Mahalanobis distance formulas can be derived, the

gradient descent method based on the loss function E is viable.

The specific flow of the fusion decision model as constructed is

shown in Algorithm 1.
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Fron
Input: M patient subgroups Gm = fxm1, xm2,…, xmnmg
, with the mth subgroup encompassing nm

patients, where patient xmi is characterized

by the d-dimensional feature vector

½xm1, xm2,…, xmid�T.
Output: prognosis label fy1, y2,…, yMg.
1. Based on the given input and output

features, build the mapping f : x ∈ Rd ! y.

2. Calculate the loss between the actual and

desired output E.

3. While E > d do

If ym ∈ f0, 1g do
If criterion=median do

E = o
M

m=1

(ym − ôm)
2

ôm
+
(ym − ôm)

2

1 − ôm

ôm = median omi
1≤i≤nm

End If

End If
If ym = fORR,TTE _median0g do

If criterion=median do
If dist=Euclidean do

E = o
M

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(

ffiffiffiffiffiffiffiffiffiffiffiffi
ômô T

m

q
− ym)(

ffiffiffiffiffiffiffiffiffiffiffiffi
ômô T

m

q
− ym)

T

r

ôm = median omi
1≤i≤nm

If dist=Mahalanobis do

E = o
M

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ômV−1ô T

m

q
− ym)V−1(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ômV−1ô T

m

q
− ym)

T

r

ôm = median omi
1≤i≤nm

End If

End If
End If

4. Minimize the loss function E by
gradient descent.
ALGORITHM 1
Decision-making from multi-biomarker synergy to multi-endpoint fusion.
3 Experiments and results

3.1 Generation of simulation data

To illustrate the validity of the suggested fusion decision model

TMBserval, we simulated an antitumor mechanistic dataset. Data

regarding genetic mutations (including SNVs, Indels, and structural

variants SVs) and their clinical efficacy endpoints (including ORR

and TTE) were simulated for patients receiving immunotherapy with

reference to existing public databases of cancer research phenotypes.
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We selected the human genomic DNA standard sample

NA12878 from the 1000 Genomes Project. Based on a whole

exome sequencing (WES) file for chromosome 19, we simulated

mutations using BamSurgeon (35). Mutations were simulated at

common tumor mutation loci reported in the TCGA database. We

focused on immunotherapy-sensitive cancer species, such as

NSCLC and breast cancer. WES sequencing data for NA12878

were downloaded in FASTQ format. FASTQ files were processed

using Trimmomatic for quality control, where we removed low

quality (below 20) or N bases from leading/trailing DNA. After

removing splice sequences, correction, and shearing, high-quality

paired-end reads were aligned to the human reference genome

hs37d5 using the Burrows-Wheeler Aligner. The resulting

alignment files (in BAM format) were filtered and cleaned

according to the standardized flow recommended by GATK4.

This included deduplication, BQSR, and Indel realignment.

Filtered BAM files were divided into pairs, with one normal BAM

file and one BAM file to be simulated via random sampling. ICI-

sensitive somatic mutations, including SNVs and Indels, were

randomly selected from the TCGA database and added to the

simulated BAM file using BamSurgeon.

To simulate the clinical testing process and to train learners to

handle measurement errors, we characterized the genomic features

of patients based on the type and number of mutations reported by

GATK-Mutect, the most commonly used screening software.

Mutations were then filtered further using the following criteria:

1) more than 4 reads or 2% of the variant allele frequency supported

the mutation; 2) if a population frequency >1% was present in the

1000 Genomes or ExAC databases. The final list of mutations was

then annotated using vcf2maf. The mutation feature set for each

patient displayed in the detection report is a simulation of the true

mutation level that incorporates measurement errors. This enables

machine learning models to better assess the undetectable risk of

measurement that occurs in clinical practice. In total, we simulated

660 patients, and the TMB index for each patient was divided into 3

dimensions based on point mutations (SNVs), insertion mutations

(INSs), and deletion mutations (DELs). Thus, TMB = ½SNV , INS,D
EL�T . We note that chromosomal translocation, a type of structural

abnormality, was not included in our experiments due to

computational costs. However, our model is capable of handling

additional forms of mutational burden, including copy number

variations, microsatellite instability, and many others with

neoantigenic potential. The input structure of the model is

unaffected by mutation type.

Next, along with the mutation levels of the 660 simulated

patients, we also simulated patient efficacy endpoints in response

to immunotherapy. The ORR endpoint was generated based on a

dichotomous logistic probability. In this paper, the probability of

remission was directly retained to characterize the ORR endpoint

efficacy. This was to facilitate the labeling of prognostic labels for

patient subgroups. In contrast, progression-free survival records

were generated based on the probability density function of Cox PH

and corresponding mutational features. The specific simulation
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process was described in detail in previous papers (25, 26). The

prognostic labels of patient subgroups with different treatment

effects formed five subgroups containing 90, 212, 64, 202, and 92

patients, respectively. These groups had the following

corresponding prognostic labels: (0.223,0246), (0.326,0397),

(0.461,0.558), (0.654,0.733), and (0.908,0.922), respectively.
3.2 SYUCC patient information

For the SYUCC patient cohort, we retrospectively examined 64

patients with R/M NPC who were treated with anti-PD-(L)1 or

anti-CTLA-4 (NCT02721589 and NCT02593786) as well as 73

patients with NSCLC who underwent anti-PD-(L)1 monotherapy.

The trial design for the dosage escalation and expansion phases has

been previously discussed (36–38). Patients eligible for enrollment

were between the ages of 18 and 70, had histologically or

cytologically verified locally advanced or metastatic NSCLC or

NPC, an ECOG performance status score of 0 or 1, at least one

RECIST 1.1 detectable lesion, and had failed at least one prior

systemic therapy. Exclusion criteria included metastases to the

central nervous system, prior malignancy, autoimmune disease,

prior immunotherapy, active tuberculosis infection, pregnancy, or

treatment with an immunosuppressive agent.

In this dataset, 60% of patients with lung cancer had

adenocarcinoma, and 32% had squamous carcinoma. At the time

of diagnosis, nearly all patients (99%) were in stage IV. The median

age of patients with NSCLC and NPC at the start of treatment was

55 and 46 years, respectively. Smoking history was present in 49% of

NSCLC patients and 25% of NPC patients, with more males than

females in both cohorts (70% vs. 30% for NSCLC, 80% vs. 20% for

NPC). Moreover, the ORR of the study cohorts was 19% and 12%,

respectively, and the median PFS was 91 days for NSCLC and 67.5

days for NPC. The distribution of patient treatments, as well as the

library preparation, sequencing, and bioinformatics procedures has

been described in detail in a previous study (25).
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Finally, the one-dimensional TMB index was subdivided into

more precise high-dimensional vectors based on mutation type to

better characterize the genomic mutations associated with

immunotherapeutic mechanisms. TMB metrics of each patient

were vectorized based on their BAM files and the annotated VCF

files of SYUCC cohort patients were used as the input feature

vectors of the patients for learning. Next, the efficacy data of

different patient subgroups were used as the expected output of

the training learner.
3.3 Nonlinear associations between
genomic mutations and ICI prognoses

The purpose of this paper is to mine the mechanisms

responsible for the deep association between various mutation

burdens and the overall efficacy of immunotherapy, to better

understand the clinical benefit of ICI and to develop a decision

framework using multidimensional biomarkers and multiscale

endpoints in order to screen superior patient groups. Therefore,

the general association distribution was fitted to investigate the

mapping of decision biomarkers to efficacy endpoints. The actual

spatial distribution between the multidimensional mutation burden

and immunotherapy prognoses based on SYUCC cohort data, as

well as the ideal spatial distribution, is shown in Figure 2.

Using the SYUCC cohort data, we then fitted the association

distribution for two representative mutations, the SNV and Indel

burdens, along with the comprehensive benefit of immunotherapy in

three-dimensional space (Figure 2); we note that here the surface of

the distribution in Figure 2A was Gaussian smoothed. Figure 2A

demonstrates that when the Y-axis is held constant, and an increase in

the SNV index is observed along the X-axis, patient ICI benefit rises.

Similarly, when the X-axis is fixed, and the Indel burden (Y-axis)

increases, the patient realizes a progressively more favorable prognosis.

Both trends are compatible with the mechanisms by which

immunotherapies induce antitumor immunogenicity. However, in
BA

FIGURE 2

(A) Spatial distribution of the association between the mutational burdens and ICI composite prognosis. The red curve represents a favorable
prognosis, while the blue curve represents an adverse prognosis. (B) Spatial distribution of the ideal association between mutational burdens and ICI
composite prognosis. The blue plane represents a segmentation plane used to separate positive and negative prognoses. The red dashed line is the
only intersection between the segmentation plane and the correlation distribution surface, and the blue dashed line indicates the projection of the
red dashed line. The patient subgroup on the left of the blue dashed line is the population receiving superior results from immunotherapy.
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real systems multiple peaks and valleys of ICI benefit exist, indicating

that the correlation surface is not uniformly distributed in three-

dimensional space. For example, the red arrows in Figure 2A indicate

an improved prognosis for the patient, whereas blue arrows indicate a

worsening prognosis. SNV-High and Indel-High conditions showed

interdependencies across different dimensions, and the populations

covered by both vary. In addition, we also found a discrepancy

between multiple clinical efficacy endpoints, both in degree and

direction. Consequently, several red arrows present in Figure 2A,

imply that a specific subgroup of patients surrounding an ICI peak are

encircled by their respective X- and Y-axes (i.e., these groups are

jointly determined by SNV and Indel burdens at that location); these

patients possess significantly better treatment outcomes. Likewise,

multiple blue arrows indicate ICI troughs that reveal that patient

subgroups lying within this range have subpar outcomes.

We then hypothesized an ideal condition in which the SNV and

Indel burdens were independent of one another, and the direction

and extent of the beneficial effect on ICI remain consistent. We

simulated the distribution of this ideal association in three-

dimensional space (Figure 2B). Figure 2B indicates that the

therapeutic benefit of patients treated with ICI increases

proportionally with the number of SNV and Indel mutations.

Thus, the blue segmentation plane used to stratify efficacy and the

association distribution surface have only a single intersection line,

denoted by the red dashed line. This line was then mapped onto the

X- and Y-axes, and the results suggest that the subgroup of patients

on the left side of the blue dashed line is the superior group with

respect to expected immunotherapeutic outcome. Moreover, a split

line established using SNV and Indel measurements divides the

cohort into two subgroups with significantly different efficacies.

However, there is more than one line of intersection between

the tangent plane and the association distribution surface. This

corresponds to the non-uniform distribution association surface in

Figure 2A, and means that a single segmentation line defined by

SNV and Indel metrics alone cannot divide the patient cohort into

two subgroups with distinctly different efficacies. Thus, it is clear

from Figure 2A that a complex nonlinear association exists between

multidimensional mutations and immunotherapy prognosis.

Furthermore it also indicates that multiple joint thresholds enable

patients to form multiple subgroups with different treatment risks.
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3.4 Analysis of prognostic predictions

First, to verify the effectiveness of the proposed multi-

biomarker-multi-endpoint fusion decision, its prediction

performance was assessed using simulated data consisting of 660

patients. These were divided into five subgroups and the input

feature vectors were matched to output prognostic labels. The

ORR&TTE prognostic labels for individual subgroups were

defined using empirical labels and probabilistic labels based on

the objective endpoints of patients, respectively. In addition, the

subgroup efficacy measure and error calculation formula were

gradually modified. The 10-fold cross-validation method was used

to divide the simulation data into training and testing sets to avoid

the risk of overestimating or underestimating the actual

performance of the prediction model. Furthermore, in addition to

using the cross-validation method, the best-performing model was

selected for independent testing throughout the training phase to

evaluate its prediction performance for unseen patients. Finally, the

prediction and learning performance of the proposed TMBserval

were measured using a distinct loss metric between the actual

and the desired output, as well as the learning curve of

machine learning.

As seen from the results in Table 1, when the prognosis labels of

the multiple-instance learner were based on manually annotated

category labels, overall prediction accuracy was poor, irrespective of

whether the efficacy metric for the patient subgroup was taken as

the maximum, minimum, median, or mean value. The calibration

loss on the training set ranged from 0.1878 to 0.2811, while the

calibration loss on the test set ranged from 0.2030 to 0.3333.

Moreover, the calibration loss of the 10-fold cross-validation set

ranged from 0.1954 to 0.3015. Among all metrics, the top performer

was the mean-based efficacy metric, since mean-based calculations

were essentially learned for each instance (i.e., for each patient),

which allowed the learner to optimize based on all patients to a

greater extent.

When the prognostic labels were probabilistically labeled based

on objective endpoint observations for individual patients, the

predictive performance of the MIL learner was greatly improved,

showing a minimum Euclidean distance loss of 0.0135 and a

maximum of 0.1591 for the training set, a minimum Euclidean
TABLE 1 Error results of simulation data under training set, independent testing set, and 10-fold cross-validation.

Prognostic Label Prognostic Metrics Training Error Testing Error 10-fold Cross-validation Error

ym ∈ f0, 1g Median 0.2811 0.3333 0.2924

ym ∈ f0, 1g Maximum 0.2121 0.2895 0.3015

ym ∈ f0, 1g Minimum 0.2693 0.3013 0.2969

ym ∈ f0, 1g Mean 0.1878 0.2030 0.1954

ym = ½pR , pT � Median 0.1591 0.2255 0.2020

ym = ½pR , pT � Maximum 0.0222 0.0564 0.0329

ym = ½pR , pT � Minimum 0.1065 0.1544 0.1674

ym = ½pR , pT � Mean 0.0135 0.0060 0.0184
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distance loss of 0.0060 and a maximum of 0.2255 for the test set,

and a minimum Euclidean distance loss for the 10-fold cross-

validation set. All Euclidean distance losses were significantly less

than calibration losses under category labels. This shows that

manual label identification based on physician experience is

somewhat irrational, and results in prognostic labels that do not

accurately reflect the actual treatment outcomes of patients. This

impedes the learner from establishing a proper mapping

relationship and produces wildly inaccurate predictions for

unseen patients. In contrast, when the prognostic labels were

annotated according to the probability of objective endpoint

observations, the overall prediction performance of the learner is

greatly enhanced via better output feature characterization.

In conclusion, the simulation data prediction findings shown in

Table 1 indicate that the proposed multi-biomarker-multi-endpoint

fusion MIL learner is able to accomplish the prediction task for

unseen patients/patient subgroups effectively and can formulate

thorough and accurate evaluations. On the other hand, proposed

networks with calibration loss as the optimization target not only

ensures the accuracy of patient categorization, but also highlights
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the statistical interpretability of the model in terms of goodness-of-

fit compared to conventional loss measurements. In this paper, we

further compare the support vector machine (SVM), the mean

square error (MSE) measure, and the cross-entropy loss (CEL)

measure, which are common in machine learning, with the

calibration loss metric calculated using TMBserval. Table 2

compares the differences in calibration performance of these

different models using a Hosmer-Lemeshow test.

For the Hosmer-Lemeshow test, we varied the degrees of

freedom (i.e., 10 versus 20 groups), to explore the goodness-of-fit

performances of different learners. As seen from the results shown

in Table 2, a typical MIL learner using the CEL metric as the loss

function exhibited the worst fit under 8 degrees of freedom, with a

p-value of 0.1390 for the training set, a p-value of 0.0093 for the

testing set, and a p-value of 0.0407 for the whole set. These values

indicate that the learner does not show an excellent goodness-of-fit.

In contrast, the calibration loss metric proposed in this paper

considers the goodness-of-fit of the model while ensuring the

prediction performance of the learner. This demonstrates superior

results in the Hosmer-Lemeshow test, with p-values of 0.3553 and
TABLE 2 Comparison of goodness-of-fit tests based on different error metric learners.

Data set HL statistics under Calibration Error
metrics

p-value of goodness-of-
fit test

HL statistics under CEL
metrics

p-value of goodness-of-
fit test

Training
set

HL-chi2(8): 8.85 0.3553 HL-chi2(8): 12.282 0.1390

Testing set HL-chi2(8): 10.15 0.2548 HL-chi2(8): 20.276 0.0093

All HL-chi2(8): 7.54 0.4797 HL-chi2(8): 16.113 0.0407

Data set HL statistics under MSE metrics p-value of goodness-of-
fit test HL statistics under SVM p-value of goodness-of-

fit test

Training
set

HL-chi2(8): 14.232 0.0759 HL-chi2(8): 11.6310 0.1684

Testing set HL-chi2(8): 18.623 0.0170 HL-chi2(8): 15.3936 0.0519

All HL-chi2(8): 11.226 0.1892 HL-chi2(8): 9.799 0.2793

Data set HL statistics under Calibration Error
metrics

p-value of goodness-
of-fit test

HL statistics under CEL
metrics

p-value of goodness-of-
fit test

Training
set

HL-chi2(18): 19.407 0.3671 HL-chi2(18): 23.193 0.1832

Testing set HL-chi2(18): 12.724 0.8076 HL-chi2(18): 14.843 0.6727

All HL-chi2(18): 20.734 0.2930 HL-chi2(18): 24.257 0.1467

Data set HL statistics under MSE metrics p-value of goodness-of-
fit test HL statistics under SVM p-value of goodness-of-

fit test

Training
set

HL-chi2(18): 23.101 0.1867 HL-chi2(18): 23.329 0.1782

Testing set HL-chi2(18): 14.785 0.6766 HL-chi2(18): 26.079 0.0979

All HL-chi2(18): 28.668 0.0525 HL-chi2(18): 27.669 0.0672
Bold values indicate the best performance in the HL tests.
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0.4797 for the training and complete sets, respectively, and a p-value

of 0.2548 for the independent testing set. Likewise, TMBserval

remained the best performer among the four types of learners in

a scenario with 18 degrees of freedom, with p-values of 0.3671 and

0.2930 for the training and full sets, respectively, and a p-value of

0.8076 for the independent testing set. The dominance of

TMBserval in the HL test further demonstrates that the

calibration loss proposed by this paper significantly increases the

learner’s statistical interpretability.

Next, to determine whether the suggested multiple-instance

learner under- or overfits models, we plotted the prediction

accuracy of the modeled learner with the number of training

samples; this is the learning curve. From the trend of the loss

curve shown in Figure 3, we see that the loss in the cross-validation

set steadily decreased and converged as more training samples were

incorporated. Moreover, the gap between the loss of the training set

and the loss of the validation set narrowed. Therefore, our results

show that the learner proposed in this paper neither overfits nor

underfits models during the training process.

In addition, this paper establishes a many-to-many mapping

relationship based on a real SYUCC experimental cohort (i.e.,

consisting of 137 patients from three patient subgroups) from the

input TMB feature vector for each patient to corresponding output

subgroup prognostic labels. This was done to evaluate the predictive
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accuracy of TMBserval for unseen patients and/or subgroups.

Similarly, the comprehensive ORR&TTE prognostic labels for

patient subgroups were labeled using empirical and objective-based

probabilistic methods, respectively. The predictive performance of the

proposed model was evaluated by varying subgroup efficacy metrics as

well as the loss calculation formulas. This was done using 10-fold

cross-validation as well as independent test validation. Ultimately, the

usefulness of the proposedmodel for clinical practice was measured by

the loss between the actual and the expected output.

As summarized in Table 3, the prediction performance of the

multi-biomarker-multi-endpoint fusion MIL learner remained

accurate regardless of the labeling approach upon which it was

built, albeit with some variability among different metrics. For

example, for category-based prognostic labels, when the efficacy

metric for patient subgroups was taken as the minimum, the

prediction loss of the learner was significantly higher than for the

other models, with a calibration loss of 0.0294 for the training set,

0.1052 for the testing set, and 0.0806 for the 10-fold cross-

validation. Thus, the criteria used to assess the efficacy of patient

subgroups based on minimum values do not appear to be applicable

for the NSCLC and nasopharyngeal carcinoma subtypes included in

the SYUCC patient cohort in this paper.

When probabilistic labeling of prognostic labels was then

performed using the objective endpoint observations for patients,

the multi-instance learner’s prediction performance improved

moderately. The prediction loss remained remarkably low, and

still marginally outperformed the category label-based learner.

Manual annotation methods based on physician experience have

limitations for clinical practice due to their subjective nature. Based

on pooled analysis results, this paper suggests using the latter to

obtain prognostic labels for clinical practice, and this is more

conducive to the promotion and application of the learner.

Similarly, we conducted comparison experiments using the

SYUCC cohort to verify the goodness-of-fit of the model. As

shown in Table 4, for the SYUCC experimental cohort, the

calibration loss model proposed in this paper maintains a

superior goodness-of-fit than the traditional CEL metric, MSE

metric, or SVM classifier, regardless of whether the degree of

freedom was 8 or 18. This was evident since the Hosmer-

Lemeshow test results were outstanding. Under 8 degrees of
TABLE 3 Error results for patient data under training set, independent test set and 10-fold cross validation.

Prognostic Label Prognostic Metrics Training Error Testing Error 10-fold Cross-validation Error

ym ∈ f0, 1g Median 0.0145 0.0526 0.0640

ym ∈ f0, 1g Maximum 0.0117 0.0426 0.0741

ym ∈ f0, 1g Minimum 0.0294 0.1052 0.0821

ym ∈ f0, 1g Mean 0.0058 0.0117 0.0587

ym = ½pR , pT � Median 0.0132 0.0015 0.0143

ym = ½pR , pT � Maximum 0.0103 0.0135 0.0157

ym = ½pR , pT � Minimum 0.0030 0.0022 0.0064

ym = ½pR , pT � Mean 0.0378 0.0224 0.0390
FIGURE 3

The learning curve of the prediction model.
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freedom, the p-values of HL goodness-of-fit for the training set,

testing set, and full set were 0.9789, 0.7692, and 0.7692, respectively.

However, under 18 degrees of freedom, the p-values of the HL

goodness-of-fit for the training set, testing set, and full set were

0.9369, 0.9948 and 0.7843, respectively. Taken together, these

results show that the proposed fusion decision model not only

can distinguish patients correctly but can also ensures the

consistency between the actual probability of occurrence of a

particular outcome and its probability as predicted by the model.
4 Discussion

In clinical practice, relying only on a single predictive biomarker

and a single observed endpoint of efficacy to guide immunotherapy

is inadequate. Moreover, the one-dimensional TMB metric suffers

from challenges because it equally quantifies all types of mutations.

The trend toward higher dimensional vectorization of TMB is

inevitable. Synergistic analysis of multidimensional mutation

burdens can provide a stronger predictive value for patient
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outcomes. However, current clinical decision-supporting models

are primarily used to identify and apply single predictive markers,

and most decision endpoints rely on a single observation, thereby

creating a one-to-one mapping relationship. Thus, there is a lack of

available, reasonable, and rigorous modeling methods to solve the

many-to-many problem. ICI multiscale endpoints must rely on

decision-making based on multidimensional synergistic

biomarkers. In the face of complex interdependencies between

biomarkers and the associations between decision endpoints,

traditional mathematical methods cannot establish a conforming

nonlinear mapping relationship between non-independent inputs

and outputs. At the same time, the ultimate optimization goal of

this paper is a form of categorical decision-making; therefore,

prognostic labels are based on the description of disease

treatment effects at the patient subgroup level. Therefore, to

resolve the computational difficulties listed above, this paper

establishes a nonlinear mapping model implementing multi-

biomarker to multi-endpoint data that uses an MIL framework;

this model is called TMBserval (i.e., Statistical Explainable machine

learning with Regression-based VALidation).
TABLE 4 Comparison of goodness-of-fit tests based on different error metric learners.

Data
set

HL statistics under Calibration
Error metrics

p-value of goodness-of-
fit test

HL statistics under
CEL metrics

p-value of goodness-of-
fit test

Training
set

HL-chi2(8): 2.065 0.9789 HL-chi2(8): 11.008 0.2012

Testing
set

HL-chi2(8): 4.88 0.7692 HL-chi2(8): 8.518 0.3846

All HL-chi2(8): 4.89 0.7692 HL-chi2(8): 8.289 0.4057

Data
set HL statistics under MSE metrics p-value of goodness-of-

fit test HL statistics under SVM p-value of goodness-of-
fit test

Training
set

HL-chi2(8): 11.918 0.1549 HL-chi2(8): 16.537 0.0353

Testing
set

HL-chi2(8): 8.967 0.3451 HL-chi2(8): 12.693 0.1228

All HL-chi2(8): 12.415 0.1336 HL-chi2(8): 13.647 0.0914

Data
set

HL statistics under Calibration Error
metrics

p-value of goodness-
of-fit test

HL statistics under CEL
metrics

p-value of goodness-of-
fit test

Training
set

HL-chi2(18): 9.841 0.9369 HL-chi2(18): 20.925 0.2832

Testing
set

HL-chi2(18): 6.287 0.9948 HL-chi2(18): 15.955 0.5957

All HL-chi2(18): 13.122 0.7843 HL-chi2(18): 25.548 0.1105

Data
set HL statistics under MSE metrics p-value of goodness-of-

fit test HL statistics under SVM p-value of goodness-of-
fit test

Training
set

HL-chi2(18): 17.211 0.5086 HL-chi2(18): 28.631 0.0531

Testing
set

HL-chi2(18): 7.614 0.9837 HL-chi2(18): 13.736 0.7461

All HL-chi2(18): 21.306 0.2642 HL-chi2(18): 24.442 0.1411
Bold values indicate the best performance in the HL tests.
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In this paper, we subdivided the one-dimensional TMB index

into more precise high-dimensional vectors based on mutation type

to better characterize the genomic mutations that were associated

with immunotherapy mechanisms. Some investigators have found

that the mutations that are unlikely to be lost under the selective

pressure of immunotherapy were strongly associated with

immunotherapy benefits. TMB can be segmented not only by

mutation type but also by dynamic changes. Therefore, our next

stage will be to consider longitudinal measurement of mutational

characteristics and clinical treatment outcomes in a cohort of

patients. We will then develop a dynamic decision-making model

based on time-series biomarkers to provide more accurate

prognoses for the clinical practice of tumor immunotherapy.

By revising the definition of the loss function during the training

of the ideal nonlinear mapping, this paper establishes a statistically

interpretable loss metric that considers the clinical characteristics of

immunotherapy and establishes different metrics for experience-based

category labels and objective-based probabilistic labels, respectively.

The consistency of the proposed model for absolute risk prediction is

ensured by defining a loss measure function that considers the

calibration of the model, while the ability of the proposed model to

discriminate between patient cohorts is ensured by reasonably

defining prognostic labels for different patient subgroups. In

addition, the correlation between the ORR and TTE endpoints was

incorporated into the model optimization objective via considering

the Mahalanobis distance. Back propagation based on the gradient

descent method minimizes the loss function and optimizes the

regression network to reach the training target. This eventually

results in a nonlinear mapping model with wide applicability, which

can make correct predictions for unseen patients or patient subgroups.
5 Conclusion

TMBserval 1) solved the problem that multidimensional predictive

mutations and multiscale efficacy observation endpoints are difficult to

combine and analyze together to build a pan-cancer-oriented many-to-

many nonlinear regression model with reasonable mapping accuracy; 2)

formed a categorical decision-making model for ICI, built a regression

model based on immunotherapeutic results on the patient subgroup level

to obtain joint thresholds for multi-categorization and to distinguish

more finely and accurately between patient groups in a high-dimensional

feature space; 3) constructed a learner according to the standard

statistical criteria for discrimination and calibration measures,

rendering the trained model more statistically interpretable and

ameliorating the black-box characteristics of machine learning, thereby

making it more accessible to clinicians.We conclude that TMBserval can

enhance precision immunotherapy decision-making and expand the

population of patients that can benefit from immunotherapy.
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problem with axis-parallel rectangles. Artif Intelligence (1997) 89(1-2):31–71.
doi: 10.1016/S0004-3702(96)00034-3

33. Zhou ZH, Zhang ML. (2002). Neural networks for multi-instance learning, in:
Proceedings of the International Conference on Intelligent Information Technology,
Beijing, China. pp. 455–9.

34. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.
New response evaluation criteria in solid tumours: revised RECIST guideline (version
1.1). Eur J Cancer (2009) 45(2):228–47. doi: 10.1016/j.ejca.2008.10.026

35. Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C, Yamaguchi TN, et al.
Combining tumor genome simulation with crowdsourcing to benchmark somatic
single-nucleotide-variant detection. Nat Methods (2015) 12(7):623–30. doi: 10.1038/
nmeth.3407

36. Fang W, Yang Y, Ma Y, Hong S, Lin L, He X, et al. Camrelizumab (SHR-1210)
alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma:
results from two single-arm, phase 1 trials. Lancet Oncol (2018) 19(10):1338–50.
doi: 10.1016/S1470-2045(18)30495-9

37. FangW, Ma Y, Yin JC, Hong S, Zhou H,Wang A, et al. Comprehensive genomic
profiling identifies novel genetic predictors of response to anti-PD-(L)1 therapies in
non-small cell lung cancer. Clin Cancer Res (2019) 25(16):5015–26. doi: 10.1158/1078-
0432.CCR-19-0585

38. Ma Y, Fang W, Zhang Y, Yang Y, Hong S, Zhao Y, et al. A phase I/II open-label
study of nivolumab in previously treated advanced or recurrent nasopharyngeal
carcinoma and other solid tumors. Oncologist (2019) 24(7):891–e431. doi: 10.1634/
theoncologist.2019-0284
frontiersin.org

https://doi.org/10.1126/science.aar3593
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1186/s40364-020-00209-0
https://doi.org/10.1186/s40364-020-00209-0
https://doi.org/10.1186/s12885-020-6658-1
https://doi.org/10.1038/nrc3239
https://doi.org/10.1200/JCO.2012.47.7521
https://doi.org/10.1200/JCO.2012.47.7521
https://doi.org/10.1186/s13073-018-0605-7
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1200/JCO.2018.36.15_suppl.12000
https://doi.org/10.1038/s43018-022-00382-1
https://doi.org/10.1038/s43018-022-00382-1
https://doi.org/10.1016/j.cell.2021.01.002
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1002/cam4.2111
https://doi.org/10.1038/s41591-021-01581-6
https://doi.org/10.1038/s41591-021-01581-6
https://doi.org/10.1038/s41591-022-02163-w
https://doi.org/10.1186/1755-8794-4-34
https://doi.org/10.1016/j.trecan.2021.04.009
https://doi.org/10.1016/j.ajhg.2021.04.005
https://doi.org/10.1200/JCO.2007.13.5913
https://doi.org/10.1002/sim.6196
https://doi.org/10.1080/2162402X.2019.1629258
https://doi.org/10.1016/j.jval.2017.07.011
https://doi.org/10.1007/s10147-019-01504-z
https://doi.org/10.1007/s10147-020-01619-8
https://doi.org/10.1007/s10147-020-01619-8
https://doi.org/10.3389/fgene.2022.915839
https://doi.org/10.3389/fimmu.2022.995180
https://doi.org/10.3389/fimmu.2022.995180
https://doi.org/10.1016/S0893-6080(05)80092-9
https://doi.org/10.1002/wics.84
https://doi.org/10.1016/j.chemolab.2004.12.011
https://doi.org/10.1177/019394599001200204
https://doi.org/10.1177/019394599001200204
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1016/S1470-2045(18)30495-9
https://doi.org/10.1158/1078-0432.CCR-19-0585
https://doi.org/10.1158/1078-0432.CCR-19-0585
https://doi.org/10.1634/theoncologist.2019-0284
https://doi.org/10.1634/theoncologist.2019-0284
https://doi.org/10.3389/fimmu.2023.1151755
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	TMBserval: a statistical explainable learning model reveals weighted tumor mutation burden better categorizing therapeutic benefits
	1 Introduction
	2 Materials and methods
	2.1 Model specification
	2.2 Discrimination and calibration amelioration
	2.2.1 Specialist labeling based on prognostic categories
	2.2.2 Prognostic probability labeling based on objective patient endpoints


	3 Experiments and results
	3.1 Generation of simulation data
	3.2 SYUCC patient information
	3.3 Nonlinear associations between genomic mutations and ICI prognoses
	3.4 Analysis of prognostic predictions

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


