
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jinghua Pan,
Jinan University, China

REVIEWED BY

Kun Chen,
University of Connecticut, United States
Hongmin Cai,
South China University of Technology,
China
Meng Wu,
Harvard Medical School, United States

*CORRESPONDENCE

Jiayin Wang

wangjiayin@mail.xjtu.edu.cn

Xuqi Li

lixuqi@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 25 January 2023

ACCEPTED 15 May 2023
PUBLISHED 25 May 2023

CITATION

Liu Y, Wang S, Wang Y, Li Y, Zhu X, Lai X,
Zhang X, Li X, Xiao X and Wang J (2023)
What makes TMB an ambivalent biomarker
for immunotherapy? A subtle mismatch
between the sample-based design of
variant callers and real clinical cohort.
Front. Immunol. 14:1151224.
doi: 10.3389/fimmu.2023.1151224

COPYRIGHT

© 2023 Liu, Wang, Wang, Li, Zhu, Lai, Zhang,
Li, Xiao and Wang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Hypothesis and Theory

PUBLISHED 25 May 2023

DOI 10.3389/fimmu.2023.1151224
What makes TMB an ambivalent
biomarker for immunotherapy?
A subtle mismatch between the
sample-based design of variant
callers and real clinical cohort

Yuqian Liu1,2†, Shenjie Wang1,2†, Yixuan Wang3†, Yifei Li1,
Xiaoyan Zhu1,2, Xin Lai1,2, Xuanping Zhang1,2, Xuqi Li4*,
Xiao Xiao2,5 and Jiayin Wang1,2*

1School of Computer Science and Technology, Faculty of Electronics and Information Engineering,
Xi’an Jiaotong University, Xi’an, Shaanxi, China, 2Shaanxi Engineering Research Center of Medical and
Health Big Data, Xi’an Jiaotong University, Xi’an, Shaanxi, China, 3Department of Biomedical
Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 4Department of
General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,
5Geneplus Shenzhen, Shenzhen, China
Tumor mutation burden (TMB) is a widely recognized biomarker for predicting

the efficacy of immunotherapy. However, its use still remains highly

controversial. In this study, we examine the underlying causes of this

controversy based on clinical needs. By tracing the source of the TMB errors

and analyzing the design philosophy behind variant callers, we identify the

conflict between the incompleteness of biostatistics rules and the variety of

clinical samples as the critical issue that renders TMB an ambivalent biomarker. A

series of experiments were conducted to illustrate the challenges of mutation

detection in clinical practice. Additionally, we also discuss potential strategies for

overcoming these conflict issues to enable the application of TMB in guiding

decision-making in real clinical settings.

KEYWORDS

clinical immunology, tumor mutation burden, categorization thresholds, sequencing
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1 Introduction

Immunotherapy has altered cancer treatment paradigms as a result of substantial

advancements in immune checkpoint blocking (1–3). Increasing numbers of advanced

cancer patients benefit from immune-checkpoint inhibitor (ICI) therapy (4). Tumor

mutation burden (TMB) has been intensively studied as the promising immunotherapy

biomarker for patient selection (5, 6). TMB refers to the number of somatic mutations per
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megabase (7). Clinical studies have noted that patients with high

TMB tend to benefit more from immunotherapy (8). The

association of high TMB with improved patient responses and

survival benefits after immunotherapy has been observed in

urothelial cancer (9), small cell lung cancer (10), non-small-cell

lung cancer (11), among others. The US FDA has also prioritized

TMB as the recommended test for cancer patients (12).

In clinical practice, it is only practical for physicians when TMB

levels can effectively categorize patients into different risk groups

with varying therapeutic benefits. However, here, TMB remains

highly controversial. On one hand, TMB has been approved as a

companion diagnostic biomarker, and multiple clinical trials have

demonstrated its relevance to immunotherapy efficacy (13–15).

Multiple studies presented at the 2020 ASCO meeting confirmed

the predictive value of TMB in immunization or combination

therapy, including KEYNOTE-061 study (16, 17), CONDOR

study (18), EAGLE study (19), and EPOC1704 study (20),

consolidating TMB as an independent predictor. On the other

hand, several investigators have noted that TMB is not a perfect

predictor of response to anti-PD-1/PD-L1 therapy, such as in

KEYNOTE-158 study (21) and RATIONALE-304 study (22).

Clinical studies with RCC (23–25), HPV-positive HNSCC (26),

and melanoma receiving anti-PD-1 after recurrence (27) showed

that TMB alone neither distinguished responders nor accurately

predicted overall survival.

A popular opinion believes that this dispute is mainly caused by

the inappropriate thresholds. The quantile-based cutoffs (e.g.,

median, quartiles) do not accurately reflect the underlying biology

of TMB and fail to distinguish patients with their prospective

clinical benefits (23, 24, 27, 28). Other conventional

categorization methods, which establish a generic TMB threshold

based on a single endpoint, reveal only partial therapeutic benefits.

A single endpoint cannot fully represent the complexity and efficacy

of a disease. Since different single endpoints were used, even on the

same cohort of patients, the statistical studies gave inconsistent

TMB thresholds, making it difficult for clinicians to make a decision

(29). Moreover, the relationship between TMB and ICI benefits may

not be uniformly distributed and may also differ across cancer types

and corresponding regimens (30–33). Therefore, incorporating

multiple efficacy endpoints into multiple categorizations of TMB

for various cancers would be more effective in resolving the

dispute (34).

Why does the argument still exist when TMB thresholds seem

optimal? In data management, we often hear of the “trash in, trash

out” principle. Thus, the imprecision of TMB measurements (23,

35, 36) is another crucial or even more dominant fact causing such

controversy. Regardless of the various TMB calculation

methodologies, none of the mutation callers claim to reach 100%

accuracy. They each have their own unique advantages for mutation

detection; thus, the errors in TMB measurement cannot be

eliminated (37, 38). To avoid the trash-in-trash-out results, it is

reasonable to consider TMB errors in threshold optimization,

particularly for decision models. Based on the aforementioned

multiple-endpoint framework, some study have proposed fault-

tolerant statistical models (36) that reduce the instability and bias

caused by TMB errors in patient categorization and resulting in
Frontiers in Immunology 02
improved performance. Although the mutation detection accuracy

on each sample may be arbitrarily improved, regardless of the cost,

by combining various sequencing technologies, deepening the

sequencing depth, etc., it is still hard for the errors to meet the

statistical correction assumption of the proposed models. Hence,

merely introducing error control or fault tolerance into the decision

model is insufficient. The critical error issues from bioinformatics

tools that preclude the TMB from being employed in clinical use

have not been addressed yet. We are trying to discuss how the issue

of errors issue made TMB an ambivalent biomarker, and propose

avenues for future research to resolve these tensions.
2 Discussion

2.1 What are the TMB measurement errors?

Traditionally, when evaluating a bioinformatics tool,

researchers use the following performance metrics, including

precision, recall, and F1-score, on the average of samples. The

goal is to accurately detect mutations of target genes, with a focus on

identifying the mutation commonalities among the genome data of

patients and maintaining strict control over false positives(FPs),

thereby avoiding giving the wrong medicine in targeted therapy. To

ensure the detection of gene mutations, bioinformatics has

developed numerous variant callers that are sensitive (39) and

employs various filters to control FPs. It inevitably results in a

large number of false negative(FN) errors while lowering the FP

error rate in the final report (40).

In immunotherapy practice, the essence of TMB lies in the total

number of mutations rather than a single or multiple targets of

interest, regardless of the TMB calculation approaches used. FP and

FN errors are equally important in TMB assessment and contribute

to the aggregate TMB measurement errors. In TMB errors, the

false-positive rate (FPR) is defined as the ratio of the number of FPs

to the total number of mutations, whereas the false-negative rate

(FNR) is defined as the ratio of the number of FNs to the total

number of mutations. FPR and FNR may each obey a non-

parametric distribution. They might be a layer-by-layer

conditional probability that depends on the types and number of

mutations in the sample, the mutation density and composition of

the mutations in the particular segments, the design philosophy of

the selected caller, the sampling quality, etc. Together, these two

complex errors add up to a more complicated and unpredictable

TMB measurement error.
2.2 What are the effects of complicated
TMB errors on the threshold?

Existing TMB thresholds are typically obtained from

retrospective investigations of specific immunotherapy patient

cohorts. The disadvantage is that the optimized TMB thresholds

are frequently less appropriate for broader patient populations,

leading to limited generalizability results from sampling bias and

measurement inaccuracy within the TMB. Generally, a particular
frontiersin.org
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cohort is a small group of patients sampled from a large

population based on certain conditional criteria, such as cancer

subtypes and enrollment requirements (41), resulting in substantial

sampling bias. Due to sampling that violates the principle of

randomization, patient cohorts in standard clinical trials are only

partially representative of the distribution features of the entire

population, resulting in TMB thresholds that are cohort-specific

and scalable under extremely demanding conditions. In addition,

the risk of measurement error carried by the TMB metric itself

influences the transferability of the assigned threshold, even if the

sampling population is regularly extended in clinical trials with the

expectation that the analytic cohort would precisely characterize the

entire distribution. TMB measurement errors can introduce bias in

statistical inference (42), which in turn affects decision-making and

hinders the effectiveness of therapeutic grouping effects. Here, we

use the maximum likelihood estimation (MLE), which is the most

popular in statistical inference, as an example to analyze the bias

imposed by TMB measurement error on parameter estimation.

The MLE of a parameter q is generally obtained by solving for

the zero solution of a score function (the first-order derivative of the

likelihood), i.e., Y (q) = ∂ ‘(q)
∂ qT = 0. The basic condition that

guarantees the MLE is an unbiased estimator is the expectation

unbiasedness of the score function Y ( · ). Nonetheless, if the TMB

observations contain additive error components e, the expectation

of the score function must be nonzero since the score function

cannot be axisymmetric around the origin.

E Y (TMB*;Q)
� �

= E Y (TMB + e;Q)f g

=
Z +∞

−∞
Y (TMB + e;Q)p(e)de ≠ 0 (1)

Further, if the error term e is assumed to obey a normal

distribution with mean 0 and variance Se. Zi denotes a vector of

covariates, e.g., age, gender, treatment indicator, cancer stage, we

take Weibull–Cox PH model as an example, the instantaneous risk

for an event depends on Zi and TMB is defined as follow,

h(tjZ,  TMB*; q) = ltl−1 exp (bT
z Z + bmTMB*) (2)

Here, the expectation of the score function in Eq (1). can be

expressed as

E DZ − Tl · exp (bT
z Z + bmTMB*)Z

n o

= DZ − Tl · E exp (bT
z Z + bmTMB* + bme)Z

� �
= DZ − Tl exp (bT

z Z + bmTMB*)Z · E exp(bme)f g ≠ 0 (3)

where D is an event indicator, T denotes the observed event

time (such as tumor relapses, progression, death, etc.). The

additional term Efexp(bme)g on the scoring function is caused by

the measurement error, leading the naïve estimator to be biased

apparently. If the variance fluctuation Se can be controlled to

approximate zero, the expectation of the score function will

converge to zero.
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E exp(bme)f g

=
Z +∞

−∞
exp (bme)

1

Se

ffiffiffiffiffiffi
2p

p
 
exp( −

e2

2S2
e  
)de = exp( −

S2
eb2

m

2  
) ≈ 1

(4)

E DZ − Tl · exp (bT
z Z + bmTMB*)Z

n o

≈ E DZ − Tl · exp (bT
z Z + bmTMB)Z

n o
≈ 0 (5)

However, existing approaches barely achieve the variance

control. The presence of the unavoidable error term destroys the

impartiality nature of the score expectation, resulting in a

considerably biased naive MLE estimator, which further affects

the downstream TMB threshold determination. The threshold

thus obtained is difficult to apply to clinical practice or other

historical cohort data.

Furthermore, the mathematical modeling of TMB

measurement error is extremely complex. It is related to a

number of factors mentioned before, which are interdependent.

There exists a complex logical transfer that constitutes

nonparametric probability distributions on a layer-by-layer basis.

Describing TMB error as a simple Gaussian noise within the

conventional decision-making model lacks mathematical rigor,

and definitely causes significant confusion in decision-making.
2.3 Why is this issue amplified in cancer
sequencing data?

Why does this error rate issue seem not to appear in previous

sequencing data analysis, especially in a similar genomics problem

named population-based data analysis? This is due to the fact that,

i) TMB assessment needs to count the total number of detection

results, while other application scenarios only need to detect

mutations of interest. The switch of needs increases the impact of

error rates; ii) the types of mutations in general population are very

limited, hence the accuracy of mutation detection software is much

higher than that in cancer patients. For example, complex indels

only exist in cancer sequencing data. It is a unique form of somatic

mutation in tumor samples rarely seen in normal samples; and iii) if

the accuracy of a mutation calling tool is sufficiently high, it would

be capable of handling the detection and counting tasks very well.

For example, the detection accuracy of the 1000 Genomes can easily

reach 95% and up. This slight error rate would not affect the

counting task since mutations are almost all detected. However,

when it comes to complex cancer sequencing data with much lower

accuracy, the impact of error rates is further deepened in the

counting task. Hence, due to these facts, the original error rate

issue has been noticed in cancer sequencing data.

Meanwhile, the clinical need of immunotherapy lies in the

ability of variant callers to provide the total mutation count with

steady state error rates on a cohort to calculate a fair TMB value for
frontiersin.org
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categorization. The variance control of TMBmeasurement becomes

the focus. Despite the factors we discussed in Section 2.1, we focused

on the TMB errors from the calling analysis. Bioinformatics

software is comparable to a ruler in that it measures the level of

patients on a specific dimension related to their immunotherapy

prognosis. Just like a ruler, the measurement region should be

uniform for all patients. Specifically, the variant callers must have

steady performance by maintaining a stable/constant FPR and FNR

across patients, as errors are inevitable. In that case, physicians will

be able to categorize TMB as a baseline to separate patients into

distinct risk groups with varying therapeutic benefits for subsequent

clinical decision-making.

Unfortunately, the existing variant callers are unable to ensure

consistent performance across samples, thereby failing to provide a

fair TMB for clinical usage. We simulated a data set with 10 samples

in which 500 variants, including single-nucleotide variants (SNVs),

insertions, and deletions, were randomly planted in a template

derived from the reference genome (hg.19). Variant calling was

performed using Samtools and Bcftools. As shown in Figure 1, the

performance of the caller exhibited significant fluctuations in FPR

and FNR values across different samples. The coefficient of variation

for the FPR and FNR values was 87.90% and 58.61%, respectively,

demonstrating that the performance of callers fluctuated

significantly as the sample (e.g., the proportion of different

variants) varied. Further details of the experiment are presented

in Supplementary 1.

As compared to the targeted therapy, the differences in the

design philosophy make sophisticated bioinformatics tools unable

to provide results with steady error rates and minimize TMB errors,

thus performing inadequately in immunotherapy guidance. Hence,

error control in bioinformatics tools becomes particularly

important when using TMB to identify individuals likely to

benefit from ICI treatment in a reliable and reproducible manner.
Frontiers in Immunology 04
2.4 Why does bioinformatics software
perform unsteadily across samples?

Existing bioinformatics software detects mutations from

sequencing data based on rules, which are the mapping

relationships between features of the sequencing data (e.g., split

reads, abnormal read pairs, sequencing depth, etc.) and outcomes

(mutation types), as summarized in Figure 2. Taking the deletion

variant as an example, in which the sample is missing a fragment

relative to the reference genome, there are three types of features

when compared to the reference genome: 1) the read depth would

be significantly reduced within this deletion region; 2) the insert size

of the read pair, which is the spatial distance of the fragment

generated by sequencing on both sides of the variant, would be

significantly larger; and 3) a read in the sequenced fragment would

be split into two fragments with the same alignment direction.

Software sets the rules so that a region with these features would be

reported as having a deletion variant. These rules are either

summarized by researchers via experience and observation (43–

46) or automatically learned by machine learning algorithms (47–

50) based on commonalities among patients. The program reports

the detection of a mutation in any genome region whose features fit

the predefined rules. Therefore, the accuracy of detection in a

certain region relies on the degree of matching between the preset

rules of callers and the characteristics of the sequencing data. The

mutation types in different samples may not differ greatly, but the

proportion of each mutation type may vary significantly. The

amount and proportion of mutations whose features do not

match preset rules are also different across samples. Using the

software with limited predetermined rules to analyze these samples

will result in a significant variation in accuracy, as shown in

Figure 1. The mismatch, caused by the variety of samples and the

incompleteness of preset rules, is the fundamental reason for the
FIGURE 1

Performance comparison of the caller across simulated samples.
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fluctuation of error rates. It may also help explain why the

performance of bioinformatics software differs significantly across

populations and even races.

The mutation detection problem for a sample with multiple

mutation types may be a non-deterministic polynomial-time

hardness problem. That is, when a caller tries to combine all rules

to cope with multiple mutation types, it is hard to find a solution to

the problem in polynomial-time. As the number of mutation types

increases, the number of rules may expand exponentially. Even with

the help of machine learning, based on the probabilistic

approximately correct (PAC) theory (51), it is only possible to

establish an approximately correct set of rules to reduce the

generalization error to an acceptable level. Thus, it is not feasible

for a variant caller to establish a complete set of recognition rules

that encompasses all mappings. Moreover, a general idea of the

proof is given below.

Denote the reals by R, the accuracy control variable by ϵ, the
confidence degree control variable by d, the target concept by H, the

possible hypothesis by h and the structural variation by SV. In

Figure 3, falling within H indicates the reference SV set, while falling

within h indicates the call SV set.
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For each ϵ ∈ R, if P½H� ≤ ϵ, then R½CS� ≤ P½H� ≤ ϵ is constant.
If P½H� > ϵ, Let’s separate d1, d2,  d3,  d4 from H, and suppose that

their areas are all ϵ
4, then Sd1+d2+ d3+ d4 ≤ ϵ. Thus, we can obtain the

proposition that if c = HS intersects both d1, d2,  d3,  d4, then H(c) ≤

ϵ. Its converse proposition is that if H(c)>e, then HS does not

intersect with at least one of d1, d2,  d3,  d4. Therefore, we can get

PSeDm ½H(HS) > ϵ� =∩4

i=1 HS ∩di = f
n o

≤∪4

i=1 HS ∩di = f
n o

≤o4
i=1PSeDm HS ∩di = f

n o
≤ (1 − ϵ

4 )
m + (1 − ϵ

4 )
m + (1 − ϵ

4 )
m + (1 − ϵ

4 )
m

= 4elog (1−
ϵ
4)

m

= 4em log (1−ϵ
4)

≤ 4e−
ϵ
4m

≤ d

(6)

In order to ensure that

PdSeDm ½H(CS) ≤ ϵ� ≥ 1 − d⇔PdSeDm ½H(CS) > ϵ� ≤ d (7)

Then,

4e−
ϵ
4m ≤ d⇔m ≥

4
ϵ
log

4
d

(8)

Hence, for each ϵ > 0, d > 0, if

m ≥
4
ϵ
log

4
d

(9)

Then,

PdSeDm ½H(CS) ≤ ϵ� ≥ 1 − d (10)

Thus, this concept class is PAC-learnable. Because of the

correlation between some features of the sequencing data (e.g.,

sequencing depth), an SV can be expressed as an r-term DNF.

Applying the result of Pitt and Valiant (52), that r-term DNF are
FIGURE 3

Schematic diagram of target concept and possible hypothesis.
D

A

B

E

C

FIGURE 2

Mapping relationships between features of the sequencing data and mutation types. (A) SNV. (B) Deletion. (C) Insertion. (D) Inversion. (E) Tandem duplication.
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not learnable using r-term DNF as hypotheses in polynomial time

unless RP = NP, will complete the proof.
2.5 Why the ensemble strategies for
bioinformatics software cannot solve
this issue?

Currently, powerful toolkits often adopt ensemble strategies.

Multiple mutation detection tools were ensembled, and the

consensus voting strategy was used to determine the final

detection output. Voting may help to improve the detection of

specific candidate targets, hence reducing the risk of FPs. However,

it may neglect the important true mutations found by the minority.

For example, a delicately designed software detects a mutation that

is ignored by all others, yet due to the voting principle, this true

mutation is filtered out as a false-positive error, resulting in a false-

negative error. We simulated a data set with 15 samples in which

500 variants, including SNVs, insertions and deletions, were

randomly planted in a template obtained from the reference

genome (hg.19). Three commonly used variant calling flows:

samtools + bcftools, freebayes and GATK mutect2 were adopted

for the variant calling. We calculated the positive and negative error

rates of variant calling using ensemble strategy, as shown in

Figure 4. Furthermore, we provided two FP and two FN error

examples, respectively, caused by the ensemble strategy

(Supplementary 2.3). The ensemble strategy led to non-negligible

errors in both the positive and negative, and the error rate

fluctuated significantly, as depicted in Figure 4. Through

calculation in out experiment, the coefficient of variation of the

positive and negative error rates of the ensemble strategy reached

42.79% and 30.86%, respectively, indicating that when the sample

changed (e.g., the percentage of various variants changes), the
Frontiers in Immunology 06
ensemble strategy performance changed accordinssgly (More

details are available in Supplementary 2). This is because, despite

having hundreds of variant callers, their fundamental rules are

limited. There are huge overlaps in the basic variant-calling

components. In particular, some mutation sites in alleles with low

frequency are more likely to be filtered by the voting strategy, hence

increasing the risk of FNs. As previously noted, FNs and FPs are

equally crucial for TMB. The ensemble strategies voting cannot,

therefore, resolve this issue.
3 Potential solutions

3.1 Software recommendation
with improved error variance
control performance

Some empirical studies have compared the performance of

various variant callers on some benchmarking datasets and

demonstrated that most callers have obvious advantages in

specific data. These advantages are attributed to the variant

caller’s own preset rules, which enable them to handle data with

specific mutations. For example, in a benchmark experiment by

Kosugi et al. (53), a total of 69 variant callers were tested on second-

generation and third-generation sequencing data, both real and

simulated. The study revealed that each caller exhibited distinct

advantages for specific samples, and no single caller performed

optimally across all samples.

As previously noted, based on the clinical need for

immunotherapy, bioinformatics mutation detection software is

required to take the “personality of samples” into consideration.

Technically, the objective is to improve the matching degree

between mutations in samples and detection rules. Thus, we can
FIGURE 4

The positive and negative error rate of the ensemble strategy.
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benefit from the idea of the recommender system, which provides

suggestions for items that are most pertinent to a particular user.

The most suitable bioinformatics software, determined by high

matching degree for the samples to be analyzed, can be

automatically recommended in a clinical setting. Thus, the

recommended bioinformatics software ensures both effectiveness

and efficiency in clinical practice, eliminating the need for

additional prerequisites. Unlike the traditional recommender

system in which the characteristics of users and items are

apparent, the bioinformatics software recommender system

suggests compatible software for samples whose characteristics

are hidsssssden. In this context, we have to mine sample features

and evaluate software performance in advance.

Specifically, in the design of traditional recommender systems,

researcher guides the process of recommending an item to a user by

establishing associations between items and the users. During this

process, we can explicitly obtain the user’s gender, age, educational

background, and other characteristics to describe a user, as well as the

item’s size, color, material, and other attributes to describe an item.

Motivated by this, we can achieve software recommendation by finding

the characteristics that can describe the sequencing samples and

software performance, and subsequently establishing the relationship

between them. In this scenario, the user and item are the sample and

software, respectively. It appears feasible to implement software

recommendations in the same manner as traditional recommender

systems. Unfortunately, it is more difficult to obtain the characteristics

of a sequencing sample and software than it is to obtain the

characteristics of an item or a user. We need to analyze sequencing

samples to determine the characteristics that can distinguish among

sample differences and software performance variations, such as read

length and sequencing depth, among others. Similarly, we need to carry

out a large number of experiments to test the performance of the

software, in order to achieve a description of the software performance.

Therefore, the user and item characteristics in the software

recommendation scenario are hidden, which makes this

problem challenging.

Some pioneering attempts have been made in this direction. Wang

et al. (54) have presented an online SV caller recommendation tool

implemented under themeta-learning framework, which automatically

recommends the most compatible caller for the input sequencing data.

There are some other recommender systems available, such as the SLP-

based, ML-KNN-based, and collaborative filtering-based

recommendation methods, among others (55). Moreover, the online

caller recommendation tool documented in (54) is mainly used for SV

caller recommendation. For SNV, indel, CNV, and other scenarios,

meta features of the corresponding scenes can also be extracted to guide

software recommendation. Therefore, we believe there will be more

exciting software recommendation work, such as considering different

application scenarios, personalized requirements and so on.
3.2 Developing novel bioinformatics
tools with error control

Software recommendation is a good way to improve matching

degree, however, its performance is still capped by the
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recommended candidates. Hence, it is still necessary to develop

novel bioinformatics tools to achieve control over the error rate.

From the perspective of error control, we believe there are several

potential studies that warrant further investigation.

1) For some specific types of mutations, such as CNV or MSI, the

mapping structure of the rules will not alter even if the variances across

samples are substantial. By adjusting the parameters of the rules, it is

possible to optimally match the features of different samples with the

appropriate rules. Consequently, it is feasible to overcome this kind of

problem by incorporating adaptation into the detection scheme. The

parameters may self-adjust based on the features of the samples,

thereby increasing the degree of matching in an adaptive manner.

Some pioneer researches have made attempts. Taking CNV detection

as an example, the size of sliding window is the crucial factor impacting

the detection precision. Xuwen et al. (56) have presented a CNV caller

with a dynamic sliding window that automatically adjust the window

size based on the length of CNV to achieve the optimal setting. The

adaptive window with self-adopted size makes it capable of handling

CNVs with various lengths ranging from kb-scale to chromosome-

arm level.

2) From the perspective of the control system, this problem can be

viewed as a detection quality control problem. By setting the detection

error as the adaptive control goal, it is feasible to introduce the adaptive

control mechanism into the algorithm design to utilize the error

feedback information. Hence, the detection algorithm would have

the adaptability of dynamic adjustment and automatic matching of

sequencing sample characteristics. However, there are two challenges

that need to be tackled here. First of all, how do we establish the model

for this detection quality control problem? Establishing accurate

models of systems with nonlinear characteristics has been one of the

most challenging and critical challenges in control science. Meanwhile,

the mutation detection process is a special process of statistical analysis

of static sequencing data and outputting results. The traditional

modeling methods of physical systems cannot be directly applied in

this context. Instead, it is necessary to study the key factors affecting

quality control, such as the multi-dimensional sample characteristics

and detection rule parameters and define the dynamic characteristics of

the detection process. Secondly, how do we design a control strategy

with adaptiveness and robustness to achieve the quality control of

mutation detection? A complex nonlinear system with high

uncertainties is one of the classical control problems in the field of

nonlinear systems. There are numerous control approaches that have

been studied and developed. However, the field currently lacks

mathematical tools to uniformly deal with nonlinear systems, and a

general optimal design solution is yet to be established, which needs to

be analyzed and handled case-by-case. It needs to study how to

introduce adaptive mechanisms into mutation detection methods,

design control strategies based on the error feedback information

and system model, and guide the design of adaptive

detection algorithms.

3) Another one is to deal with multiple types of mutations

simultaneously, each with its own set of rules. By adopting the

concept of the recommender system in the selection of

bioinformatics software, a sample may be viewed as a collection of

different mutations with varying proportions and types. The

sequencing data is divided into a series of intervals, with each
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interval containing just one mutation. These intervals are then

clustered. The best combination of bioinformatics software is selected

by recommending the optimally matched rule sets for the

clustered classes.

These studies may be further ensembled to address more

complex cases, such as the overlap of different mutations within a

single interval window. As an added value, this might shed light on

why bioinformatics tools have inconsistent performance when

detecting mutations in data from individuals of different races.
3.3 New threshold optimization methods
to better consider the error

The threshold optimization method considering FN and FP

errors is also a viable research topic for addressing the TMB issue.

From the perspective of the errors, its fundamental concept is to

correct the number of mutations detected within any specific

interval of the samples in the statistical framework.

Thereby, the machine learning algorithm may be employed to

learn the features of TMB that cannot be directly observed during

detection, to predict the deviation risk of detected mutations, and to

thereafter monitor the risk outliers among samples. Based on the

predicted risk, the new threshold optimization methods would be

able to assist in immune decision-making modeling, which will

facilitate clinically precise diagnosis and therapy.

Compared to the existing multiple-end statistical models, which

directly estimate the TMB error of each sample, this model uses

machine learning to predict FPs and FNs instead, tracing the errors

back one step farther. The information loss is reduced. Thus, the

errors are more effectively handled across samples.
4 Conclusion

This article investigates the underlying reasons why TMB

becomes an ambivalent biomarker. The definition of TMB error

is given first. Then the requirements of immunotherapy for

bioinformatics tools are analyzed to trace the source of the TMB

error. The simulation results also demonstrate that the variant caller

performs unsteadily across samples and cannot fulfill the

requirements. The effects of TMB error on threshold and the

reasons why error issue is amplified in cancer sequencing data are

also discussed. By analyzing the design philosophy behind callers,

the conflict between the incompleteness of biostatistics rules and the

variety of clinical samples is the critical issue that renders TMB an

ambivalent biomarker. Additionally, the article also proposes

potential research topics in order to address the conflict issue.
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