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In the working-age population worldwide, diabetic retinopathy (DR), a prevalent

complication of diabetes, is the main cause of vision impairment. Chronic low-

grade inflammation plays an essential role in DR development. Recently,

concerning the pathogenesis of DR, the Nod-Like Receptor Family Pyrin

Domain Containing 3 (NLRP3) inflammasome in retinal cells has been

determined as a causal factor. In the diabetic eye, the NLRP3 inflammasome is

activated by several pathways (such as ROS and ATP). The activation of NPRP3

leads to the secretion of inflammatory cytokines interleukin-1b (IL-1b) and

interleukin-18 (IL-18), and leads to pyroptosis, a rapid inflammatory form of

lytic programmed cell death (PCD). Cells that undergo pyroptosis swell and

rapture, releasing more inflammatory factors and accelerating DR progression.

This review focuses on the mechanisms that activate NLRP3 inflammasome and

pyroptosis leading to DR. The present research highlighted some inhibitors of

NLRP3/pyroptosis pathways and novel therapeutic measures concerning

DR treatment.
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1 Introduction

Diabetic retinopathy (DR), a prevalent diabetesmellitus-related complication, is developed

by complex pathophysiological mechanisms triggered by hyperglycemia. The early stages of

DR are known as non-proliferative diabetic retinopathy (NPDR) and are characterized by

increased vascular permeability, retinal hemorrhage and edema, and the formation of

microaneurysms (1). NPDR progresses to a more severe stage of the disease, called

proliferative diabetic retinopathy (PDR), which is characterized by the formation of

pathological retinal neovascularization and eventually lead to retinal detachment and

severely compromise vision (2). In the past, DR has been considered a vascular lesion, but

in recent years it has been found that retinal nerve cell dysfunction has been observed prior to

retinal vasculopathy, so DR is now considered as a neurovascular lesion (3). There is growing
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evidence that inflammation is a key player in DR, as high glucose-

induced production of advanced glycosylated substances, oxidative

stress and vascular endothelial growth factor (VEGF) all contribute to

the inflammatory response (4), and chronic low-grade inflammation is

detected in all stages of DR (5, 6). One of the most studied is the Nod-

Like Receptor Family Pyrin Domain Containing 3 (NLRP3)

inflammasome (5, 7), the activation of which not only induces the

release of inflammatory cytokines interleukin-18 (IL-18) and

interleukin-1b (IL-1b), but also pyroptosis, which releases large

amounts of inflammatory cytokines, inducing inflammatory cell

death in various retinal cells and accelerating the progression of DR

(8–11). Retinal cell death is an essential feature of DR (12). However,

most previous studies have focused on apoptosis, necrosis, and

autophagy. Therefore, in this review, we focus on the activation

mechanism of NLRP3 inflammasome/pyroptosis and its significance

in DR, and some certain inhibitors of NLRP3 and pyroptosis were

examined concerning their possible therapeutic effect on DR.
2 NLRP3: a star target in the field
of inflammation

The NLRP3 inflammasome is a cytoplasmic immune factor that

responds to cellular stress signals and constitutes a sensor (NLRP3), an

adapter protein (ASC), and an effector (caspase-1). The ASC protein

has a PYD as well as a caspase recruitment domain (CARD). In

contrast the NLRP3 is a tripartite protein that consists of a central

NACHT domain, a carboxy-terminal leucine-rich repeat (LRR)

domain, and amino-terminal pyrin domain (PYD) (13). NLRP3

inflammasomes are typically activated by PAMP (such as microbial

toxins, viral RNA, and surface components of bacteria) and DAMP

(including ATP, uric acid crystals, beta-amyloid peptides, and

aluminum adjuvants) (14, 15). NLRP3 interacts with the homotypic

NACHT structural domain upon stimuli to undergo self-

oligomerization with the oligomerized NLRP3 causing the bound

ASC, attracted through homotypic PYD-PYD interactions, to

aggregate into ASC specks (macromolecular focal points) (16–18).

Afterward, the assembled ASC recruit caspase-1 via homotypic

CARD-CARD interactions to generate the NLRP3-ASC-caspase-1

protein complex, called NLRP3 inflammasome (19). The activated

NLRP3 inflammasome triggers self-cleavage and activates pro-

caspase-1, causing the release of the pro-inflammatory cytokines IL-

1b/18. Caspase-1 also cleaves gasderminD (GSDMD) intoN-terminus

GSDMD (N-GSDMD), which causes the formation of pores in the cell

membrane and triggers pyroptosis, releasing inflammatory factors IL-

1b/18 to further promote the inflammatory response (20). Numerous

ocular tissues and cells express NLRP3 inflammasome, which is

elevated in various ocular disorders (21, 22).
2.1 Priming the NLRP3 inflammasome

At rest, the expression of NLRP3 and IL-1b in macrophages is

minimal and cannot be used to assemble or activate NLRP3

inflammasomes, so their activation must be highly regulated.

With few exceptions (23, 24), two steps constitute the NLRP3
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inflammasome activation (Figure 1): priming (Signal 1) and

NLRP3 inflammasome assembly (Signal 2). The priming process

has two known functions. The first is to elevate the transcriptional

levels of NLRP3 and pro-1L-1b/IL-18. This transcriptional

upregulation is triggered by granulocyte-macrophage colony-

stimulating factor (GM-CSF) receptors, nucleotide-binding

oligomeric structural domain protein 2 (NOD2), TNF receptors

TNFR1 and TNFR2, and toll-like receptors (TLRs), which could

recognize PAMPs or DAMPs and activate the nuclear factor-kB
(NF-kB) (25–27). The second function of priming is to induce post-

translational modifications (PTM) of NLRP3, including

phosphorylation, ubiquitination, and SUMOylation (28–30),

which stabilizes NLRP3 in a signal-competent but auto-

suppressed inactive state (14, 23).
2.2 Signals for activation of the
NLRP3 inflammasomes

After the inflammasome receives the priming signal, the next

step involves the recognition of agonists and assembling and

activating the NLRP3 inflammasome. While most pattern

recognition receptors (PRRs) can only be activated in response to

one or a few structurally similar PAMPs or DAMPs, the activation

of NLRP3 can be induced under multiple unrelated stimuli,

including viral, bacterial, and fungal infections, as well as

exposure to environmental irritants and endogenous DAMP-

mediated sterile inflammation. These factors are unified in terms

of causing cellular stress, which is sensed by NLRP3. Various

molecular and cellular processes have been suggested as upstream

signals for inflammasome assembly and activation, that include ion

fluxes (e.g., Ca2+ mobilization, K+ and Cl- efflux), lysosomal

disruption, mitochondrial dysfunction, reactive oxygen species

(ROS), and mitochondrial DNA (mtDNA) release, metabolic

changes and dispersed trans-Golgi (31–36). Recent research has

indicated that the NLRP3 inflammasome can also be activated via

various mechanisms including the complement system, protein

kinase R (PKR) (37, 38), purine receptor (39), necroptotic

signaling, and Z-DNA-binding protein 1 (ZBP1) (40–42).

Numerous diabetes-linked metabolic factors act as the secondary

signals for NLRP3 activation in DR. These signals include

adenosine triphosphate (ATP), cholesterol levels, and cellular

structural instability, such as lysosomal rupture, dysfunction of

the mitochondrial, and molecular or ionic perturbations including

K efflux, ROS, and Ca2+ signaling (43). Despite multiple upstream

activation events, several pathways are interrelated and overlapped,

with ambivalence between the data. Therefore, a consistent model is

still unavailable for the activation of NLRP3.
i) Ion flux pathway
K efflux is considered a general upstream event in the activation

of the NLRP3 inflammasome. It was observed during the activation

of most NLRP3 inflammasomes, except for peptidoglycan,

imiquimod, and the related molecule CL097, which can be

independent of K efflux (44, 45). However, different activators
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induced K efflux by diverse pathways. For example, ATP causes K

efflux by opening cation channels. Moreover, IL-1b maturation is

promoted through K efflux by the purinergic receptor family’s ion

channel known as ATP gating of the P2X7 receptor (P2X7R) (46). A

recent study has revealed that P2X7 does not function as a cation

channel for K efflux even though P2X family receptors are

membrane nonselective ion channels for Ca2+, Na+ and K+ (47).

P2X7 stimulates the influx of Ca2+ and Na+ after ATP activation

and co-ordinates with the K+ efflux-mediated channel tandem pore

domain in weak inward rectifying K channel 2 (TWIK2) (48).

Subsequently, it induces the binding of downstream NIMA-related

kinases (NEK7) to NLRP3, triggering the NLRP3 inflammasome

activation (48). A Streptomyces hygroscopicus-derived antibiotic,

nigericin, serves as a K+/H+ antiport ionophore that controls the

membrane exchange of K+ for H+ across most membranes (49).

Moreover, the complement membrane attack complexes or pore-

forming microbial toxins induced damage to the cell membrane

integrity can also directly result in K efflux (50, 51). Besides ATP

and pore-forming toxins, some particles such as cholesterol crystals,

calcium pyrophosphate crystals, and silica also trigger K efflux,

essential for activating the NLRP3 inflammasome (31).

For calcium signaling, releasing endoplasmic reticulum (ER)-

linked intracellular Ca2+ stores or opening plasma membrane

channels to allow Ca2+ fluxes into the cytoplasm facilitates the

NLRP3 complex formation. Moreover, calcium flux and K efflux are

usually coordinated when activating the NLRP3 inflammasome. For

instance, ATP induces weak Ca2+ inward flow and coordinates K+
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outward flow via its receptor P2X7 (48). Subsequently, the release of

ER-linked Ca2+ is promoted by K efflux (32, 52). The activation of

NLRP3 promoted by monosodium urate crystals, alum, nigericin,

and membrane attack complexes is dependent on K+ efflux and

Ca2+ flux (3, 53). Additionally, aside from the K+ and Ca2+, the Cl-

channels are also implicated in activating the NLRP3

inflammasome. The most convincing data is that a class of non-

steroidal anti-inflammatory drugs (NSAIDs) prevents Cl- migration

via inhibiting NLRP3 activation by blocking the volume-regulated

anion channel (VRAC) on the plasma membrane (54). Similarly,

the translocation of Cl- intracellular channel proteins CLIC1 and

CLIC4 to the plasma membrane occurs where they mediate Cl-

efflux and participate in NLRP3 inflammasome activation (55, 56).

In summary, activating the NLRP3 inflammasome is a complex

process resulting from a combination of cellular and molecular

effects, with many influencing factors. Changes in the concentration

of either ion may affect the activation process, and more research is

required to understand precisely how ion movement coordinates

with NLRP3 activation.
ii) Mitochondrial dysfunction
Mitochondria is emerging as the focal organelle for the

activation of the NLRP3 inflammasome, acting as a docking site

for its assembly, danger signal release, mtROS production, etc. (57–

59). In the resting state, NLRP3 is localized in the ER, and ASC is

dispersed in the cytoplasm. During particle stimulation or
FIGURE 1

NLRP3 inflammasome priming and activation. The signal 1 (priming, left) is induced by toll-like receptors (TLRs), nucleotide-binding oligomeric
structural domain protein (NOD) and tumor necrosis factor receptors (TNFR), which could recognize pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs) and upregulate the transcriptional levels of NOD-like receptor thermal protein domain
associated protein 3 (NLRP3), proinflammatory cytokines interleukin 1b (IL-1b) and interleukin 18 (IL-18) via the myd88-NF-kB pathway. Signal 2
(activation, right) is induced by various PAMPs or DAMPs, such as particulates, crystals, adenosine triphosphate (ATP), K+ and Cl- efflux, the disruption
of lysosomal, the dysfunction of mitochondrial and the production of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA
(mtDNA), NLRP3 is also activated via RNA viruses via mitochondrial antiviral signaling protein (MAVS). Formation of the NLRP3 inflammasome
activates caspase 1, which subsequently cleaves pro-IL-1b/IL-18 to IL-1b/18. In addition, GSDMD is also cleaved by caspase-1 and inserts into the
membrane, causing pores and pyroptosis. MyD88 myeloiddifferentiationfactor88, IRAKs interleukin-1 receptor-associated kinases, TRAF6 TNF
Receptor Associated Factor 6, FADD Fas-associated with death domain protein, IKK inhibitor of Kappa B Kinase, IKB inhibitor kappa B. Created with
BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2023.1151185
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2023.1151185
activation of the inflammasome by the ion carrier Nigerian

bacteriocin, acetylated a-microtubule promotes microtubule-

dependent mitochondrial translocation to the ER, which can

contribute to inflammasome activation in conjunction with ASC

on mitochondria and NLRP3 on the ER (35, 60). At least three

proteins are thought to act as linkages between NLRP3 and

mitochondria: mitochondrial antiviral signaling protein (MAVS),

cardiolipin, and mitofusin 2. An inner membrane phospholipid of

the mitochondria, the cardiolipin is exposed to the outer membrane

in response to mitochondrial stress and functions as a binding site

for the molecules linked with autophagy and apoptosis (61).

Additionally, cardiolipin independently binds to caspase-1 and

NLRP3, and these associations could activate the inflammasome

(57, 59). The second protein, MAVS, is articulatory in the RNA-

sensing pathway that is essential in triggering the NLRP3

inflammasome during RNA virus infection and following

synthetic RNA polyinosinic-polycytidylic acid stimulation (62,

63). It recruits NLRP3, directing its position towards

mitochondria for inflammasome activation (64). Finally,

mitofusin 2, found at the ER and MAM contact sites, forms a

complex with MAVS during RNA virus infection and contributes to

the localization of NLRP3 in mitochondria (65).

Besides, ROS is released in mitochondria continuously because

of the by-product of oxidative phosphorylation. Even though

mtROS level increases during cellular oxidative stress, the

damaged or dysfunctioning mitochondria removal can be

achieved through mitochondrial autophagy, thus attenuating

mtROS production. Inhibiting mitochondrial autophagy or

excessive mitochondrial damage increases activation of the

NLRP3 inflammasome (35), indicating the participation of

autophagy in the regulation of NLRP3. Imiquimod and related

compound CL097 target mitochondria to produce mtROS,

activating the NLRP3 inflammasome independent of K efflux

(44). The activation of the NLRP3 inflammasome signaling in

macrophages by phosphatidylcholine oxidation under cellular

stress and injury occurs via mtROS downstream of intracellular

Ca2+ signaling (66). Besides the mtROS release and dysfunctioning

of mitochondrial, mtDNA could also serve as DAMPs and activate

NLRP3 (67–69). Collectively, mtROS and Ca2+ could open

mitochondrial permeability transition (MPT) pores during

oxidative stress (70). The cytoplasmic release of mtDNA depends

on the MPT pore and mtROS (67). Upon stimulation by various

NLRP3 inflammasome activators, the cytoplasmic release of

mtDNA occurs rapidly and is subsequently oxidized. The

oxidized mtDNA can then immunoprecipitate with NLRP3

inflammasomes, thereby activating them. In contrast, non-

oxidized mtDNA preferent ia l ly st imulates the AIM2

inflammasome (69).
Fron
iii) Lysosomal disruption
Lysosomal damage is an important factor in activating the

NLRP3 inflammasome, which is closely associated to cellular

phagocytosis of granules. Endogenous particles (including

cholesterol, Monosodium Urate (MSU) crystals, or amyloid b
aggregates and deoxygenated sphingolipid-based lipid crystals) or
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exogenous particulate matter (e.g., alum, silica, and asbestos) are

phagocytosed by the lysosomes and accumulated in the lysosomal

lumen, leading to greater acidification and swelling of the lysosome

and loss of integrity of the lysosomal membrane and release of

cathepsin, thus leading to the activation of NLRP3 inflammasome

(71). However, the activation of NLRP3 is not activated by a certain

cathepsin, as this pathway is only activated in the absence of multiple

cathepsins (72). A soluble enzyme regulator, the Leu-Leu-O-methyl

ester (LLME), causes the activation of NLRP3 inflammasome

through induced lysosomal rupture and increased K efflux (31, 71).

It has also been shown that the Ca2+-CaMKII-TAK1-JNK pathway

promotes the oligomerization of ASC and regulates the activation of

NLRP3 inflammasome during lysosome rupture (73). These studies

highlight a synergistic effect of lysosomes and ion flow channels in

activating the NLRP3 inflammasome.
iv) Trans-Golgi disassembly
The Golgi apparatus and its lipid mediators play a crucial role in

activating the NLRP3 inflammasome. NLRP3 stimuli enhance the

trans-Golgi network disassembly into vesicles, known as dispersed

trans-Golgi network (dTGN), in cell reconstruction systems. The

subsequent recruitment and aggregation of NLRP3 are mediated by

the phosphatidylinositol-4-phosphate (PI4P) on the dTGN, which

is necessary for downstream oligomerization of ASC and activation

of caspase-1 (74). Even though the K efflux-independent stimuli

(imiquimod, target mitochondria) and K efflux-dependent stimuli

(Nigerian bacteriocin) both form dTGN and recruit NLRP3, K

efflux is just required for the latter function. This observation

indicates the distinct convergence of the K efflux- and

mitochondria-dependent activation of NLRP3 on Golgi

disassembly (74). Research indicated that NLRP3 inflammasome

activation depends on sterol regulatory element binding protein 2

(SREBP2) and SREBP cleavage-activating protein (SCAP). SCAP-

SREBP2 forms a ternary complex with NLRP3, which translocates

into the mitochondria adjacent Golgi apparatus for optimal

inflammasome assembly (75). Therefore, NLRP3 activators can

trigger various molecular and cellular events, such as

mitochondrial dysfunction, ion flux, and lysosomal leakage.

Nonetheless, the function of these processes in NLRP3 activation

remains largely unclear.
3 Pyroptosis

Inflammasome activation triggers the release and maturation of

IL-1b/18 and induces an inflammatory programmed cell death

(PCD) termed pyroptosis. Pyroptosis is triggered by pathogenic

invasion and has been determined to be a CASP activation-

dependent process (76–78), hallmarked by the swelling of cells,

formation of pores in the plasma membrane, rupture of membrane,

and the secretion of pro-inflammatory cytoplasmic contents into

the extracellular space, thereby activating a strong inflammatory

response (79, 80). Pyroptosis is primarily observed in bone marrow-

derived phagocytes, such as neutrophils, macrophages, and

dendritic cells. Additionally, keratin-forming cells, endothelium,
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epithelium, CD4+ T lymphocytes, and neurons can also undergo

pyroptosis (77). Cells that undergo pyroptosis in the ocular

structure include astrocytes, endothelial cells, Müller cells,

microglia, retinal ganglion cells (RGCs), pericytes, retinal pigment

epithelial cells (RPEs), and corneal epithelial cells (CECs) (81–83).

Research has recently depicted GSDMD as the executor

regulating pyroptosis (84), with an N-terminal cell death domain

(GSDMDN-term), a short central junction region, and a C-terminal

self-inhibitory structural domain. Activated CASP cleaves the

GSDMD at specific protein sites and produces GSDMD-N-

terminal and GSDMD-C-terminal. After binding to membrane

phosphatidylinositol, phosphatidylserine, and cardiolipin, the N-

terminal of GSDMD oligomerizes and inserts itself into the plasma

membrane, resulting in the formation of pores, which leads to the

release of inflammatory molecules and ultimately triggers

pyroptosis (85–88).
3.1 Morphological and biological
characteristics of pyroptosis

While pyroptosis is similar to apoptosis and necroptosis, it has

several distinguishing features in contrast with other types of PCD.

During pyroptosis, cells undergo chromatin condensation and DNA

breakage, while the nucleus remains intact, the cell swells, the plasma

membrane ruptures, and inflammatory cytokines are released

(Table 1) (89). In contrast, apoptosis caused by CASP activation

results in membrane blebbing and nuclear fragmentation, while the

plasma membrane is left intact and does not cause an inflammatory

response in vivo (89). Additionally, no chromatin condensation or

loss of plasma membrane integrity occurs in ferroptosis but causes

mitochondrial condensation, reduction or loss of mitochondria

cristae, and increased membrane density (90). On the other hand,

chromatin condensation does not occur in cells undergoing

necroptosis; however, their nuclear membranes are ruptured (91).

Like GSDMD in pyroptosis, MLKL oligomers act as executive

proteins to mediate cell death during necroptosis (92). In contrast,

unlike pyroptosis, necroptosis is independent of CASP but requires

RIPK3-regulated phosphorylation of MLKL. The phosphorylated

MLKL generates a pore complex at the plasma membrane, leading to

the secretion of DAMP, cell swelling, and membrane rupturing (93).

MLKL forms selective channels in the plasma membrane that induce

an influx of ions, increasing intracellular osmotic pressure, inward

water flow, and severe cell swelling. However, pyroptosis depends on

CASP to cleave the GSDMD directly and form pores. The channels

are not selective, and the intracellular and extracellular ionic osmotic

pressure gradient disappears. However, the intracellular colloidal

osmotic pressure is higher, and water flows inward, leading to

increased cell size and subsequent cell lysis, but the swelling is less

severe than in necroptosis (85, 89, 94, 95). NLRP3 is a major

contributor to the pyroptosis but not to other cell death modes

(apoptosis, necroptosis, ferroptosis and autophagy, etc.), but signals

(K+ and mtDNA, etc.) associated with the release of other cell death

can activate NLRP3, thereby inducing inflammation or pyroptosis

(96, 97). In fact, various cell death modes can crosstalk each other

through NLRP3.
Frontiers in Immunology 05
3.2 Activation mechanisms for pyroptosis

Gasdermin-mediated pyroptosis includes both inflammasome-

independent and-dependent pathways (Figure 2). Typically,

pyroptosis dependent on inflammasome includes the CASP4/5/

11- and CASP1-dependent pathways (non-canonical and canonical,

respectively). Recent research has indicated new inflammasome-

independent pathways, including the pathways mediated by CASP-

3/8 and Granzyme A (GZMA) secreted by cytotoxic lymphocytes,

which can sever GSDMB to release the GSDMD-N-terminal

fragment, causing cell perforation and inducing other GSDM-

mediated pyroptosis (98–100). The canonical pathway is

mediated by inflammasome assembly, GSDMD cleavage, and

secretion of IL-1b/18. The assembly of inflammasomes begins

with PRRs (termed inflammasome sensors), such as NLR, AIM2,

and pyrin, which recognize pathogen-associated molecular patterns

and risk-associated molecular patterns (PAMP and DAMP). PRRs

bind to ASC, a caspase-1 precursor, forming a multi-protein

complex and activating caspase-1. The caspase-1, in turn, cleaves

GSDMD to create the active domain (GSDMD-N terminal)

containing peptide, which causes the cell membrane to become

perforated and ultimately ruptures, releasing the contents, leading

to an inflammatory reaction (88, 101). Moreover, activated caspase-

1 cleaves pro-IL-1b/18, forming extracellularly released activated

IL-1b/18, leading to aggregated inflammatory cells and an amplified

inflammatory response (20, 84, 86, 102, 103). In the non-canonical

pathway, caspase-4/5/11 recognizes intracellular lipopolysaccharide

(LPS) directly (104) and cleaves GSDMD, triggering pyroptosis

(105). However, caspase-4/5/11 cannot cleave pro-IL-1b/18 but can
mediate their maturation and secretion via the NLRP3/caspase-1

pathway in partial cells, indicating the significance of caspase-1 in

the production of mature IL-1b and IL-18 (106–108). In addition,

cleavage of GSDMD by caspase-4/5/11 could trigger intracellular K

efflux (20), causing the activation of NLRP3 inflammasome and

accelerating pyroptosis (109–111). Further, in response to LPS

stimulation, activated CASP11 cleaves Pannexin-1, induces ATP

efflux, and binds to P2X7R, triggering NLRP3-linked pyroptosis

(102, 112).

4 NLRP3 and pyroptosis in
diabetic retinopathy

In the working-age population, the most prevalent cause of

preventable blindness is diabetic retinopathy, a common and

distinct microvascular complication of diabetes (113). The retina

is a complex system, usually made up of ten layers (from the inside

out): RPE, optic rod and cone layer, and outer membranes

consisting of limiting membrane (OLM), nuclear layer (ONL),

plexiform layer (OPL), as well as inner membranes such as

nuclear layer (INL), plexiform layer (IPL), cell layer (GCL), fiber

layer (NFL) and limiting membrane (ILM) (114). In terms of

histology, blood cells (endothelial and pericytes), glial cells

(astrocytes, Müller cells, and microglia), and retinal neurons form

an essential structure called the retinal neurovascular unit (NVU)

(115). A growing body of research suggests that the abnormal
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interactions between inflammation, oxidative stress, mitochondrial

dysfunction, advanced glycation end-products (AGEs) and cell

death leads to retinal vascular abnormalities, blood-retinal barrier

(BRB) disruption and neurological dysfunction (116–118). Recent

studies have shown that chronic inflammation plays a crucial role in

the pathogenesis of DR, where the NLRP3 inflammasome is of

particular significance. Research depicts that peripheral blood

mononuclear cells of individuals with DR exhibit greater

expression levels of protein and gene of caspase-1, ASC and
Frontiers in Immunology 06
NLRP3 in contrast with normal individuals. Moreover, increased

expression levels of the NLRP3, caspase-1, and the pro-

inflammatory factors IL-1b/18 are also evident in the vitreous

humor (119). Similarly, patients with proliferative DR show an

elevation of ASC and NLRP3 in their fibrovascular membranes (7),

while inhibiting NLRP3 inflammasome slows DR progression

(120). The activation of NLRP3 can induce an inflammatory

response and act as a bridge between neovascularization and the

inflammation (121). Most importantly, NLRP3 activation can
TABLE 1 The comparison of different modes of cell death.

Types Pyroptosis Apoptosis Necroptosis Ferroptosis NETosis Autophagy Cuproptosis

Death stimulus DAMPs and
PAMPs,
dsDNA,

pathogens, LPS,
ATP,

permeability of
cell membranes

to K+

Cell stress; DNA
damage, infection,
hypoxia, ligands
of transmembrane
receptor (TNFR1,

FAS)

Physical or
chemical
trauma,

Pathogenic
infections or
Pathological

stimuli

Decreased uptake of
cysteine or

glutamine, increased
iron uptake,
suppression of

GPX4

Various
pathogens, such as
bacteria, fungi,

protozoa, viruses,
bacterial cell wall
components-LPS

Starvation, hypoxia,
oxidative stress,

protein aggregation
and ER stress

Copper
accumulation

Initiator Activation of
inflammasomes
(e.g., NLRP3,
NLRC4, AIM2,
pyrin, etc.)

Death receptor
(TNF receptor
superfamily)
activation/

mitochondrial
events

(intracellular
signals)

The activation
of cell surface
death receptors
(FasRs, TNFR,

IFN, and
TLRs), and
ZBP1 in cells

The suppression of
the cystine–

glutamate antiporter
(system Xc−),

depletion of GSH
and inactivation of

GPX4

Activation of
neutrophil,
including the
activation of

surface receptor
(TLR2,

complement
component 3,

GPCRs, TNF and
Fc receptors)

Serine–threonine
protein

kinase ULK1
complex (such as

ATG13, ATG101 and
FIP200)

Binding of Cu2
+ to lipid
acylated

components of
the TCA

Executor Caspase‐1,
caspase‐4/5/11
and GSDMD

Caspase‐3, 6,7
and caspase 8

MLKL
oligomerization
and translocate
to the plasma
membrane

Iron-dependent
phospholipid
peroxidation

Dysregulated
NETs, GSDMD

mediates
membrane pore

formation

Autophagosome,
autophagolysosome

Loss of iron-
sulfur cluster
proteins and

DLAT
Oligomerization

Morphological
characteristics

Cells swell, cell
membranes
rupture,

organelles are
lost, chromatin

condense,
nuclei remain

intact

Cell shrinkage,
nuclear

fragmentation,
chromosomal

DNA
fragmentation,

plasma-
membrane
blebbing and

apoptotic vesicle
formation

Cell and
organelle
swelling;
chromatin

condensation;
cell membrane
rupture and
release of
cytoplasmic
contents

Lipid peroxides
accumulation, less
dense than normal
mitochondria,

reduced or absent
mitochondrial
cristae, ruptured

outer mitochondrial
membrane

Nuclear swelling,
dissolution of
nuclear and
cytoplasmic
granule

membranes,
rupture of the
cytoplasm

Large accumulation
of bilayer membrane
autophagic vesicles
(autophagosomes) in
the cytoplasm; fusion
of autophagosomes
with lysosomes to
degrade contents

Mitochondrial
shrinkage,

mitochondrial
membrane
rupture

Inflammation Yes No Yes Yes Yes Partially have /

NLRP3
participation

Yes No No No No No /

Functions Against
pathogens

invasion and
enhance
antitumor
immunity,
neurological

related
disorders

Maintenance of
homeostasis of
the internal
environment

Defense to
pathogens

infections and
maintain tissue
homeostasis

Tumor suppression,
inflammation and

immune surveillance
(Cancer immunity,
neuroinflammation)

Involvement in
innate immunity,
defense against
bacterial and

fungal infections

Maintaining
intracellular
homeostasis,

excessive autophagy
led to metabolic

stress

Enhance
antitumor
immunity
DAMP danger-associated molecular pattern, PAMP pathogen-associated molecular pattern, dsDNA double-stranded DNA, LPS lipopolysaccharide, ATP adenosine triphosphate, TNFR1 tumor
necrosis factor receptor 1, ER endoplasmic reticulum, NLRP NOD-like receptor protein, AIM2 absent in melanoma 2, INF interferon, TLR toll-like receptor, ZBP1 Z-DNA binding protein 1,
GSH glutathione, GPX4 glutathione peroxidase 4, GPCR G-protein-coupled receptors, ULK1 Unc-51-like kinase, ATG13 Autophagy Related 13, ATG101 Autophagy Related 101, FIP200 focal
adhesion kinase family interacting protein of 200 KD, TCA tricarboxylic acid cycle, GSDMD gasdermin D, MLKL mixed lineage kinase domain-like, NETs neutrophil extracellular traps, DLAT
Dihydrolipoyl Transacetylase.
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induce pyroptosis, leading to inflammatory cell death in retinal

cells. Cell death is a typical characteristic of DR, which has a major

role in the onset and advancement of DR (122). However, a large

number of studies in the past have focused on cell death such as

apoptosis, autophagy and ferroptosis. Recently, it has been shown

that pyroptosis can be observed in neurons, RMEC, Müllers,

microglia and RPEs.
4.1 The role of NLRP3 inflammasome in
diabetic retinopathy

When the retina is exposed to glucose stimulation,

abnormalities in various metabolic pathways lead to cellular

oxidative stress and inflammation, and as signal regulators, RGCs

may be the first to be damaged, as it has been shown that NLRP3

activation and electroretinogram defects precede the onset of

microvascular lesions (123, 124). With RGCs damage, many

abnormal signals are released to stimulate microglia and Müller

cells to activate and proliferate (125). At the same time the

metabolic abnormalities caused by high glucose also stimulate

glial cells to activate NLRP3 inflammasomes, releasing anti-

inflammatory cytokines to protect the retina (126, 127). However,

continued glucose stimulation leads to excessive production of pro-

inflammatory cytokines by glial cells and damage to retinal

neurovascular units. As glial cell damage and phagocytosis

decline, leading to the accumulation of metabolic wastes such as

ATP, ROS, mtDNA or toxic chemicals such as serum uric acid (UA)

(128), NLRP3 in the retinal vascular endothelium and pericytes is

activated and large amounts of the inflammatory cytokines IL-1b
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and IL-18 are released (129–131). At this point retinal vascular cells

begin to deteriorate, the pericytes are shed and leukocytes and

macrophages are induced to aggregate and adhere tightly to

vascular endothelial cells with the upregulation of adhesion

molecules (132, 133), leading to further destruction of the retinal

BRB, which leads to vascular leakage, edema and hypoxia. The

hypoxic microenvironment disrupts the balance between

angiogenic (e.g., VEGF) and anti-angiogenic (e.g., PEDF)

regulators, promoting neovascularization (121, 134). Activation of

NLRP3 induces the releases of IL-1b and IL-18. IL-1b binding to IL-
1R increases retinal vascular permeability, exacerbating hypoxia, IL-

18 is involved in pro-angiogenesis with VEGF (5). Most

importantly, NLRP3 acts as a major contributor to pyroptosis.

Numerous studies have shown that almost all retinal cells can

undergo pyroptosis and the cells swell and rupture, releasing

inflammatory cytokines and triggering an inflammatory storm.

With the progress of DR, excessive activation of NLRP3 induces

inflammation and various retinal cell death, triggering an

inflammatory storm that leads to structural and functional

collapse of the NVU and ultimately impairs vision (Figure 3).
4.2 Mechanism of NLRP3/pyroptosis
activation in different cells in
diabetic retinopathy

Retinal pericytes (RPs) and vascular endothelial cells are

essential elements of the retinal microvascular system and the

internal of BRB (Figure 4). The loss of RPs can trigger

microaneurysm formation, blood leakage, edema and ischemia,
FIGURE 2

Inflammasome-dependent pathway of pyroptosis. Canonical pathway: inflammasome sensors are activated by different signals, such as dsDNA,
flagellin T3SS, Rho-modifying and RNA virus. Activated inflammasome sensors subsequently oligomerization with pro-caspase1 and ASC. Activated
caspase1 cleaves pro-IL-1b/18 into mature IL-1b/18. Caspase1 also cleaves GSDMD to release the N-terminal domain (GSDMD-N), which then
inserts into the membrane, causes pores and induces pyroptosis. Noncanonical pathway: LPS directly activates caspase-4/5/11, causing GSDMD
cleavage and triggering intracellular K efflux, K efflux further activates the NLRP3 pathway and accelerates pyroptosis. Created with BioRender.com.
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and induce proliferative neovascularization of the retina and

subsequent loss of endothelial cells, the death of RPs and

endothelial cell is a fatal blow to the NVU and accelerates the

progression of DR (135, 136). Several models of DR have depicted

the activation of NLRP3/caspase-1 and the release of IL-1b in

retinal microvascular endothelial cells (RMECs) and retinal

endothelial cells (RECs) in vitro and in vivo experiments (137–

139). Connexin 43 is a cell-cell communication channel (gap

junction) forming protein (140, 141), which is expressed in

HRMECs, Müller cells, microglia, RPE, and astrocytes in the

retina (142). Research demonstrates that Connexin 43 is

upregulated in mouse DR models (142). Hemichannels open

under hypoxic-ischemic conditions to form membrane pores,

resulting in elevated extracellular ATP (143). A non-selective

cation channel is formed when increased extracellular ATP links

to a NLRP3 inflammasome activator, the P2X7R, a receptor which

detects metabolic stimuli and oxidative stress. This results in

initiating pyroptosis in human RMEC due to the subsequent K

efflux and Ca2+ influx activating the NLRP3 inflammasome (144–

146). Another study demonstrated that P2X7 was expressed at

considerably elevated levels in RMEC in the presence of high

glucose and LPS and that the persistent presence of high

extracellular ATP could induce the P2X7 macropore opening.

Activated P2X7 activates NLRP3 inflammasomes via K efflux,

ROS, and glutamine efflux, while LPS activates NLRP3

inflammasomes via the caspase-1 and 11 (canonical and non-

canonical, respectively) pathways to induce pyroptosis (147).

Moreover, Yang et al. observed that RMEC exposed to advanced
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glycation end product modified bovine serum albumin (AGE-BSA)

showed features of pyroptosis such as cell swelling and nucleus

fragmentation, and the western blot results showed that expression

of NLRP3, GSDMD and caspase-1 were upregulated. These

phenomena were inhibited by H3 relaxin and MCC950,

suggesting that NLRP3 is activated and induces pyroptosis in

RMEC under a variety of pathological conditions (148). ROS, a

known DAMP, triggers NLRP3 activation in DR (149–151). In

endothelial cell, ROS induce pyroptosis by activating the NLRP3

through the initiation and activation process. The initiation phase

refers to upregulation the expression of NLRP3, IL-1b/18 and

caspase-1 expression by ROS. The activation phase refers to the

promotion of NLRP3 inflammasome assembly and activation by

ROS via TXNIP (152). Chen et al. found that minocycline, a

tetracycline antibiotic, significantly downregulated ROS

production and deceased TXNIP expression, inhibiting NLRP3

activation and decreasing the secretion of IL-1b/18 (138, 153). In

a human RMEC model incubated with high glucose, miR-590-3p

was downregulated and promoted pyroptosis by activating the

NOX4/ROS/TXNIP/NLRP3 pathway and targeting NLRP1. In

addition, increased levels of IL-1b further exacerbated cell death

by inducing miR-590-3p downregulation through positive feedback

(139), suggesting an involvement of the microRNAs in the onset of

NLRP3-mediated pyroptosis.

Retinal pericytes (RPs) modulate the production of tight

junction proteins and support the vessel wall structurally (154).

Gan et al. showed that glucose induced inflammation, pore

formation and pyroptosis in RPs with increasing glucose
FIGURE 3

The possible cascade response. In diabetic conditions, glucose-induced metabolic abnormalities and oxidative stress activate NLRP3 in RGCs,
leading to high levels of abnormal signaling, while microglia and Müller cells are activated. Sustained glucose further activates NLRP3, which leads to
damage to pericytes and vascular endothelial cells, leading blood leakage and creating an ischemic and hypoxic environment, in turn, damaging
vascular units. With time, various types of cell death can occur, and ultimately leads to damage to vision. Created with BioRender.com.
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treatment time and dose. The NLRP3 inhibitor glyburide or the

caspase-1 inhibitor YVAD could reverse these phenomena,

suggesting that glucose induced pyroptosis via NLRP3-caspase1-

GSDMD in RPs (130). Another study using AGE-BSA to mimic the

DR environment showed increased caspase-1, GSDMD-N, IL-1b/
18, and LDH expression in RPs (155). These studies demonstrate

that elevated glucose can induce inflammation and pyroptosis of

RPs. Furthermore, lncRNA MIAT and CASP1 levels considerably

elevated in AGE-BSA-treated RPs, whereas the expression of miR-

342-3p was reduced. This observation indicates that CASPA1-

dependent pyroptosis of RPs may be promoted due to the

overexpressed MIAT which competes with CASP1 for

conjugation to miR-342-3p, thus disrupting the inhibitory impact

of the miRNA on CASP1 (155). Consequently, the MIAT/miR-342-

3p/CASP1 pathway may provide a unique perspective on pericyte

loss, contributing to developing novel therapeutic approaches

for DR.

The retina’s structural support and nutrient metabolism are

associated with Müller cells, the most pre-dominant and extensively

dispersed macroglia in the retina (156). Müller cell death promotes

loss of BRB integrity, increased vascular permeability and loss of

protective effects on neuronal and vascular cells. Loss of Müller cells

in diabetes is also associated with aneurysm formation, a clinical

feature of DR (156). Whether Müller cells die in DR has been
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debated, this is because it secretes neurotrophic factors that protect

them from hyperglycemia, at least in the beginning of DR. However,

recent studies have shown that Müller cells actually begin to die

gradually as the course of DR progress and Müller cell death is

rapidly accelerated when protective growth factors are diminished

(157). Studies have shown that Müller cells died in the DR displayed

hypertrophy, a characteristic similar to pyroptosis. However, due to

the lack of understanding concerning pyroptosis at the time, it was

difficult to distinguish the mode of cell death (158, 159). Further

research showed that caspase-1 activation and production of IL-1b
were observed in rat retinal Müller cells cultured in a high-glucose

environment (160). Moreover, elevated caspase-1, ASC, NLRP3,

and IL-1b were also detected in 30mM glucose-treated mouse

retinal Müller cells (161). Oxidative stress and the NLRP3

inflammasome are bridged through TXNIP. The expression of

TXNIP in Müller cells is upgraded through genomic

modifications during chronic hyperglycemia (138, 161, 162).

Increased mitochondrial activity in DR produces high ROS as

cells attempt to process excess glucose (67, 163). Subsequently,

ROS generates oxidized disulfide bonds and releases TXNIP (164,

165); free TXNIP assists NLRP3 assembly with pro-caspase-1 and

ASC and activates the NLRP3 inflammasome, thereby activating the

pyroptosis (138). In another study it was possible to observe that

HG significantly induced the expression of proteins of GSDMD,
B

C
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E
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FIGURE 4

Molecular signaling pathway of NLRP3/pyroptosis in diabetic retinopathy. (A) Müller cell: hyperglycemia activates the NLRP3/pyroptosis via the ROS/
TXNIP pathway. (B) Retinal microvascular endothelial cell (RMEC): high glucose induces an increase in extracellular ATP through connexin43 and
increased binding to P2X7R, which then causes K+ efflux and Ca2+ influx by activating the NLRP3 inflammasome. High glucose also activates
pyroptosis via the miR-590-3p/NOX4/ROS/TXNIP/NLRP3 pathway, with miR-590-3p also targeting NLRP1. (C) Pericytes: increasing lncRNA MIAT
competes with CASP1 mRNA for binding to miR-342-3p, thereby inhibiting the CASP1 translation and pericytes pyroptosis. (D) Microglia:
hyperglycemia produces S100 protein (S100A12), which induces the activation of NLRP3 via a miR-30a-dependent mechanism. (E) Retinal pigment
epithelium: hyperglycemia activates the NLRP3/pyroptosis through triggering the generation of mtROS, also via miR-130a/TNF-a/SOD1/ROS, miR-
192/FTO/NLRP3 or METTL3/miR-25-3p/PTEN/Akt/NLRP3 signaling pathway. Created with BioRender.com.
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NLRP3 and caspase-1, after treatment with N-acetylcysteine

(NAC), the expression of GSDMD, NLRP3 and caspase-1 were

significantly reduced in Müller cells, indicating HG induced

pyroptosis in Müller cells via NLRP3/pyroptosis (166). These

studies indicate that Müller cells undergo pyroptosis in DR.

In the eye, microglia play an important role in immunity, that

surveil the peripapillary environment and process the removal of

metabolic wastes from the retina (167). Recent studies have shown

that hyperglycemia produces S100 protein (S100A12), which

induces microglia activation and inflammatory responses by

modulating NLRP3 activity. It also stimulates the miR-30a-

dependent secretion of IL-1b/18 from microglia (168). High

glucose induces a shift in retinal microglia to the M1 phenotype

and promotes the release of pro-inflammatory cytokines (e.g., IL-

1b), and subsequently Huang et al. found that microglia showed a

significant decrease in cell viability under high glucose (25, 50 or

100 mM) conditions and that lactate dehydrogenase (LDH) release

and caspase-1 activity increased with increasing glucose

concentration. In addition, protein expression of IL-1b, caspase-1,
NLRP3 and cleaved GSDMD was increased. However, pretreatment

with either the NLRP3 inhibitor MCC950 or the caspase-1 inhibitor

Z-YVAD-FMK significantly inhibited pyroptosis under high

glucose (25 mM) conditions, and the results adequately

demonstrate that glucose induces pyroptosis via the NLRP3/

caspase1-GSDMD pathway in retinal microglia, releasing more

inflammatory factors, exacerbating the inflammatory response in

the retina and induce NVU damage in the DR (169). In addition,

ischemia and reperfusion (I/R) damage underlies many retinal

diseases, such as glaucoma, DR and central retinal artery

occlusion (170). retinal I/R have been shown to promote

pyroptosis of retinal microglia, associated with increased

expression of lncRNA-H19. Increased lncRNA-H19 significantly

promotes NLRP3/6 inflammasome imbalance, leading to cytokine

overproduction and microglia pyroptosis, while lncRNA H19

knockdown effectively inhibits these effects (171). Another report

indicated that NLRC5 directly binds to the NLRP3/NLRC4

inflammasome and synergistically drives microglia pyroptosis

(172). The above researches suggest that inflammation and

pyroptosis of retinal microglia activated by hyperglycemia might

play an essential role in the progression of DR.

RPEs form the external BRB and regulate the structure and

functioning of the retinal, RPEs act as a cellular barrier separating

the neuronal retina and the fenestrated choriocapillaris, and

disruption of the RPE barrier plays a pathogenic role in the

development of DR (4). A high glucose environment results in

pyroptosis of RPE cells through a series of events, starting with the

plasma membrane passage of glucose, which then generates

mitochondrial ROS, leading to NLRP3 inflammasome activation,

cleavage of CASP1, and IL-1b/18 release (173). It was shown that

pyroptosis-linked proteins such as Caspase-1, GSDMD, NLRP3,

and IL-1b/18 were upregulated in a high glucose environment. In

contrast , methyltransferase- l ike protein 3 (METTL3)

overexpression regulated the miR-25-3p/PTEN/Akt/NLRP3

pathway through a DGCR8-dependent approach to reduce the

hyperglycemic-induced pyroptosis in RPEs (8). Gu et al.

demonstrated that glucose induced the upregulation of NLRP3,
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GSDMD, IL-1b/18 and caspase-1 in a time- and dose-dependent

manner in RPEs, which was later inhibited by the expression of

miR-192. The FTO alpha-ketoglutarate-dependent dioxygenase

(FTO), a downstream target of miR-192, increases NLRP3

expression by promoting NLRP3 demethylation, while miR-192

overexpression inhibits high glucose-induced RPEs pyroptosis by

negatively modulating the FTO/NLRP3 signaling pathway (174). In

another study, high glucose (50 mM) increased the expression levels

of caspase-1, GSDMD, NLRP3, IL-18/1b in ARPE-19 cells and

induced ROS production in a time-dependent manner. In previous

studies it was shown that ROS could activate NLRP3, which in turn

activate the pyroptosis. Further results verified that the ROS

scavenger NAC and the GSDMD inhibitor necrosulfonamide

(NSA) reversed the effect of high glucose on pyroptosis in ARPE-

19 cells. Mechanistically glucose significantly reduced miR-130a,

which activated NLRP3-mediated pyroptosis via the TNF-a/SOD1/
ROS axis (175). The redox pathway of Trx is essential for

maintaining normal RPE function in the DR. Under

hyperglycemia, TXNIP expression is upregulated, leading to

cel lular oxidat ive stress , lysosomal dysfunct ion, and

mitochondrial damage. Therefore, Thangal et al. treated RPEs

with Auranofin (a TrxR inhibitor), resulting in cellular

mitochondrial dysfunction and oxidative stress, along with

enhanced activity of the pro-inflammatory caspase-1 in RPEs.

These effects of Auranofin on RPEs could be inhibited by the

antioxidant NAC, while neither ferrostain-1 no necroptosis-1

(inhibitors of ferroptosis and necroptosis, respectively) did not

inhibit this death. In contrast, MCC950 or Ac-YVAD-cmk

(Caspase-1 inhibitors) significantly reduced LDH release,

suggesting that high glucose-induced oxidative stress promotes

cell death via NLRP3-caspase1-pyroptosis rather than other cell

death modes, providing sufficient evidence that NLRP3 mediates

pyroptotic cell death in DR (176). Overall, there is increasing focus

concerning the involvement of RPE-related pyroptosis in the DR.

RGCs are the output neurons that integrate data, while retinal

neurons are the core cells that transfer optical signals and create

vision (177). Several studies have confirmed neuronal changes, even

before clinical vascular changes in DR (178, 179). The

immunohistochemical analysis of a diabetic rat model depicted

that caspase-1, ASC, and NLRP3 were localized primarily in the

inner and outer nuclear layers and the ganglion cell layer.

Furthermore, the number of cells expressing the abovementioned

factors was considerably elevated in diabetic rats and intravitreal

injection of drugs that inhibit NLRP3 inflammasome and IL-1b/18
expression (180). High glucose could lead to hypoxia and an

imbalance in the immune response of retinal tissues. Under

hypoxic conditions, continuous production and degradation of

hypoxia-inducible factor-1 (HIF-1) were detected, activating the

IL-6 and IL-8 genes by acting as transcription factors. In addition,

pericyte loss may lead to cell-free capillary formation, which is

linked to vascular occlusion and further leads to retinal non-

perfusion and ischemic-hypoxic damage. Ischemia and hypoxia

could further upregulate HIF-1 expression. Pyroptosis contributes

to retinal ischemia injury and contributes the death of RGCs

through the signaling pathway caspase-8-HIF-1a-NLRP12/

NLRP3/NLRP4 in acute glaucoma (181). Caspase-mediated
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pyroptosis can also be observed in RGCs in various retinal diseases

(182). For example, in some optic nerve compression damage

models, NLRP3 expression is enhanced in retinal microglia,

promoting IL-1b and caspase-1, while knockdown of NLRP3

slows RGC reduction after partial optic nerve compression

damage (183). Future studies are essential to detect whether all

retinal cells undergo pyroptosis in DR.

In summary, elevated intracellular glucose levels in diabetic

patients trigger oxidative stress, leading to intracellular ROS and

ATP production, and sustained glucose stimulation leads to

mitochondrial dysfunction, which induces additional mtROS

leakage and mtDNA release, all of which together activate

NLRP3. Activation of NLRP3 can be detected at all stages of DR,

suggesting that NLRP3 is involved in the development of DR. Firstly

activated NLRP3 inflammasome can provide a platform for the

maturation of IL-1b/18, thereby inducing inflammation. Most

importantly, the NLRP3 is also involved in pyroptosis, inducing

inflammatory cell death. Excessive cell death and inflammation

leads to BRB rupture, blood infiltration, edema and retinal

detachment, ultimately damaging vision. However, almost all cells

are capable of pyroptosis in DR, it is still unclear which cells

undergo pyroptosis first or how these cells interact during and

after pyroptosis further studies are needed. In addition, NLRP3 may

also be involved in other modes of cell death, we just focus on the

role of pyroptosis, so the contribution of NLRP3/pyroptosis in DR

needs to be further evaluated to provide new directions for early

diagnosis or treatment of DR.
5 The activation of NLRP3/pyroptosis
in other ophthalmic diseases

NLRP3-mediated pyroptosis is not only present in DR but is

also involved in other ophthalmic diseases, for example, NLRP3

inflammasome activation caused by elevated tear osmolarity is the

initial signal of corneal inflammation associated with dry eye, and

pyroptosis is a prominent result of NLRP3 activation. Zhang et al.

observed that hyperosmolarity induced pyroptosis in corneal

epithelial cells, and that Calcitriol effectively alleviated damage by

inhibiting the NLRP3-ACS- CASP1-GSDMD pathway (184). Chen

et al. found that microglia undergo pyroptosis releasing

inflammatory cytokines to induce RGC death was associated with

glaucomatous vision loss, genetic deletion of the pyroptosis effector

GSDMD significantly ameliorated RGCs death and retinal tissue

damage in acute glaucoma (181). Particulate matter (PM2.5)

induced increased oxidative stress and subsequent NLRP3

inflammasome-mediated pyroptosis was observed in trabecular

meshwork cells, leading to ocular hypertension and glaucoma,

and NAC ameliorated these symptoms (185). In another study, it

was similarly observed that PM2.5 induced pyroptosis in corneal

epithelial cells via the ROS/NLRP3/pyroptosis pathway. Activation

of NLRP3/pyroptosis was also observed in Candida albicans

keratitis, and knockdown of NLRP3 significantly alleviated the

pyroptosis and corneal inflammatory response, making it an

attractive target for the treatment of fungal keratitis (186). Sun
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et al. found that MCC950 alleviated Ab-induced pyroptosis in age-

related macular (187). In conclusion, NLRP3, the most studied

inflammasome, which induced the pyroptosis in many ocular

diseases, therefore targeting the NLRP3/pyroptosis pathway may

be a new target for the treatment of many ophthalmic diseases.
6 Therapy targeting NLRP3 and
pyroptosis in diabetic retinopathy

Diabetic retinopathy is considered to be a chronic low-grade

inflammatory disorder, while the function of NLRP3

inflammasome and pyroptosis activation in the pathogenesis of

DR is well established. Therefore, small-molecule inhibitors

targeting the inflammasome and pyroptosis in DR might improve

clinical outcomes. Fortunately, several inhibitors of NLRP3 and

pyroptosis have been identified, including direct inhibitors of

NLRP3, caspase-1, and GSDMD, as well as indirect inhibitors

that target inflammatory components or associated signaling

events. However, animal or human DR model testing of some

inhibitors of pyroptosis has not been executed. At the same time,

some of the inhibitors tested are potentially risky because their

precise target of inhibition is not fully understood. In this review,

several pyroptosis inhibitors that have been examined have been

summarized (Table 2). For instance, to prevent pore formation and

the discharge of inflammatory mediators, the GSDMD inhibitors

NSA and disulfiram covalently bind to Cys191 on the GSDMD.

This prevents the pyroptosis of retinal cells (175, 189). MCC950 is a

highly specific inhibitor of NLRP3, Zhang et al. explored the anti-

inflammatory effects of MCC950 treatment on HRECs after HG

stimulation and the potential mechanisms to investigate the role of

inflammasome-mediated cell death in DR. They demonstrated that

MCC950 treatment significantly attenuated the initiation of the

NLRP3 inflammasome in HRECs, which in turn reduced the

mRNA expression levels of NLRP3, caspase-1 and proIL-1b in

HRECs. More importantly, many studies demonstrated that

MCC950 inhibits NLRP3 while significantly suppressing GSDMD

expression in RMECs, microglia and Müller cells, thereby inhibiting

retinal cell pyroptosis, reducing the rate of retinal vascular leakage

and delaying the progression of DR in mice, The above studies

provide strong evidence that MCC950 is a very promising drug for

DR treatment. Mechanistically, MCC950 greatly protects retinal

cells from HG-stimulated dysfunction by inhibiting the binding of

NEK7 to the NLRP3 inflammasome (120, 191).

Other indirect inhibitors of the inflammasome, such as

connexin 43 hemichannel, mediate RPE pyroptosis in DR via the

ATP/NLRP3 inflammasome pathway, which can be blocked by

peptide5 (142) and tonabersat. Mugisho et al. demonstrated that

Peptide5 significantly reduced the incidence of DR-induced beading

and vessel dilation, decreased the severity of vitreous and retinal

hyper-reflective foci, and reduced subretinal fluid accumulation. In

addition, Peptide5 resulted in reduced upregulation of connexin43

and GFAP compared to controls, inhibited the upregulation of the

inflammatory markers IL-1b/18. Louie et al. further demonstrated a

significant reduction in the expression of NLRP3, pro-inflammatory
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TABLE 2 Inhibitors target NLRP3/pyroptosis.

Research in other eye diseases

PE-19 cell pyroptosis. Acute keratitis (188)

Dry eye (184)
Acute glaucoma (190)

Retinal Neurodegenerative Diseases (176)
Age-Related Macular Degeneration (187)
Age-Related Macular Degeneration (192)

Cataract Formation (193)
Lacrimal Glands (194)

tion Viral infection of the cornea (195)
Dry eye (196)

ivation Age-Related Macular Degeneration (200)
Light-induced retinal degeneration (201)

Light-induced retinal death (202)
Chronic glaucoma (203)

Dry Eye (204, 205)

P3 LPS-induced keratitis (188, 206)
Allergic eye disease (207)

Immunoinflammatory response of the uveitis
(208)

P3 Light-induced retinal inflammation (210)
Optic neuropathy (211)

NLRP3 inflammasome Age-Related Macular Degeneration (214)
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cytokines IL-1/18 and VEGF in Müller cells via the hemichannel

inhibitor tonabersat. The above studies provide evidence that

Peptide5, as well as other Connexin43 hemichannel blockades,

can inhibit the inflammatory response and cell death by targeting

the upstream signaling of NLRP3 (199). In addition, in DR

pathogenesis, high glucose stimulates activation of NLRP3

inflammasome mediated by P2X7R, which could be significantly

inhibited by H3 Relaxin. H3 Relaxin is a bioactive peptide with an

insulin-like structure, which has been reported to be effective in

diabetic cardiomyopathy. In STZ-treated retinas, disorganized

membrane discs were observed, mitochondria were degraded, the

number of synapses and synaptic vesicles in the inner and outer

plexiform layer was reduced, and the ganglion cell layer showed

swollen ganglion nuclei and dilated endoplasmic reticulum. After

administration of high doses of H3 Relaxin, the above phenomena

were significantly improved. In addition, the levels of NLRP3, ASC,

caspase-1, IL-18/1b and GSDMD were significantly increased in

RMECs after STZ treatment. After administration of H3 Relaxin,

the expression of all pyroptosis-related proteins decreased. The

above results suggest that HG triggered the activation of P2X7R and

subsequently NLRP3 inflammasome in RMECs, while H3 Relaxin

significantly reduced HG-induced expression and activation of

NLRP3 inflammasome by inhibiting P2X7R, which in turn

inhibited pyroptosis (148). Epigallocatechin gallate (EGCG), a

major bioactive tea compound, could suppress the ROS/TXNIP/

NLRP3 inflammasome pathway in Müllers via inhibition of

streptozotocin (STZ)-induced DR in a mouse model (161).

Garcinia cambogia also prevents the TXNIP/NLRP3 activation

via reducing the levels of ASC, NLRP3, cleaved-IL-1b, cleaved-
caspase-1, and TXNIP (227). Palbinone has a significant effect on

attenuating the inflammatory response of the blood vessels and

reducing vascular permeability in the retinal of DR by inhibiting

NLRP3 activity , and more importantly , RT-PCR and

immunofluorescence staining suggest that Palbinone may be a

promising pharmacological agent to inhibit pyroptosis-mediated

cell death for the treatment of DR (228). Similarly, rhodopsin has

been shown to exert antioxidant effects in a mouse model of DR,

activating the Nrf2 pathway and inhibiting NLRP3, caspase1, ASC,

and cleaved IL-1b levels in Müller cells (218). Hydrogen sulfide

could also protect high glucose-induced RPEs death and

inflammatory damage from oxidative stress by suppressing the

production of ROS and the activation of NLRP3 inflammasome

(229). Resolvin D1 treatment in DR rats effectively reduces NLRP3-

mediated inflammatory factor secretion in the retinal tissue by

inhibiting the NF-kB pathway (180). As the pyroptosis and

inflammasome in several ocular diseases are intensively studied

and the number of affected individuals concerning inflammatory

disorders is increasing, future clinical translation will be facilitated

by specific and direct inhibitors of pyroptosis, with a focus on the

use of precision medicine in inflammatory diseases.
7 Conclusion

Previous studies have found inflammatory responses at all

stages of DR and NLRP3 as a causative factor in its pathogenesis.
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In DR, NLRP3 inflammasome can recognize multiple diabetic

metabolic factors as endogenous danger signals, in turn activating

CASP1. These diabetic metabolic factors include ATP and

cytoarchitectural instability, such as rupturing of the lysosome,

dysfunction of the mitochondria, and molecular or ionic

perturbations, such as K efflux, ROS, and Ca2+ signaling.

Activated CASP1 can then cleave GSDMD to C-GSDMD and N-

GSDMD; N-GSDMD causes perforation of the cell membrane to

form non-selective pores, causing the cells to swell and resulting in

pyroptosis. On the other hand, CASP1 cleaves pro-IL-1b/18 to

mature IL-1b/18, which are released through GSDMD-induced

pores, promoting pyroptosis. However, current research on

NLRP3 activation and pyroptosis in DR is still only the tip of the

iceberg, and many questions remain unanswered at the molecular

mechanism of pyroptosis. For instance, most evidence on

pyroptosis is limited to activating the NLRP3 inflammasome,

CASP, and other proteins rather than GSDMD activation in

Müller cells, pericytes, endothelial cells, and RPE cells. Although

evidence indicates the occurrence of high glucose-induced retinal

pericyte pyroptosis through the NLRP3-caspase-1-GSDMD

pathway, more direct evidence is needed to support the role of

GSDMD in retinal cells. Furthermore, although it appears that a

variety of cells undergo pyroptosis in DR, it remains unclear which

cells undergo pyroptosis first, or whether the interactions between

cells undergoing pyroptosis need to be further investigated. Each

GSDM family member’s function in various disorders may vary,

here, we focused on the role of GSDMD in DR. More research is

needed to explore whether other members of the GSDM family are

involved in the development of DR. Moreover, in disease models we

usually study a single mode of death in isolation, whereas in fact

under different pathological conditions the pattern of cell death is

dynamic and it is likely that multiple modes of death co-exist.

Therefore, it is necessary to look at the mode of cell death as a whole

and dynamically observe their role in DR, which may be more

relevant for clinical translation and application.

Several promising compounds are currently available that

effectively inhibit the onset of pyroptosis, offering promising

therapeutic directions for the management and treatment of ocular

diseases, including DR. Although we have summarized the

therapeutic potential of pyroptosis-related inhibitors in DR, most

of the evidence is from cellular or animal studies, and have not yet

been validated in clinical trials; therefore, further studies are needed

to understand their clinical efficacy. On the other hand, traditional
Frontiers in Immunology 14
drug delivery by repeated vitreous cavity injections (230, 231) may

cause increased intraocular pressure, cataracts, and other

complications for the patient (232, 233). Therefore, in addition to

investigating effective targeted therapeutic agents, finding better drug

delivery methods is necessary to improve the outcome of patients

with DR. Recently, gene therapy (183, 234–236) and nanomedicines

for pyroptosis have received great attention (237). The findings of

this research suggest that utilizing nanomedicine in patients with DR

to target the lesion, with the potential to accumulate over time and

gradually release, could hold great promise for clinical application

and offer new avenues for enhancing clinical outcomes.
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