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Macrophages, as central components of innate immunity, feature significant

heterogeneity. Numerus studies have revealed the pivotal roles of macrophages

in the pathogenesis of liver fibrosis induced by various factors. Hepatic

macrophages function to trigger inflammation in response to injury. They

induce liver fibrosis by activating hepatic stellate cells (HSCs), and then

inflammation and fibrosis are alleviated by the degradation of the extracellular

matrix and release of anti-inflammatory cytokines. MicroRNAs (miRNAs), a class

of small non-coding endogenous RNA molecules that regulate gene expression

through translation repression or mRNA degradation, have distinct roles in

modulating macrophage activation, polarization, tissue infiltration, and

inflammation regression. Considering the complex etiology and pathogenesis

of liver diseases, the role and mechanism of miRNAs and macrophages in liver

fibrosis need to be further clarified. We first summarized the origin, phenotypes

and functions of hepatic macrophages, then clarified the role of miRNAs in the

polarization of macrophages. Finally, we comprehensively discussed the role of

miRNAs and macrophages in the pathogenesis of liver fibrotic disease.

Understanding the mechanism of hepatic macrophage heterogeneity in

various types of liver fibrosis and the role of miRNAs on macrophage

polarization provides a useful reference for further research on miRNA-

mediated macrophage polarization in liver fibrosis, and also contributes to the

development of new therapies targeting miRNA and macrophage subsets for

liver fibrosis.

KEYWORDS

microRNA, macrophage polarization, HSC, liver fibrosis, M1 macrophage,
M2 macrophage
1 Introduction

Liver fibrosis is an abnormal wound-healing response that develops in response to liver

injury caused by various factors. The activation of hepatic stellate cells (HSCs) is recognized

as a central event in liver fibrosis, in which activated HSCs transdifferentiate into

myofibroblasts and secrete large amounts of extracellular matrix (ECM) that is deposited
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among the cells, leading to liver fibrosis (1). Liver fibrosis is among

the common sequelae of chronic damage induced by toxic agents,

viral infections, autoimmune diseases, metabolic and genetic

diseases (2). Without effective intervention and treatment, it can

progress into cirrhosis, hepatocellular carcinoma (HCC), liver

failure, and concurrent infection leading to death (3). Although

HSCs are major contributors to the pathogenesis of liver fibrosis,

certain immune cells such as T and B lymphocytes, NK cells, and

macrophages also play important roles (4). Among them,

macrophages are the most abundant liver immune cells and are

critical in the process of liver injury and subsequent liver fibrosis

(5). MicroRNAs (miRNAs) are about 22-26 nucleotides long

endogenous non-coding RNAs expressed in animals, plants and

some viruses. They participate in post-transcriptional gene

regulation through a combination of translational repression and

mRNA destabilization (6). Some studies have shown that miRNAs

can regulate the activation of HSCs and are involved in various

types of chronic liver diseases, such as viral hepatitis, nonalcoholic

fatty liver disease and autoimmune liver disease, and play an

indispensable role in the occurrence and development of liver

fibrosis (7). Furthermore, in the pathological process of liver

fibrosis, miRNAs may serve as key regulators of macrophage

polarization, where macrophages can differentiate into the M1

phenotype with pro-inflammatory and anti-infective functions or

the M2 phenotype with pro-fibrogenic and tissue remodeling roles

(8). In this review, we summarize the characteristics of hepatic

macrophages and their roles in liver fibrosis. Importantly, we focus

on how miRNAs regulate the polarization of macrophages, thus

affecting the eventual progression of liver fibrosis. Our study aims to

provide new therapeutic ideas for improving liver fibrosis based on

miRNAs and macrophages.
2 MicroRNAs

MicroRNAs (miRNAs) are endogenous, small non-coding RNA

molecules widely expressed in all types of human cells. They

predominantly function to negatively regulate gene expression at

the post-transcriptional level and play important roles in various

biological functions, such as immune response, cell proliferation

and apoptosis (9–11). MicroRNAs are first transcribed in the

nucleus by RNA polymerase II to generate primary miRNAs (pri-

miRNAs), which are then cleaved by RNase III enzyme Drosha to

generate precursor miRNAs (pre-miRNAs). These are translocated

from the nucleus to the cytoplasm and then further processed by

Dicer to produce double-stranded miRNAs containing mature

miRNAs (11, 12). Mature miRNAs are directed to the 3’ end of

the untranslated region (UTR) of their specific target mRNAs by

base-pairing, which represses protein expression by destabilizing

the mRNA and translational silencing (10, 13). However, in some

cases, miRNAs can also upregulate gene expression by activating

the translation of target mRNAs. Generally, a single miRNA can

regulate multiple mRNAs simultaneously, and one mRNA can also

be regulated by several miRNAs (13). MiRNA dysregulation has

been implicated in the pathogenesis of a variety of human diseases,

including cancer, cardiovascular disease, metabolic disease,
Frontiers in Immunology 02
diabetes, and virus-induced diseases (14). Due to their stable

presence in body fluids such as blood, urine and saliva, miRNAs

might be promising biomarkers for the early diagnosis and potential

therapeutic targets of some diseases (15).
3 Liver fibrosis and macrophages

3.1 The origin, phenotype and function of
hepatic macrophages

Macrophages are an important component of innate immunity

and act as the host’s first line of defense against external infection or

internal damage (16). According to their origin, intrahepatic

macrophages are mainly divided into two types: resident Kupffer

cells (KCs) and monocyte-derived macrophages (MoMfs). KCs
originate from yolk sac-derived colony-stimulating factor 1 receptor

(CSF1R)+ erythroid progenitors (EMPs), and develop further from

EMPs into fetal liver mononuclear cells, which give rise to KCs (17).

Kupffer cells, as the liver-resident macrophages, are located only in

the intravascular compartment and are mainly located in the

hepatic sinusoids. KCs function to remove cellular debris and

metabolic waste (18, 19), maintain liver homeostasis, promote

tissue repair and regeneration, and initiate the innate and

adaptive immune responses (20). During homeostasis, KC

replenishment is independent of BM-derived progenitors, and

occurs predominantly by the self-renewal of resident stem cells

(21, 22). Various pattern recognition receptors (PRRs) are highly

expressed on the surface of KCs including Toll-like receptors

(TLRs) and nucleotide binding oligomerization domain-like

receptors (NLRs), which leads to the rapid response of KCs to

various stimuli and activation signals during liver injury (23). The

main stimuli recognized by KCs include reactive oxygen species

(ROS); damage-associated molecular patterns (DAMPs) such as

high mobility group box protein 1 (HMGB1), mitochondrial DNA

and ATP; pathogen-associated molecular patterns (PAMPs) such as

lipopolysaccharide (LPS), lipoteichoic acid (LTA) and b-glucan
(24); hypoxia inducible factor 1a (HIF-1a); multiple metabolites;

cell extracellular vesicles and microRNAs (25). KCs and MoMfs in
the liver can be distinguished from each other by their cell surface

markers; however, no single marker is available to discriminate

these populations. In mouse models, the main surface markers of

KCs are CD11blow, F4/80high, Clec4F+and CX3CR1− (5, 26). The

surface markers of MoMfs in mice are CD11b+, F4/80int, Ly6C+,

and CX3CR1hi (5). MoMfs develop from lineage-negative (LIN−)

hematopoietic stem cells in the bone marrow, can be mainly found

at the portal triad in the healthy liver, and function to maintain the

iron and cholesterol homeostasis (27). Under pathological

conditions, KCs secrete cytokines and chemokines, including

TNF-a, IL-1b and CCL2, to recruit circulating monocytes

migrating and infiltrating into the liver (28). The liver-infiltrating

monocytes then differentiate into MoMfs. MoMfs in the murine

liver can be further divided into two subgroups according to the

expression level of Ly6C: Ly6Chi and Ly6Clo monocyte/

macrophages (25). CD11bhiF4/80intLy6Chi macrophages

(Ly6Chi macrophages in short) are derived from recruited
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CCR2+CX3CR1loLy6Chi monocytes and exert proinflammatory and

profibrotic functions, while CD11bhiF4/80hiLy6Clo macrophages

(Ly6Clo macrophages in short) are converted from Ly6Chi

macrophages induced by phagocytosis and are involved in anti-

inflammatory and antifibrotic processes (29, 30). It should be noted

that the Ly6Chi and Ly6Clo phenotypes comprise a new system for

macrophage classification based on cell origin and surface makers.

Conventionally, macrophages with different functions are classified

as M1 and M2 macrophage subsets. M1 macrophages are known as

classically activated macrophages with pro-inflammatory properties

and participate in tissue damage and inflammation, whereas M2

macrophages are known as alternatively activated macrophages

with anti-inflammatory properties and function to promote tissue

repair and regeneration. M1 macrophages are mainly stimulated by

IFN-g or LPS, characterized by high expression of CD80, CD86,

major histocompatibility complex II (MHC II), Toll-like receptor 4

(TLR4), and inducible nitric oxide synthase (iNOS) (31).

Meanwhile, M2 macrophages can be stimulated by T helper 2

(Th2) cytokines such as interleukin 4 (IL-4) and IL-13 (32), with

high expression of mannose receptor 1 (MRC1/CD206), CD163,

arginase-1 (Arg1), chitinase 3-like 3 (Chil3/Ym1), found in

inflammatory zone 1 (FIZZ1) (33). Among them, Chil3 and Fizz1

are the markers only expressed by M2 macrophages in mouse. In

addition, M2 macrophages can be further subdivided into M2a,

M2b, M2c, and M2d subtypes by distinct stimuli. M2a is induced by

IL-4 and IL-13, M2b is induced by immune complex (IC), the M2c

type is stimulated by IL-10, transforming growth factor-b (TGF-b)
and glucocorticoids, and the M2d type is activated by IL-6, TLR

ligands and adenosine (34). Macrophages can be polarized into

different subsets in response to different local microenvironments

and play essential roles in the initiation, progression and resolution

of tissue inflammation and injury in various liver diseases (35).
3.2 The regulatory role of intrahepatic
macrophages in liver fibrosis

In hepatic fibrosis, the activated macrophages secrete pro-

inflammatory cytokines and chemokines and stimulate HSCs to

transdifferentiate into myofibroblasts, which proliferate and

produce ECM proteins (36). Although the activation of HSCs is

thought to be a central driver of hepatic fibrogenesis (37, 38),

hepatic macrophages have emerged as essential in the pathogenesis

of liver fibrosis. Moreover, due to their heterogeneity and plasticity,

macrophages can exert both pro- or anti-fibrotic effects by

regulating the activation or the cell death of HSCs and the

formation and degradation of matrix collagen (39, 40). In human

and mouse models of diet-induced nonalcoholic steatohepatitis

(NASH), the impaired macrophage-mediated clearance of

necroptotic hepatocytes (necHCs) and increased activation of

HSCs are responsible for liver fibrogenesis; hence, the reduced

accumulation of necHCs in NASH liver could be a therapeutic

strategy to treat hepatic fibrosis (41). Cai et al. further reported that
Frontiers in Immunology 03
c-mer tyrosine kinase (MerTK) signaling in macrophages activates

HSCs to promote collagen synthesis and induces liver fibrosis

through the ERK-TGFb1 pathway (40). In bile duct ligation

(BDL)-induced and carbon tetrachloride (CCl4)-induced liver

fibrosis mouse models, the FGF12-mediated proinflammatory

activation of hepatic macrophages could induce HSC activation

mainly through the monocyte chemoattractant protein-1/

chemokine (C-C motif) receptor 2 axis (42). The roles of MoMfs
in liver fibrosis were also investigated. For instance, the proportion

of resident macrophages decreases during the process of

inflammation and fibrogenesis, while that of the recruited MoMfs
(CD11bhighF4/80mid subsets) gradually increases during

fibrogenesis (9), suggesting an important function of MoMfs in

liver fibrosis. De Souza et al. further demonstrated that the

transplantation of bone marrow-derived CD11b+CD14+

monocytes caused the significant improvement of liver fibrosis by

inhibiting oxidative stress and inflammation in a murine model of

CCl4-induced chronic liver damage (43). In addition, liver fibrosis

was attenuated by the transplantation of bone marrow-derived

MSCs (BM-MSCs), and the therapeutic effect of BM-MSCs was

attributed to promoting the Ly6Chi/Ly6Clo subset conversion and

Ly6Clo macrophage restoration through activating the

antifibrogenic cytokine and apoptotic pathways (44). Similarly,

prepolarized BMDMs also exhibit a therapeutic effect on liver

fibrosis. For example, M1 BMDMs significantly ameliorated liver

fibrosis by modulating the hepatic microenvironment to recruit

endogenous macrophages into fibrotic liver, which showed the

phenotype of Ly6Clo restorative macrophages (39). Compared

with Ly6Clo macrophages, Ly6Chi macrophages exerted a pro-

fibrogenic effect by activating HSCs through secreting various

cytokines including TGF-b, platelet-derived growth factor

(PDGF), TNF-a, IL-1b, monocyte chemotactic protein 1 (MCP1),

CCL3, and CCL5 (36).

Taken together, hepatic macrophages play an important role in

the initiation and progression of liver fibrosis. During this process,

however, the function, metabolism and polarization of

macrophages are regulated by various factors such as miRNAs,

which ultimately affect the onset of liver disease. For instance,

exosomal miR-690 derived from KCs inhibited inflammation in

recruited hepatic macrophages in a mouse model of NASH (45).

MiR-206 drove KCs toward M1 polarization, and promoted the

recruitment of CD8+ T cells in HCC (46). In addition, miR-26a

overexpression extensively inhibited the inflammation in

both hepatocytes and KCs therefore attenuated HCC (47).

MiR-155 knockdown in KCs could positively regulate the

immunosuppressive function of KCs and prolong the survival of

liver allografts. MiR-148a-enriched mesenchymal stem cell-derived

exosomes (MSC-EXOs) modulated macrophages towards the anti-

inflammatory phenotype and exerted ameliorative effects on liver

fibrosis (48). In a mouse model of Schistosomiasis japonicum, miR-

130a-3p promoted the differentiation of macrophages toward the

Ly6Clo phenotype and alleviated liver granulomatous inflammation

(49). The above studies demonstrate the diverse roles of miRNAs in
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hepatic macrophages, influencing the pathology of liver diseases.

The regulatory effect of miRNAs on macrophage polarization in

other models and tissues will be discussed in more detail below.
4 The regulatory effect of miRNAs
on macrophages

4.1 MiRNAs regulate the M1 phenotype
polarization of macrophages

Extracellular vesicles (EVs) such as exosomes are cell-derived,

membrane-bound organel les involved in intercel lular

communication. Exosomes play an important regulatory role in

the progression of various liver diseases, delivering various

biological components such as miRNAs, proteins and lipids to

neighboring or distant cells (50). In a rat model of nonalcoholic

fatty liver disease (NAFLD) induced by high-fat and high-

cholesterol diet, the lipotoxic injury-induced release of miR-192-

5p-enriched hepatocyte exosomes played a critical role in M1

macrophage activation; miR-192-5p drove macrophages to

polarize towards the proinflammatory M1 phenotype through

modulating the Rictor/Akt/FoxO1 signaling pathway, which

resulted in hepatic inflammatory response, demonstrating that

exosomal miR-192-5p is a key player in the NAFLD-mediated

activation of M1 macrophages (51). However, miR-192-5p

exhibited an inhibitory role in M1 macrophage polarization in a

monosodium urate (MSU) crystal-induced mouse gouty arthritis

(GA) model (52). Under the IFN-g plus LPS-stimulated M1

polarization condition, the MiR-192-5p mimic stimulated

RAW264.7 macrophages and resulted in a reduced expression of

inflammatory cytokines TNF-a and IL-1b, decreased iNOS

expression, and inhibited CD16/32 (M1 marker) expression; miR-

192-5p blocked M1 macrophage activation by inhibiting epiregulin,

thereby improving GA inflammatory response (52). It is highly

likely that the opposite effect of miR-192-5p on the macrophage

program in the two disease models is due to the difference in the

origin of miRNA and the macrophages. MiR-199a-5p derived from

EVs from human serum albumin (HSA)-induced HK-2 cells

promoted M1 phenotype polarization by targeting the Klotho/

TLR4 pathway, and contributed to the progression of diabetic

nephropathy (53). Similarly, in high-fat diet-induced mouse

models of NALFD, miR-9-5p was upregulated in lipotoxic

extracellular vesicles and promoted M1 polarization by targeting

glutaminyl transferase 2 (TGM2) (54). In addition, Ma et al. found

that miR-9-5p promotes M1-type polarization by targeting NAD-

dependent deacetylase sirtuin-1 (SIRT1) in a cecal ligation and

puncture (CLP)-induced sepsis mouse model (55). Likewise, in a

mouse model of osteoarthritis (OA), miR-9-5p could promote the

progression of OA and M1 polarization by inhibiting SIRT1

expression via the NF-kB and AMPK signaling pathways (56).

Recently, miR-146a-5p has been recognized as a key player in the

field of cardiovascular research. Exosomes enriched with miR-146a-

5p obtained from newborn mouse cardiomyocytes were used to

treat macrophages, and the results showed that exosomal miR-
Frontiers in Immunology 04
146a-5p encouraged M1macrophage polarization, while it inhibited

M2 macrophage polarization by targeting TNF receptor-associated

factor 6 (TRAF6) (57). In a mouse model of sepsis-related acute

lung injury, exosomal miR-30d-5p of TNF-a-stimulated

neutrophils promoted M1 macrophage polarization and induced

macrophage pyroptosis through activating NF-kB signaling by

targeting the suppressor of cytokine signaling (SOCS-1) and

SIRT1 both in vivo and in vitro (58). However, miR-30d-5p-

enriched exosomes from adipose-derived stem cells reversed acute

ischemic stroke-induced, autophagy-mediated brain injury by

suppressing M1 microglial polarization (59). EVs from adipose

tissue-derived stem cells were found to attenuate LPS induced

inflammation and sepsis by inhibiting M1 macrophage

polarization, accompanied by the reduced expression of miR-

148a-3p (60). MiR-148a-3p, as a novel downstream molecule of

Notch signaling, could enhance M1 polarization through the

PTEN/AKT pathway and thus induce pro-inflammatory

responses via the activation of NF-kB signaling (60). MiR-33a is a

lipid regulator of cholesterol and fatty acid metabolism in the cell.

MiR-33 enriched in exosomes secreted by endothelin 1-stimulated

human umbilical cord vein endothelial cells is transported to

macrophages and directly targets NR4A transcription factors to

activate M1 macrophages, which has therapeutic implications for

atherosclerosis (61). In addition, miR-34a expression in lung

macrophages was increased in a model of LPS-induced acute lung

injury (ALI); miR-34a overexpression could promote the

polarization of pro-inflammatory M1 phenotype and exacerbated

ALI and inflammation by targeting kruppel-like factor 4 (KLF4)

(62). MiR-34a expression was increased in mice treated with PD-1

inhibitor along with enhanced M1 polarization and cardiac injury,

whereas treatment with miR-34a inhibitor reversed M1 polarization

and cardiac injury through modulating the miR-34a/KLF4-

signal ing pathway (63) . S imilar ly , in the context of

cardiometabolic diseases, miR-34a could promote the

development of atherosclerosis by stimulating M1 polarization via

liver X receptor a (LXRa), while the inhibition of miR-34a could

help the regression of atherosclerosis and reversed the diet-induced

metabolic disorder (64). However, miR-34a exhibits different roles

by inhibiting M1 polarization in some other diseases. For instance,

miR-34a derived from adipocyte exosomes reduced the polarization

of M1-type macrophages by inhibiting NLRP3 in a Ti particle-

induced osteolysis mouse model (65). In addition, in a rat model of

liver injury induced by long term co-exposure to DBP and BaP,

miR-34a could inhibit the M1 phenotype and attenuate the disorder

of inflammatory factors through the Notch signaling pathway (66).

MiR-130b-3p has also been shown to block M1 polarization by

blocking interferon regulatory factor 1 (IRF1), thus alleviating the

inflammation of lung tissues in LPS-treated mice (67).

MiRNAs present in exosomes derived from tumors have also

been shown to modulate M1 macrophage polarization, thereby

influencing tumorigenesis. Moradiet al. found that overexpression

of miR-130 and miR-33 in exosomes can inhibit tumor progression

by promoting M2 to M1 macrophage polarization (68). In a co-

culture of breast cancer cells and macrophages, treatment with

exosomal miR-33 and miR-130 could significantly reduce the

proliferation, invasion and migration of cancer cells, thus
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suppressing breast cancer progression (69, 70). In addition, miR-

200c could enhance granulocyte-macrophage colony-stimulating

factor (GM-CSF)-mediated M1 macrophage polarization to inhibit

the growth of mouse breast cancer Met-1 cells (71). MiR-125b

showed the ability to reprogram tumor-associated macrophages

(TAMs) into an antitumor/pro-inflammatory (M1) phenotype in

non-small-cell lung cancer (NSCLC) model (72), which has

significant implications for anticancer immunotherapy. MiR-125b

also exhibited good anti-tumor effects in murine orthotopic breast

cancer, which was attributed to its promotive effect on M1

polarization by targeting interferon regulatory factor 4 (IRF4) in

macrophages, and suppressed tumor cells by targeting ETS proto-

oncogene 1 and cyclin-J (73). The ability of some other miRNAs to

regulate the polarization of M1 in other neoplastic diseases has also

been shown, such as miR-9 (74), which was enriched in exosomes

derived from human papillomavirus (HPV) positive head and neck

squamous cell carcinoma (HNSCC). It could be transported into

macrophages and induce the polarization of macrophages into the

M1 phenotype by inhibiting the expression of PPARd (74).
Frontiers in Immunology 05
To sum up, a variety of miRNAs can regulate M1 polarization.

Notably, a specific miRNA may play distinct roles in the

polarization of macrophages in different diseases. As summarized

in Table 1, miR-199a-5p, miR-9-5p, miR-146a-5p, miR-148a-3p,

miR-33, miR-34a, miR-130, miR-200c, and miR-125b have been

shown to promote M1, and miR-130b-3p to suppress M1 through

inhibiting various factors. However, such as with miR-192-5p, miR-

30d-5p, and miR-34a, the effects of miRNAs on macrophage

polarization can be contrasting depending on the disease model,

the source of miRNAs, and macrophages from different tissues.
4.2 MiRNAs regulate the M2 phenotype
polarization of macrophages

It has been previously noted that some miRNAs are involved in

modulating the pathogenesis of certain diseases, primarily by

affecting the polarization of M1 macrophages. However, there are

also miRNAs with a function in modulating disease pathogenesis by
TABLE 1 M1 macrophage polarization by miRNAs in various diseases.

disease MiRNAs Levels Regulation of macrophage phenotype Targets references

NAFLD miR-192-5p ↑ (in serum) Promotes M1 Rictor (51)

miR-9-5p ↑ (in plasma) Promotes M1 TGM2 (54)

GA miR-192-5p ↓ (in serum) Suppresses M1 EREG (52)

DN miR-199a-5p ↑ (in unrine) Promotes M1 Klotho (53)

OA miR-9-5p ↑ (in synovial tissue) Promotes M1 SIRT1 (55, 56)

MI miR-146a-5p ↓ (in plasma) Promotes M1, Suppresses M2 TRAF6 (57)

ALI miR-30d-5p ↑ (in lung tissue) Promotes M1 SOCS-1, SIRT1 (58)

miR-34a ↑ (in lung tissue) Promotes M1, Suppresses M2 KLF4 (62)

miR-130b-3p ↓ (in lung tissue) Suppresses M1 IRF1 (67)

AIS miR-30d-5p ↓ (in serum) Suppresses M1, Promotes M2 Beclin-1, Atg5 (59)

sepsis miR-148a-3p unknown Promotes M1 PTEN (60)

AS miR-33 ↑ (in exosome) Promotes M1, Suppresses M2 NR4A, AMPK (61)

miR-34a ↑ (in atherosclerotic plaques) Promotes M1, Suppresses M2 LXRa (64)

cardiac injury miR-34a ↑ (in heart tissue) Promotes M1 KLF4 (63)

osteolysis miR-34a ↑ (in macrophage of the osteolysis site) Suppresses M1 NLRP3 (65)

liver injury miR-34a ↓ (in liver tissue) Suppresses M1, Promotes M2 unknown (66)

breast cancer miR-130, miR-33 ↑ (in exosome) Promotes M1, Suppresses M2 unknown (68–70)

miR-200c ↑ (in cancer cell line) Promotes M1 ZEB1 (71)

MiR-125b unknown Promotes M1 IRF4 (73)

NSCLC MiR-125b ↑ (in lung tissue) Promotes M1 unknown (72)

HNSCC miR-9 ↑ (in exosome) Promotes M1 PPARd (74)
AIS, acute ischemic stroke; ALI, acute lung injury; AMPK, AMP-activated protein kinase; AS, atherosclerosis; ATG5, autophagy related 5 homolog; DN, diabetic nephropathy; EREG, epiregulin;
GA, gouty arthritis; HNSCC, head and neck squamous cell carcinoma; IRF1, interferon regulatory factor 1; IRF4, interferon regulatory factor 4; KLF4, Kruppel like factor 4; KLF6, Kruppel like
factor 6; LXRa, Liver X Receptor a; MI, myocardial infarction; NAFLD, nonalcoholic fatty liver disease; NLRP3, NOD-like receptor protein 3; NR4A, Nerve Growth Factor IB-like Receptor;
NSCLC, nonsmall cell lung cancer; OA, osteoarthritis; PPARd, peroxisome proliferators-activated receptor d; PTEN, phosphatase and tensin homolog; Rictor, rapamycin-insensitive companion
of mammalian target of rapamycin; SIRT1, Sirtuin 1; SOCS1, suppressor of cytokine signaling1; TGM2, transglutaminase2; TRAF6, TNF receptor-associated factor 6; ZEB1, zinc finger E-box-
binding homeobox 1.
The symbols ↑, ↓means increase and decrease, respectively.
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regulating the polarization of macrophages into the M2 phenotype.

As previously mentioned, miR-192-5p drives M1 phenotype

polarization to exacerbate the hepatic inflammatory response in

NAFLD (51). However, miR-192-5p could effectively rescue mice

from coxsackievirus B3 (CVB3)-induced viral lethal myocarditis

through switching myocardial-infiltrating macrophages to a

predominant M2 phenotype by targeting interleukin-1 receptor-

associated kinase 1 (IRAK1) (75). In addition, miR-146a was highly

expressed in the M2 rather than the M1 macrophage phenotype.

The overexpression of miR-146a resulted in decreased production

of pro-inflammatory cytokines and increased expression of M2

marker genes (76, 77), which was different from the effects of miR-

146a on M1 polarization induced by PM2.5 (78). Similarly, miR-

146a acted as an anti-inflammatory miRNA in the pathogenesis of

diabetic nephropathy (DN) by promoting the expression of M2

markers (79), while it exerted a protective role via regulating the

differentiation of macrophages into M2 cells in some other disease

models, such as murine hepatic schistosomiasis (80), a cecal ligation

and puncture-induced sepsis model (81), or experimental

autoimmune encephalomyelitis (EAE) (82). In addition, miR-99a

could promote M2 polarization and inhibit allergic airway

inflammation by targeting TNF-a (83), and could also be used as

a therapeutic agent to reduce adipose tissue inflammation and

improve insulin sensitivity in diabetic mice (84). MiR-511-3p,

encoded by the Mrc1/CD206 gene, has also been proven to

reduce cockroach allergen-induced lung inflammation and

promote M2 macrophage polarization by targeting CCL2 via the

RhoA/ROCK axis or prostaglandin D2 synthase (Ptgds) (85, 86).

MiR-93-5p, which is upregulated in M2 macrophage exosomes,

exerts a renoprotective effect on LPS-induced podocyte injury by

targeting TLR4 (87). MiR-93 has been shown to promote

angiogenesis and reduce tissue loss in experimental models of

peripheral arterial disease (PAD), which is because it promotes

and sustains M2-like polarization even under M1-like polarizing

settings by targeting interferon regulatory factor-9 to diminish

IRG1-itaconic acid synthesis (88). MiR-21-5p, originating from

MSC-EXOs, enhances macrophage polarization to the M2

phenotype, thereby reducing inflammation and preventing

myocardial ischemia-reperfusion (I/R) injury (89). Likewise,

MSC-EXOs were also conferred cardioprotective efficacy via

shuttling miR-182 that modifies the polarization of M1

macrophages to M2 macrophages by targeting TLR4 (90). In

addition, miR-21a could enhance miR-200c methylation and

inhibit the expression of two tumor suppressor genes, miR-200c

and phosphatase and angiotensin homologue (PTEN), thereby

promoting M2 macrophage transformation in the tumor

microenvironment (91). In a NASH-associated model of hepatic

steatosis, the deficiency of miR-141 and miR-200c resulted in

reduced hepatic inflammation, as macrophages polarized toward

an M2 anti-inflammatory state with increased Arg1 and IL-10 levels

and reduced M1 marker iNOS (92).

Similar to the aforementioned miRNAs that regulate M1

phenotype polarization and thus influence tumorigenesis, some
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miRNAs influence tumorigenesis primarily by affecting M2

macrophage polarization. MiR-195-5p, functioning as an

anticancer agent, could inhibit M2-like TAM polarization in

colorectal cancer (CRC) by regulating NOTCH2-mediated tumor

cell epithelial-mesenchymal transition (EMT) and suppressing

GATA3-mediated IL-4 secretion in CRC cells (93). Furthermore,

MiR-770 derived from an exosome of NSCLC cell inhibited the

migration of NSCLC by blocking M2 macrophage polarization

through targeting MAP3K1 (94). MiR-935 also downregulated

M2-like TAM by inhibiting C/EBPb (95). Tumor-derived

exosomal miR-934 induced macrophage M2 polarization by

regulating PTEN expression and activating the PI3K/AKT

signaling pathway, and the polarized M2 macrophages could

further induce premetastatic niche formation and CXCL13

secretion, leading to colorectal cancer liver metastasis (CRLM)

and secondary hepatocellular carcinoma (96). Similar to miR-934,

the miR-25-3p, miR-130b-3p and miR-425-5p, derived from

exosomes of CRC cells and upregulated by CXCL12/CXCR4 axis

activation, also regulated the M2 polarization of macrophages

through the PTEN/PI3K/Akt signaling pathway, and the serum

levels of these miRNAs correlated with the progression and

metastasis of CRLM (97). MiR-21-5p and miR-200a derived from

small extracellular vesicles (sEVs) synergistically induced M2-like

TAM polarization through the PTEN/AKT and SCOS1/STAT1

pathways leading to decreased CD8+ T cell activity, and thus

contributed to immune escape and CRC tumor growth (98). In

addition, miR-21-5p in EVs secreted in esophageal squamous cell

carcinoma (ESCC) promoted the activation of M2 macrophages

and exacerbated ESCC through the PTEN/AKT/STAT6 pathway

(99). MiR-1246 has been detected to be highly expressed in the

serum exosomes of colon cancer patients (100); miR-1246-enriched

exosomes from TP53 mutant (mutp53) colon cancer cells could

trigger the reprogramming of neighboring macrophages to a tumor-

supporting and anti-inflammatory state, which was associated with

poor survival in colon cancer patients (101). MiR-1246, as the most

enriched miRNA in hypoxic glioma-derived exosomes (H-GDEs),

induced M2 macrophage polarization by targeting telomeric repeat

sequence binding factor 2 interaction protein (TERF2IP) via the

STAT3 and NF-kB pathways, and the polarized M2 macrophages

subsequently promoted glioma proliferation, migration and

invasion. Therefore, miR-1246 may be used as a target in anti-

glioma immunotherapy (102). Similarly, miR-182 in macrophages

induced the M2 polarization of TAMs through the TGFb/miR-182/

TLR4 axis, and the conditional knockout of miR-182 in

macrophages impaired M2-like TAMs and breast tumor

development (103). Alternatively, the breast cancer cell-derived

exosome miR-138-5p was delivered to TAMs in a mouse breast

cancer model to stimulate M2 polarization and inhibit M1

polarization, which could also be used as a target for breast

cancer therapy (104). Hypoxia-induced lung cancer cell-derived

EV miR-103a increased M2-type polarization, which was associated

with reduced PTEN and increased activation of STAT3 and AKT.

In contrast, the inhibition of miR-103a could effectively block
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hypoxic cancer-mediated M2-type polarization, suggesting the

potential of EV inhibition in lung cancer immunotherapy (105,

106). Similarly, high miR-301a-3p expression in exosomes from

pancreatic cancer cells resulting from a hypoxic microenvironment

induced macrophage M2 polarization through the activation of

PTEN/PI3Kg signaling pathway to promote pancreatic cancer

progression (107). It has also been reported that endometriosis

(EMS)-derived exosomal miR-301a-3p promoted the M2
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polarization of macrophages via regulating the PTEN-PI3K

axis (108).

As discussed above, many types of miRNAs were demonstrated

to have the ability to regulate M2 polarization. As summarized in

Table 2, the miRNAs with a promotive effect include miR-192-5p,

miR-146a, miR-93-5p, miR-146a, miR-99a, miR-511-3p, miR-93,

miR-21-5p, miR-182, miR-25-3p, miR-130b-3p, miR-425-5p, miR-

21-5p, miR-200a, miR-934, miR-1246, miR-138-5p, miR-103a, and
TABLE 2 M2 macrophage polarization by miRNAs in various diseases.

disease MiRNAs Levels Regulation of macrophage
phenotype Targets references

VM miR-192-5p ↑ (in heart tissue) Promotes M2 IRAK1 (75)

DN miR-146a ↑ (in spleen tissue) Promotes M2 Traf6, Irak1 (79)

miR-93-5p ↑ (in M2 macrophage) Promotes M2 TLR4 (87)

hepatic
schistosomiasis

miR-146a ↑ (in liver tissue) Promotes M2, Suppresses M1 Notch1, STAT1 (80)

sepsis miR-146a ↑ (in exosome) Promotes M2
IRAK1, TRAF6,
IRF5

(81)

EAE miR-146a ↑ (in central nervous system) Promotes M2 TLR2, IRAK1 (82)

AAI MiR-99a ↑ (in lung tissue) Promotes M2, Suppresses M1 TNF-a (83)

miR-511-3p ↑ (in lung tissue) Promotes M2 CCL2, Ptgds (85, 86)

PAD miR-93 ↑ (in muscle) Promotes M2 IRF9 (88)

myocardial I/R injury miR-21-5p ↑ (in heart tissue) Promotes M2 unknown (89)

miR-182 ↑ (in heart tissue) Promotes M2 TLR4 (90)

NASH miR-141/200c ↑ (in liver tissue) Suppresses M2, Promotes M1 unknown (92)

CRC miR-195-5p ↓ (in CRC tissue) Suppresses M2 Notch2 (93)

miR-25-3,
miR-130b-3p,
miR-425-5p

↑ (in CRC tissue) Promotes M2 PTEN (97)

miR-21-5p, miR-
200a

↑ (in CRC tissue) Promotes M2 PTEN, SOCS1 (98)

NSCLC miR-770 ↓ (in lung tissue) Suppresses M2 MAP3K1 (94)

solid tumors miR-935 ↓ (in the monocytes) Suppresses M2 C/EBPb (95)

CRLM miR-934 ↑ (in CRC tissue) Promotes M2 PTEN (96)

ESCC miR-21-5p ↑ (in CRC tissue) Promotes M2 PTEN (99)

colon cancer miR-1246 ↑ (in serum) Promotes M2 TERF2IP (100–102)

breast cancer miR-182
↑ (in M2 macrophages of breast
tissue)

Promotes M2 TLR4 (103)

miR-138-5p ↑ (in breast tissue) Promotes M2, Suppresses M1 KDM6B (104)

lung cancer miR-103a ↑ (in lung tissue) Promotes M2 PTEN (105, 106)

pancreatic cancer miR-301a-3p ↑ (in pancreatic cancer cells) Promotes M2 PTEN (107)

EMS miR-301a-3p ↑ (in ectopic endometrial tissues) Promotes M2 PTEN (108)
AAI, allergic airway inflammation; C/EBPb, CCAAT enhancer binding protein; Ccl2, C-C motif chemokine ligand 2; CRLM, colorectal cancer liver metastasis; DN, diabetic nephropathy; EAE,
experimental autoimmune encephalomyelitis;EMS,endometriosis; ESCC, esophageal squamous cell carcinoma; IRAK1, Interleukin 1 Receptor Associated Kinase 1; IRF9, interferon regulatory
factor 9; KDM6B, lysine (K)-specific demethylase 6B; MAP3K1, mitogen activated protein kinase kinase kinase 1; NASH, nonalcoholic steatohepatitis; NSCLC, nonsmall cell lung cancer; PAD,
peripheral arterial disease; PTEN, phosphatase and tensin homolog; SOCS1, suppressor of cytokine signaling 1; STAT1, signal transducer and activator of transcription 1; TERF2IP, telomeric
repeat binding factor 2 interacting protein; TLR4, Toll-like receptor4; TNF-a, tumor necrosis factor-a; TRAF6, TNF receptor associated factor 6; VM, viral myocarditis.
The symbols ↑, ↓means increase and decrease, respectively.
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miR-301a, while those with the ability to suppress M2 through

inhibiting various factors are miR-141/200c, miR-195-5p, miR-770,

miR-935.
5 The role of miRNAs and
macrophages in liver fibrosis

In recent years, the involvement of miRNAs in liver disease has

received extensive attention. A large number of studies have shown

that the expression level of miRNAs in the serum and liver tissue of

patients with liver fibrosis is significantly changed. MiRNAs are

implicated in the liver fibrosis process by affecting the proliferation,

apoptosis and activation of HSCs, immune cells and hepatocytes

(109). EVs such as exosomes represent an important mode of

intercellular communication, serving as cargo carriers between

cell membranes and cytoplasmic proteins, lipids and RNA.

MiRNAs can be packaged into exosomes and secreted from

macrophages to affect the process of liver fibrosis. The

macrophage-derived exosomal miRNAs regulate the activation

and apoptosis of HSCs involved in the pathology of liver fibrosis

are summarized in Figure 1. It was reported that the microRNA Csi-

let-7a-5p delivered by EVs from Clonorchis sinensis can promote

the activation of M1-like macrophages and contribute to the biliary

injuries and fibrosis by targeting the Socs1- and Clec7a- modulated

NF-kB signaling pathway (110). Chen et al. used a mouse model of

CCl4-induced liver fibrosis to demonstrate that the expression of

exosomal miR-500 was upregulated in LPS-induced macrophages,

and exosomal miR-500 overexpression could promote the

proliferation and activation of HSCs and accelerate liver fibrosis

by inhibiting mitochondrial fusion protein 2 (MFN2) (111). MiR-

103-3p in exosomes secreted by LPS-treated THP-1 macrophages

can promote the activation and proliferation of HSCs by targeting

KLF4, and is involved in the crosstalk between macrophages and
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HSCs during the progression of liver fibrosis (112). In patients with

NAFLD, myeloid-specific IL-6 signaling enhanced the release of

miR-223-enriched exosomes from macrophages, which transferred

antifibrotic miR-223 to hepatocytes to reduce the expression of pro-

fibrotic transcriptional activator with PDZ-binding motifs (TAZ) in

hepatocytes to inhibit liver fibrosis (113). During the development

of NASH, miR-690 expression was significantly lower in mouse and

human NASH livers compared to controls; the KC-specific KO of

miR-690 increased NASH development, whereas miR-690 therapy

restored specific KC functions by targeting NADK and led to

reduced fibrosis and steatosis (45). Similarly, it was found that

serum exosomes from NASH patients contained decreased levels of

miRNA-411-5p. Further investigation revealed that exosomal miR-

411-5p from M2 macrophages could inhibit the activation of HSCs.

Additionally, miR-411-5p was found to directly downregulate the

expression of Calmodulin-Regulated Spectrin-Associated Protein 1

(CAMSAP1) to inactivate HSCs (114). CCl4-induced liver fibrosis

model, exosomes derived from relaxin-treated macrophages

exhibited a potent antifibrogenic effect, which was primarily

attributed to miR-30a-5p (115). MiR-30a-5p suppressed the

activity of the ASK1, which is known to be involved in the

activation of HSCs. This in turn led to the restoration of PPAR-g
activity in the activated HSCs (115). Furthermore, restorative

Ly6Clo macrophages showed a higher expression of miR-30a-5p

compared to Ly6Chi macrophages, and miR-30a-5p synergized with

relaxin gene therapy to achieve an enhanced antifibrosis

effect (115).

In addition tomiRNAs inmacrophage-derived exosomes that are

involved in liver fibrosis, some miRNAs may mediate the pathology

of liver fibrosis by regulating macrophage polarization (summarized

in Figure 2). MiR-155 was reported to be involved in high fat-high

cholesterol-high sugar (HF-HC-HS) diet-induced steatosis and liver

fibrosis, as miR-155 knockout mice showed significantly less liver

injury, decreased steatosis, and attenuation in fibrosis under HF-HC-
FIGURE 1

Macrophage-derived exosomal miRNAs regulate the activation and apoptosis of HSCs involved in the pathology of liver fibrosis.
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HS diet or CCl4 treatment, and KCs isolated from miR-155 KOmice

displayed the M2 phenotype when exposed to even M1 priming

conditions (116, 117). In addition, serum exosomal miR-155 levels in

patients with hepatic fibrosis and a hepatic fibrosis rat model were

positively correlated with the severity of liver fibrosis, and miR-155

could be used as a biomarker for the diagnosis and progression of

liver fibrosis (118). In a murine model of arsenic-induced liver

fibrosis, the level of miR-21 and Arg-1 were increased; however,

miR-21 deficiency in mice showed attenuated liver fibrosis and M2

polarization compared with WT mice exposed to arsenite (119).

MiR-20a-5p was downregulated during liver fibrosis in human and

CCl4-induced mouse model samples. Moreover, miR-20a-5p

downregulation in liver fibrosis led to the activation of TGF-b
signaling pathway by targeting TGFBR2, accompanied by the

activation of hepatic macrophages and the production of ECM by

HSCs. The reintroduction of miR-20a-5p may be a therapeutic

regimen for clinical intervention in hepatic fibrosis (9). MSC-EXOs

have been demonstrated to exhibit a protective effect against liver

fibrosis. In the CCl4-induced liver fibrosis mouse model, miR-148a

enriched MSC-EXOs have been shown to regulate intrahepatic

macrophage through KLF6/STAT3 signaling (48). MiR-148a

showed the ability to suppress pro-inflammatory macrophages and

promote anti-inflammatory macrophages, ultimately helping to

reduce the severity of liver fibrosis (48). MiR-130a-3p is an

antifibrotic miRNA with decreased expression in the serum of

patients with cirrhosis and the liver of mice with schistosomiasis.

Overexpression of miR-130a-3p by the lentivirus vector (LV-miR-

130a-3p) could alleviate liver granulomatous inflammation and liver

fibrosis; moreover, LV-miR-130a-3p promoted the polarization of

macrophages towards the restorative Ly6Clo phenotype, inhibited the

activation and proliferation of HSCs and also induced the apoptosis

of HSCs by inhibiting MAPK1 expression (49). MiR-130a-3p also

cooperated with miR-142-5p to control macrophage polarization.

The transduction of miR-130a-3p mimics and miR-142-5p anti-sense

oligonucleotides (ASO) in IL-4-treated mouse macrophages
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synergistically inhibited M2 polarization and their profibrogenic

activities in both humans and mice, and miR-142-5p and miR-

130a-3p mediated M2 macrophages by targeting SOCS1 and

PPARg, respectively (120). During the spontaneous resolution of

liver inflammation (SRLI), neutrophil-derived miR-223

downregulated Nlrp3 expression in hepatic proinflammatory

macrophages and induced their alternative activation into a

restorative phenotype, which released IL-10 thus mitigating

fibrogenesis by reducing the activation of HSCs and collagen

formation (121). Similarly, in fibrotic NASH induced by long-term

administration of a high-fat, fructose and cholesterol (FFC) diet,

treatment with synthetic miR-223 analog miR-223-3p significantly

alleviated the fibrosis development and activation of HSCs by

disrupting the activation of the NLRP3 inflammasome (122).
6 Conclusions

Searching the PubMed database using miRNAs and liver

fibrosis as keywords yielded more than 1600 publications, while

this number was nearly 3600 when using ‘macrophages’ and ‘liver

fibrosis’. Therefore, both miRNAs and macrophages are research

hotpots in the field of liver fibrosis. The pathogenesis of liver fibrosis

is considered to be a complex, multifactorial process. For instance,

activated HSCs are a major contributor to liver fibrosis because they

produce excessive amounts of ECM as a result of long-term

liver injury. In addition to HSCs, macrophages are also

considered a ‘double-edged sword’ in the development of fibrosis.

Hepatic macrophages are composed of several heterogeneous

subpopulations, which can be classified as ‘pro-inflammatory’ M1

or ‘immunoregulatory’ M2 macrophages according to their

function and phenotype. Given that miRNAs epigenetically fine-

tune the expression of hundreds of target mRNA, there is growing

interest in the regulatory role of miRNAs in macrophage activation,

polarization, tissue infiltration, and the mitigation of inflammation.
FIGURE 2

miRNAs modulate the macrophage polarization and participate in the liver fibrosis through different signaling pathway.
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MiRNAs play different roles in the pathogenesis of multiple

diseases; They have the potential as promising biomarkers and

therapeutic targets in the treatment of various illnesses. However,

the same miRNA may play different or even opposite roles in

different pathological processes. For example, miR-192-5p-enriched

hepatocyte exosomes promoted M1 phenotype polarization in

NAFLD (51); however, miR-192-5p suppressed M1 macrophage

polarization in a MSU crystal-induced mouse GA model (52). The

exosomal miR-30d-5p of TNF-a-stimulated neutrophils promoted

M1 macrophage polarization in a mouse model of sepsis-related

acute lung injury (58), whereas miR-30d-5p-enriched exosome

from the adipose-derived stem cell suppressed M1 microglial

polarization in acute ischemic stroke-induced brain injury (59).

These disease-specific functions of miR-192-5p and miR-30d-5p on

macrophage polarization may be attributed to the difference in the

orig in of miRNA-enriched exosome and the disease

microenvironment. Although numerous studies have shown that

both miRNAs and macrophages are involved in the pathogenesis of

liver diseases, the regulatory role of miRNAs in macrophage

polarization has also been the focus of research. However, the

mechanism of how miRNAs mediate the activation and

polarization of macrophages and thus affect the progression of

liver fibrosis remains unclear. Some miRNAs (i.e., miR-155, miR-

21, miR-20a-5p, miR-148a, miR-130a-3p, and miR-223) can

regulate macrophage polarization in liver fibrosis, while relevant

studies are mainly limited to animal experiments, so further

research is needed to test whether these miRNAs can be applied

in clinical liver fibrosis-associated diseases. Due to the dual

complexity of macrophage polarization and the pathogenesis of

liver fibrosis, it is not feasible to study the pathology of liver fibrosis

only based on miRNA or macrophages. A more comprehensive

understanding of the cell-specific functions of miRNAs in liver

fibrosis through the modulation of macrophage polarization is

necessary, which can help identify novel diagnostic targets and

design feasible miRNA-based therapies for liver fibrosis.
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