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architecture, pleiotropic loci and
phenotypic correlations across
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Introduction: Autoimmune disorders (ADs) are a group of about 80 disorders

that occur when self-attacking autoantibodies are produced due to failure in the

self-tolerance mechanisms. ADs are polygenic disorders and associations with

genes both in the human leukocyte antigen (HLA) region and outside of it have

been described. Previous studies have shown that they are highly comorbid with

shared genetic risk factors, while epidemiological studies revealed associations

between various lifestyle and health-related phenotypes and ADs.

Methods: Here, for the first time, we performed a comparative polygenic risk

score (PRS) - Phenome Wide Association Study (PheWAS) for 11 different ADs

(Juvenile Idiopathic Arthritis, Primary Sclerosing Cholangitis, Celiac Disease,

Multiple Sclerosis, Rheumatoid Arthritis, Psoriasis, Myasthenia Gravis, Type 1

Diabetes, Systemic Lupus Erythematosus, Vitiligo Late Onset, Vitiligo Early

Onset) and 3,254 phenotypes available in the UK Biobank that include a wide

range of socio-demographic, lifestyle and health-related outcomes. Additionally,

we investigated the genetic relationships of the studied ADs, calculating their

genetic correlation and conducting cross-disorder GWAS meta-analyses for the

observed AD clusters.

Results: In total, we identified 508 phenotypes significantly associated with at

least one AD PRS. 272 phenotypes were significantly associated after excluding
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variants in the HLA region from the PRS estimation. Through genetic correlation

and genetic factor analyses, we identified four genetic factors that run across

studied ADs. Cross-trait meta-analyses within each factor revealed pleiotropic

genome-wide significant loci.

Discussion: Overall, our study confirms the association of different factors with

genetic susceptibility for ADs and reveals novel observations that need to be

further explored.
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1 Introduction

Autoimmune disorders (ADs) are a group of about 80 (1)

disorders that occur when self-attacking autoantibodies are

produced due to failure in the self-tolerance mechanisms (2). The

estimated overall prevalence is 3% in the United States (3), and

recent studies report an increasing trend (4–6). Additionally, ADs

are often comorbid and cluster within families (7, 8). The majority

of ADs are polygenic and previous studies revealed associations

with genes in the human leukocyte antigen (HLA) region (9, 10).

However, multiple additional associations with genes outside of the

HLA are found with various ADs, and many times they are

implicated in more than one disorder (10). The genetic

correlation across multiple ADs has not been fully explored (11,

12). So far, cross-disorder GWAS meta-analyses have only focused

on a few ADs, usually three to seven at a time (12–15), while others

have only focused on pairwise meta-analyses (16, 17). Given the

wide comorbidities observed in epidemiological studies and the

evidence for sharing common genetic background across multiple

ADs, a systematic large-scale analysis is warranted.

In ADs, like other complex disorders, environmental factors are

also involved in disease development along with genetic

predisposition. Multiple studies have reported associations

between viral infections and specific autoimmune diseases (18).

For instance, a recent study (19) is suggesting that infection of

Epstein-Barr virus could be the leading cause of Multiple Sclerosis.

Additional associations between ADs and environmental factors

such as smoking, and UV exposure have also been reported (20, 21).

Epidemiological studies have reported a high comorbidity across

different ADs (8) as well as links to other traits, including psychotic

disorders (22), allergies (23), and obesity (24).

Given the complex genetic background of ADs, Polygenic Risk

Scores (PRS) which are an estimate of an individual’s genetic

predisposition for a trait, are an important tool to help

understand disease correlations. They are usually calculated as the

total of the risk alleles an individual carries, weighted by their effect

sizes as measured in a previous genome-wide association study

(GWAS) (25). This genetic risk can then become the basis of a

Phenome-wide association study (PheWAS), with a goal to explore
02
whether risk variants identified by a GWAS or disease PRS are

associated with a wide variety of phenotypes (26). Biobanks that

combine genetic data with Electronic Health Records (EHR) are

essential for the PheWAS approach, as they are the source of the

phenotypes used in the analysis (27). Since the PheWAS is a

hypothesis-free analysis, it can be used to generate new

hypotheses about novel associations that might have not been

uncovered through hypothesis-driven approaches.

Here, for the first time, using summary statistics data of 11

different ADs and genetic and phenotypic data from the UK

Biobank, we performed a PRS-PheWAS, interrogating

associations of AD PRS with a wide range of socio-demographic,

lifestyle, and health related phenotypes. Additionally, we

investigated the genetic relationships across the studied ADs and

conducted cross-trait GWAS meta-analyses for the identified AD

sub-groups. Our findings present an overview of the phenotypic

and genetic architecture and relationships of ADs.
2 Methods

2.1 Study population

The UK Biobank is a large-scale, population-based, prospective

cohort that recruited between 2006 and 2010 over 500,000 participants

from the UK aged 40–69 years old. The participants provided blood,

urine, and saliva samples for biochemical tests and genotyping, as well

as self-reported information which was then linked to their health-

related records. The phenotypic and genetic data we used in this study

were obtained from UK Biobank under application number #61553.

The initial UK Biobank dataset included 488,377 individuals

genotyped on the Affymetrix UK BiLEVE Axiom array or the

Affymetrix UK Biobank Axiom array. We performed standard

quality control on individuals and genetic markers (info>=0.9,

maf>=0.01, geno<=0.02, hwe >= 10-6) with PLINK 1.9 (28). Initially,

participants with withdrawn consent, sex mismatch, sex aneuploidy,

self-reported non-white British ancestry, and with kinship coefficient

<0.0625 (third-degree relatedness (29)) were excluded. Additional

Principal Component Analysis (PCA) with 1000 Genomes data as
frontiersin.org
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reference was performed using TeraPCA (30) to exclude individuals

with non-European ancestry. The final dataset included 330,841

individuals and 7,634,371 SNPs. 53.98% of the selected participants

are females, the average age is 56.8 (sd=8) years. Table S1 provides a

breakdown of the participants’ age and the percentage of the selected

autoimmune diagnoses present in the UK Biobank.
2.2 PRS-pheWAS

2.2.1 Polygenic Risk Scores
Publicly available and in-house GWAS summary statistics for

11 ADs performed on datasets of European ancestry and no UK

Biobank participants were collected. For the PRS calculations we

used PRSice2 (31). The independent SNPs with p-values<10-5, after

clumping using a window of 500kb and an r2 threshold of 0.1, were

included in the PRS calculations and the score was yielded as the

weighted, standardized sum of the effect (score-std option).

Additionally, we normalized the PRS for age, sex, genotyping

batch, and the first ten PCs. We repeated the PRS calculations

excluding the extended HLA region (hg19, chr6 25-33 Mb). Table 1

shows the studied autoimmune datasets and the number of SNPs

included in the PRS calculations. PRS performance was evaluated

using Nagelkerke’s pseudo-R2 metric for each AD. We used the AD

summary statistics as the base and UK Biobank participants as the

target data. We defined the individuals with the ICD10 code

diagnosis for the studied AD as cases, and the UK Biobank

individuals with no reported ICD10 diagnoses were defined as

controls. Age, sex, genotyping batch and first ten PCs were

included as covariates.

2.2.2 Phenotypes
We included 3,254 phenotypes from UK Biobank that were

assigned to seven broad categories: Biomarkers, Cognition and
Frontiers in Immunology 03
Mental Health, Disease Diagnoses, Health and Medical History,

Physical Measures, Lifestyle, and Sociodemographics. Specifically

for the Disease Diagnoses category, we included only the ICD10

codes and used the R PheWAS tool (32) to map similar diagnoses

into one phecode. The breakdown of data fields in each category is

shown in the Supplementary Materials (Figures S1, S2).

2.2.3 PheWAS
For the PheWAS analyses, we used the tool PHESANT (33) to

test the association of each disease PRS with each UK Biobank

outcome. PHESANT, which is described in detail in (33), is

commonly used in PheWAS analyses and automatically removes

the instances with missing values from the UK Biobank Data-

Codings. Age, sex, the first 10 principal components to correct for

population stratification, and the genotyping batch were included as

covariates in all regression models. To account for multiple testing,

we used the R function p.adjust to calculate the FDR adjusted p-

values and set the significance threshold at pFDR<0.05.
2.3 Cross-Disorder GWAS Meta-analysis

Pairwise genetic correlation analyses were performed for all 11

ADs after removing the extended HLA region (hg19, chr6 25-33

Mb) using LDSC (34). Only SNPs present in the HapMap3

reference panel were included in analyses and we used

precalculated LD scores from 1000 Genomes European data.

Datasets with less than 200,000 SNPs overlap with the LDSC

reference data or heritability z-score <1.5 [as defined in (35)],

were excluded from downstream analyses, namely CEL, PSO, and

JIA datasets were removed.

To further explore the architecture and correlations of the

studied disorders, we performed exploratory factor analysis (EFA)

on the genetic correlation matrix using the R tool GenomicSEM
TABLE 1 Autoimmune Disease datasets used in this study.

Autoimmune
Disorder

Abbreviation Cases Controls SNPs in sumstats SNPs in PRS SNPs in PRS
(no HLA)

PMID

Rheumatoid Arthritis RA 14,361 43,923 8,747,962 309 132 24390342

Systemic Lupus Erythematosus SLE 4,036 6,959 7,915,251 200 144 26502338

Vitiligo Late Onset VITL 1,467 19,156 7,552,975 77 49 30674883

Vitiligo Early Onset VITE 704 9,031 8,020,475 84 60 30674883

Type 1 Diabetes T1D 9,358 15,705 6,621,966 236 198 32005708

Primary Sclerosing Cholangitis PSC 2,871 12,019 7,891,602 157 50 27992413

Psoriasis PSO 2,997 9,183 161,173 191 121 23143594

Multiple Sclerosis MS 9,772 17,376 472,086 147 86 21833088

Celiac Disease* CEL 12,041 12,228 139,553 122 100 22057235

Juvenile Idiopathic Arthritis JIA 2,816 13,056 122,330 45 5 23603761

Myasthenia Gravis** MG 1,401 3,508 5,755,778 21 14 34400559
fron
*We included the summary statistics only from the European ancestry individuals in this study.
**For the PRS calculations we used the summary statistics after excluding the UK Biobank samples, while for the rest of the analyses we included the full dataset described in the study.
The number of SNPs in the PRS calculations corresponds to the independent SNPs with p<10-5.
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(36). We further used a confirmatory factor analysis (CFA) to

validate our model. For groups of disorders within each of the

factors, we performed a cross-disorder GWAS meta-analysis with

ReACt (37) and corrected for sample overlap between the datasets.

In order to identify potentially pleiotropic SNPs, in each meta-

analysis we estimated the posterior probability (m-value) using

METASOFT (38) to identify SNPs with high m-values (m-

value>0.9) for all studies in the meta-analysis. Then, using the

pleiotropic SNPs, we identified the LD independent regions (r2<0.1)

from the index SNPs with p<5×10-8. We used the default LD

clumping window (250kb) and mapped into the regions the genes

located no more than 20kb away. As reference for the LD

estimation, we used the European samples from 1000 Genomes.

Additionally, we merged into one overlapping genomic regions

using bedtools (39). All genes that mapped to the identified LD

independent regions for each meta-analysis after clumping, were

submitted to g:Profiler (40) to perform functional enrichment

analysis for Gene Ontology terms (GO : BP, GO : CC, GO : MF,

released 2021-12-15), Reactome (REAC, released 2022-1-3) and

Kyoto Encyclopedia of Genes and Genomes (KEGG FTP, released

2021-12-27). For all experiments we performed the recommended

multiple hypothesis correction (g:SCS) method with the significance

threshold of p = 0.05. We repeated the analysis after excluding the

electronic GO annotations (Inferred from Electronic Annotation

[IEA]) to have higher confidence in the enrichment analysis.
3 Results

3.1 Individual disorder PheWAS

First, we investigated the potential association of AD genetic

risk to other phenotypes, including socioeconomic factors, lifestyle,

biomarkers, disease diagnoses, health history and mental health,

performing PRS-PheWAS. We used the LD-independent SNPs with
Frontiers in Immunology 04
p<10-5 to calculate PRS for each of the studied ADs in each

individual, and tested the association of the normalized -for age,

sex, the first 10 principal components, and genotyping batch-

autoimmune PRS, with 3,254 phenotypes in 330,841 UK Biobank

samples (Table S1). The PheWAS analysis was adjusted for age, sex,

the first 10 principal components, and genotyping batch. We found

a large number of associations with each disorder which differed

depending on whether the HLA region was included in the analysis

(Figure 1, Table 2, Figures S3, S4 and Tables S2, S3). For SLE PRS

with HLA region included in the analysis, we found the highest

number of associations to different phenotypes (n=263). On the

other hand, analysis for SLE PRS without the HLA region included,

was associated with only 38 phenotypes. Interestingly, for CEL, T1D

and RA, more PRS associations to phenotypes were actually found

when the HLA region was excluded from the calculations. For

Psoriasis, genetic risk was found associated with other phenotypes

only when HLA was included in the genetic risk calculations

(significant association with 79 phenotypes).

In the following, we describe in detail patterns that emerge

across all studied disorders and highlight significant results for

phenotype associations to genetic risk with at least three ADs.

3.1.1 Disease diagnoses
For six of the studied ADs (CEL, RA, MS, SLE, T1D, VITE), we

observed a significant positive association of PRS to the same

disease diagnosis (Table S3). These results indicate a good

predictive power of the respective PRS. We should note that for

PSC, the disease diagnosis phenotype was not available in the

dataset. Additionally, we estimated the Nagelkerke’s pseudo-R2

for all ADs (Table S4).

Celiac disease was found significantly associated with genetic

risk for all 11 ADs that we studied. We observed that higher PRS for

RA, VITE, VITL, JIA and PSO is associated with lower risk for the

“Celiac disease” diagnosis phenotype. On the other hand, higher

PRS for MS, MG, PSC, SLE, T1D and CEL was associated with
FIGURE 1

Number of significant phenotypes associated with autoimmune polygenic risk scores (p<10-5). The different colors represent the general UK Biobank
categories. The “HLA excluded” bar shows the number of significant associations with the phenotypes when HLA was excluded from the AD PRS
calculations. The “HLA included” bar shows the number of significant associations with the phenotypes when HLA was included in the AD PRS
calculations. The “Shared” bar shows the number of significant associations with the phenotypes for both HLA included or excluded AD PRSs.
frontiersin.org
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higher risk with the “Celiac disease” diagnosis in the UK Biobank.

The association with CEL, T1D, PSC, and RA remained significant

even after excluding the HLA, although with an opposite effect

direction for the last one (Figure 2; Table S2).

“Ulcerative colitis” diagnosis was the second digestive phenotype

most commonly found associated with the autoimmune PRS, and high

MS, RA(no-HLA), JIA(HLA), PSC(no-HLA), and CEL(no-HLA) PRS were

associated with higher risk for the diagnosis (Figure 2, Table S2).

In the endocrine diagnoses, most autoimmune PRS were

associated with “Hypothyroidism” followed by “Type 1 diabetes”.

RA, VITE, PSC, SLE, T1D and MG were associated with higher risk

of “Hypothyroidism”, even after HLA was excluded. JIA, VITL, MS

and CEL association with Hypothyroidism was significant only after

HLA was excluded (Figure 2; Table S2).

In dermatologic diagnoses, the autoimmune “Sicca syndrome”

was the most associated phenotype with the autoimmune PRS. We

observed a positive association of the “Sicca syndrome” diagnosis

with SLE, CEL, RA(no-HLA), MS(HLA), PSC(HLA), and MG(HLA) PRS.

In contrast, there was a negative association with PRS VITE, PSO,

and VITL (Figure 2; Table S2).
Frontiers in Immunology 05
In the neoplasms category, high PRS for VITL and VITE was

associated with lower risk for skin cancer outcomes, including Non-

Hodgkins lymphoma, other non-epithelial cancer of skin and

melanomas of skin (Figure 2; Table S2).

3.1.2 Cognition and mental health
For PSC and SLE PRS, we found the largest overlap (n=20) of

traits associated in the same direction. These associations

included lower risk for phenotypes such as addictions,

depression, and “low/worse” mental health, while they were

positively associated with phenotypes describing higher

cognitive function (Figure 3; Table S2). For PRS of MS, and

MG, we also found an association with lower risk for phenotypes

describing poor mental health (Figure 3; Table S2). On the

contrary, higher PRS for VITL was associated with phenotypes

describing poor mental health and depression (n=10), and had a

negative association with phenotypes describing cognitive

function (n=4) (Figure 3; Table S2). PSO and VITE associated

with higher risk with phenotypes describing poor mental health

and anxiety (Figure 3; Table S2).
TABLE 2 The most significant associations (pFDR<0.05) of each AD PRS and the UK Biobank phenotypes.

HLA included HLA excluded

Autoimmune
Disorder

Top phenotype b 95%
Interval

Pfrd
Top

phenotype
b 95%

Interval
Pfdr

Celiac Disease Celiac disease 0.650
[0.617 —

0.683]
<10-300 Celiac disease 0.536

[0.494 —

0.578]
7.17E-
134

Juvenile Idiopathic
Arthritis

Celiac disease -0.364
[-0.407 —

-0.32]
2.4E-57

Hypothyroidism
NOS

0.111
[0.096 —

0.125]
1.52E-44

Multiple Sclerosis Multiple sclerosis 0.498
[0.452 —

0.544]
1.58E-97 Multiple sclerosis 0.406

[0.352 —

0.460]
3.89E-46

Myasthenia Gravis
White blood cell (leukocyte)

count
-0.029

[-0.033 —

-0.026]
2.76E-59

Hypothyroidism
NOS

0.036
[0.021 —

0.051]
7.85E-03

Primary Sclerosing
Cholangitis

Celiac disease 0.699
[0.667 —

0.731]
<10-300 Eosinophill count 0.03

[0.027 —

0.034]
8.41E-63

Psoriasis Psoriasis vulgaris 0.372
[0.336 —

0.407]
5.04E-90 no significant outcome

Rheumatoid Arthritis Rheumatoid arthritis 0.312
[0.288 —

0.337]
5.09E-
131

Hypothyroidism
NOS

0.203
[0.188 —

0.218]
1.99E-
156

Systemic Lupus
Erythematosus

Celiac disease 0.74
[0.707 —

0.772]
<10-300 Cystatin C 0.022

[0.018 —

0.025]
3.44E-37

Type 1 Diabetes Type 1 diabetes 0.323
[0.286 —

0.360]
1.93E-62

Hypothyroidism
NOS

0.151
[0.136 —

0.166]
3.63E-82

Vitiligo Early Onset Skin colour 0.168
[0.161 —

0.176]
<10-300 Skin colour 0.256

[0.247 —

0.262]
<10-300

Vitiligo Early Onset Ease of skin tanning -0.136
[-0.143 —

-0.13]
<10-300

Ease of skin
tanning

-0.215
[-0.221 —

-0.21]
<10-300

Vitiligo Late Onset Skin colour 0.149
[0.141 —

0.156]
<10-300 Skin colour 0.264

[0.257 —

0.272]
<10-300

Vitiligo Late Onset Ease of skin tanning -0.123
[-0.129 —

-0.117]
<10-300

Ease of skin
tanning

-0.231
[-0.238 —

-0.225]
<10-300
fron
The table shows the strongest associated phenotypes with each AD PRS with and without HLA, the beta, the 95% CI and the FDR adjusted p-value.
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3.1.3 Lifestyle
In this category the trait “Never eat eggs, dairy, wheat, sugar:

Wheat products” was associated with PRS for ten ADs when HLA

was included in analysis, suggesting susceptibility to food allergies;

VITL, VITE, PSO, JIA, RA are negatively associated with the

phenotype, while PSC, SLE, MG, CEL (irrespectively of HLA) and

T1D were positively associated with the phenotype (Figure 4;

Table S2).
Frontiers in Immunology 06
Again, same as for the previous category of traits, PSC and SLE

PRS had the largest overlap of associated phenotypes (n=20) in the

same effect direction. They were negatively associated with

phenotypes related to dietary habits (higher intake of dried fruit,

salad/raw vegetable, non-oily fish), cannabis usage, exercise,

smoking status (Figure 4; Table S2).

Additionally, VITL and VITE PRS (irrespectively of HLA) were

positively associated with darker skin color, and negatively
FIGURE 2

Significant PRS-PheWAS for at least three AD PRS with phenotypes in the Disease Diagnoses UK Biobank category, using the normalized PRS. The
shown phenotypes were significantly associated, after FDR adjustment, with at least three AD PRS irrespectively of the HLA status. The colors of cells
indicate the standardized effect sizes (b) for the regression between AD PRS with HLA and each phenotype. The one star “☆” shows the significant
results only with the “HLA included” AD PRS. The two stars “☆☆” show the significant associations with both “HLA included or excluded” AD PRS
with the same effect direction. The star and the upper facing triangle “☆▵” show the significant associations with both “HLA included or excluded”
AD PRS but with opposite effect directions. The upper facing triangle “▵” shows the significant associations only with “HLA excluded” AD PRS that the
effect direction is the same as the color indicates. The down-facing triangle “▿” shows the significant associations only with “HLA excluded” AD PRS
that the effect direction is the opposite of what the color indicates. To group the disease diagnoses phenotypes, we used the R PheWAS tool and
collapsed similar ICD-10 codes into one phecode. We used the hclust R function to perform the hierarchical clustering of the autoimmune disorders
shown in the dendrogram using all standardized effect sizes for the disease diagnoses phenotypes.
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associated with higher risk of “ease of skin tanning”, “childhood

sunburn occasions”, “use of sun/uv protection” and “facial aging”

(Figure 4; Table S2). We observed the opposite associations between

PSC and SLE PRS and these sun exposure phenotypes (Figure 4;

Table S2).

3.1.4 Health and medical history
In this category the self-reported phenotype “Diagnosed with

coeliac disease or gluten sensitivity” was significantly associated

with 11 autoimmune PRS (Figure S5; Table S2). We observed a

positive association with PSC, SLE, T1D, CEL, MG, and a negative

association with RA, JIA, VITL, VITE, PSO, these results are

consistent with similar phenotypes, such as the “Celiac disease”

diagnosis and the “Never eat eggs, dairy, wheat, sugar: Wheat

products” phenotype in the Lifestyle category.

Additionally, high PRS T1D, VITL, and VITE were associated

with lower risk for “Basal cell carcinoma” phenotype under the

Cancer register sub-category. Specifically, for VITE and VITL we

observed a negative association with self-reported basal cell

carcinoma (Figure S5; Table S2).
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We also observed significant associations of autoimmune PRS

with phenotypes in the Sociodemographics (Figure S6), Biomarkers

(Figures S7-S9) and Physical Measures (Figure S10) categories,

without any patterns emerging across disorders. Results are

shown in the supplement.
3.2 AD Genetic Architecture and
Cross-Disorder GWAS Meta-analysis

Driven by the known comorbidity across AD [based on

epidemiological studies (8)] and the overlap in phenotypic

associations with autoimmune PRS that we described above, we

proceeded to perform cross-disorder genetic correlation and GWAS

summary statistics meta-analyses to explore the genetic relationship

and genetic architecture of ADs and identify potentially pleiotropic

loci. Such pleiotropic loci would drive pathophysiology across

multiple ADs.

Initially, we performed analysis for all 11 ADs (Figure S11),

however, given the limited SNP overlap of our datasets for CEL,
FIGURE 3

Significant PRS-PheWAS for at least three AD PRS with phenotypes in the Cognition and Mental Health UK Biobank category, using the normalized
PRS. The shown phenotypes were significantly associated, after FDR adjustment, with at least three AD PRS irrespectively of the HLA status. The
colors of cells indicate the standardized effect sizes (b) for the regression between AD PRS with HLA and each phenotype. The one star “☆” shows
the significant results only with the “HLA included” AD PRS. The upper facing triangle “▵” shows the significant associations only with “HLA excluded”
AD PRS that the effect direction is the same as the color indicates. To group the phenotypes, we used the categories provided by the UK Biobank.
We used the hclust R function to perform the hierarchical clustering of the autoimmune disorders showing in the dendrogram using all standardized
effect sizes for the Cognition and Mental Health phenotypes.
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PSO and JIA we excluded them from further analyses. After

correction for multiple testing, we observed significant positive

correlations of RA with T1D (rgno-HLA:0.52), SLE (rgno-HLA:0.51),

and MG (rgno-HLA:0.47). VITL and VITE were also significantly

correlated (rgno-HLA:0.64). Additional autoimmune correlations

with p<0.05 are shown in Figures 5A, B, including the pairwise

correlations after excluding HLA.

Since the pairwise genetic correlation analysis showed a

complicated correlation pattern among the studied disorders, we

performed exploratory factor analysis (EFA) followed by a

confirmatory factor analysis (CFA) to dissect the AD

relationships. We used the four-factor model identified in EFA

and included the disorders with loadings greater than |0.3| in each

factor. The CFA analysis in GenomicSEM showed a good fit of the

model to the data (c2 (12) =16.1; AIC =64.1; CFI = 0.98; SRMR =

0.07). The first factor included VITE, VITL and MG. MG, RA and

SLE were included in the second factor, while the third factor

consisted of T1D, PSC and MG (with a negative loading). Lastly,

factor four consisted of PSC and MS (Figure 5C).

In the cross-disorder meta-analysis on the first factor, that

includes VITL, VITE and MG, we identified nine significant

pleiotropic (m-value>0.9 in all studies) LD independent regions
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(Table 3); two of them mapping on the Cytotoxic T-Lymphocyte

Associated Protein 4 (CTLA4) - Inducible T Cell Costimulator

(ICOS) and Fli-1 Proto-Oncogene, ETS Transcription Factor

(FLI1) genes, were not significant in the individual GWAS studies

included here. However in the GWAS catalog (41) FLI1 has a

significant association with Vitiligo, when the onset age is not taken

into account (42), and CTLA4 is found associated with different

GWASs (not studied here) for both Myasthenia gravis (43) and

Vitiligo (42). CTLA4 was also significant in the gene-based analysis

(44) of the data we used in this meta-analysis. The gene set

enrichment analysis including the genes in the significant and

pleiotropic regions identified four significantly enriched GO : BP

terms; bone cell development, immune system development,

myeloid cell development, and immune system process

(Figure 6A; Table S5).

When we performed the meta-analysis of MG, RA and SLE, we

identified 17 genome-wide significant pleiotropic loci. Three of

these loci mapping to Protein Tyrosine Phosphatase Receptor Type C

(PTPRC), Interleukin 12 Receptor Subunit Beta 2 (IL12RB2) and

LINC00824 were not genome-wide significant in the GWAS studies

we analyzed (focusing on European ancestry), however, they were

reported as significant associations in GWAS of higher power that
FIGURE 4

Significant PRS-PheWAS for at least three AD PRS with phenotypes in the Lifestyle UK Biobank category, using the normalized PRS. The shown
phenotypes were significantly associated, after FDR adjustment, with at least three AD PRS irrespectively of the HLA status. The colors of cells
indicate the standardized effect sizes (b) for the regression between AD PRS with HLA and each phenotype. The one star “☆” shows the significant
results only with the “HLA included” AD PRS. The two stars “☆☆” show the significant associations with both “HLA included or excluded” AD PRS
with the same effect direction. The star and the upper facing triangle “☆▵” show the significant associations with both “HLA included or excluded”
AD PRS but with opposite effect directions. The upper facing triangle “▵” shows the significant associations only with “HLA excluded” AD PRS that the
effect direction is the same as the color indicates. To group the phenotypes, we used the categories provided by the UK Biobank. We used the
hclust R function to perform the hierarchical clustering of the autoimmune disorders shown in the dendrogram using all standardized effect sizes for
the Lifestyle category phenotypes.
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were multi-ethnic (Table S6). The gene set enrichment analysis of

genome-wide significant and pleiotropic regions identified 22

significantly enriched terms. Among them, six (DN2 thymocyte

differentiation, regulation of MAP kinase activity, stress granule

assembly, B cell proliferation, side of membrane, GRB7 events in

ERBB2 signaling) were significant even after excluding the IEA GO

terms (see Methods) (Figure 6B; Table S7).

In the meta-analysis of MG, T1D and PSC, we observed seven

pleiotropic and genome-wide significant loci. One of them, found

on chr4:10,709,726-10,726,520 (closest gene Cytokine Dependent

Hematopoietic Cell Linker (CLNK), 23Kb downstream) has not

been previously found to be associated with either of the three
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disorders (Table S8). The gene-set enrichment analysis identified six

significantly enriched terms after multiple testing correction, with

“RUNX1 and FOXP3 control the development of regulatory T

lymphocytes (Tregs)” and “T cell receptor signaling pathway” as the

two top terms (Table S9). These two were the only significant terms

when we repeated the analysis after excluding the IEA GO terms

(see Methods) (Figure 6C; Table S9).

Finally, for the cross-disorder meta-analysis of PSC and MS, we

identified two genome-wide significant and pleiotropic loci,

mapping to the previously associated Interleukin 2 Receptor

Subunit Alpha (IL2RA) and BTB Domain And CNC Homolog 2

(BACH2) genes (Table S10). The gene-set enrichment analysis
A

B

C

FIGURE 5

Genetic correlation and factor analysis for 8 autoimmune disorders. The figure shows the analyses of the 8 autoimmune disorders with enough
overlap (>200.000 SNPs) with HapMap3 data provided by LDSC after excluding the HLA locus (hg19, chr6 25-33 Mb). (A) Heatmap of the pairwise
LDSC genome wide genetic correlations of the 8 autoimmune disorders after excluding the SNPs in the HLA region. The red color reflects more
positive correlation coefficients while blue reflects more negative coefficients, and the numbers within each cell are the correlation coefficients. The
correlations with p<0.05 are denoted with one asterisk (*), while two asterisks (**) show the correlations that are significant after Bonferroni
correction. (B) Network representation of the genetic correlation between the autoimmune disorders with p<0.05. The numbers show the
correlation coefficient and the stronger the line color shows a higher coefficient. (C) Path graph of the confirmatory factor model estimated using
the Genomic SEM. Four factors were identified. The factor loadings for each trait are depicted by arrows between the trait and the factor, with the
standardized loading value and the standard error in the parentheses. Correlation between factors is indicated by arrows between them. Residual
variance for each trait is indicated by the two-headed arrow connecting the variable to itself.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1147573
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Topaloudi et al. 10.3389/fimmu.2023.1147573
identified three significant terms, primary adaptive immune

response, primary adaptive immune response involving T cells

and B cells, and interleukin-2 receptor complex. All of them

remained significant even after we excluded the IEA GO terms

(Table S11).
3.3 PheWAS findings shared across ADs in
the same genetic factor

Finally, we explored whether the ADs belonging to each of the

four factors that were identified by EFA, also share associations with

phenotypes detected in the PheWAS. For MG, VITE and VITL

which make up the first identified factor, we detected 29 shared

phenotypes across all three ADs (Figure S12). However, there was

no phenotype with the same effect direction for all three ADs. For

MG, RA and SLE, which make up the second factor, we detected 26

shared phenotypes, across five categories (Figure S13). The

Hypothyroidism disease diagnosis and the health related

phenotype of “other serious medical conditions/disability

diagnosed by doctor”, were the two phenotypes, associated with

all three ADs with the same effect direction, for the same HLA

status. For the ADs of the third factor (PSC, T1D and MG), we

identified 16 shared phenotypes in four categories (Figure S14).

Nine of them had the same effect direction for all three AD for the

same HLA status. Lastly, for factor four (PSC andMS), we identified

76 shared associations, 43 of them had the same effect direction for

both ADs (Figure S15).
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4 Discussion

We report results on the first PRS-PheWAS analysis exploring

the association of genetic risk for 11 autoimmune disorders and

3,254 phenotypes on 330,841 individuals of European ancestry from

the UK Biobank. Additionally, we explored the genetic relationship

between the studied ADs seeking to dissect the genetic architecture

of these highly correlated and often comorbid phenotypes.

We were able to recover previously identified associations

between ADs based on epidemiological or genetic studies. For

instance, a study in a Taiwanese population showed higher risk of

first-degree relatives with Sicca to develop other autoimmune

disorders including SLE, MS, MG, and RA (45); and we also

observed here a positive association between the PRS of these

four ADs and Sicca syndrome outcome. Other autoimmune-

related diagnosis outcomes associated with higher risk for the

studied ADs, included hypothyroidism and Graves disease. A link

between those disorders and RA, Vitiligo, SLE, T1D, CEL, and MG,

is also supported by the literature (46–50). Additionally, as reported

in previous studies (51–53), we also observed a negative association

between Vitiligo risk and skin cancer.

Interestingly, we observed many associations with

environmental and lifestyle factors. Diet and specifically the

consumption of non-wheat products was the outcome that we

found to be associated with the risk for most of the studied ADs

pointing to gluten intolerance and food allergies. We observed a

significant positive association between PSC, SLE, CEL, MG, T1D,

and RA (when HLA was excluded from PRS calculations) and not
TABLE 3 Genome-wide significant (p<5x10-8) LD independent loci from the VITL-VITE-MG meta-analysis.

SNP Locus
Nearest
genes
(<20kb)

P-meta OR SE
Top
SNP
VITE

P-VITE
Top
SNP
VITL

P-VITL
Top
SNP
MG

P-MG

rs9981704
chr21:43831955-

43867059
TMPRSS3
UBASH3A

6.09x10-19 1.31 0.03 – 4.30x10-4 rs12482396 4.06x10-20 – 3.60x10-3

rs60946162
chr3:188084682-

188133518
LPP 1.78x10-15 0.8 0.03 – 2.43x10-7 rs13098877 2.62x10-11 – 1.17x10-3

rs7137828
chr12:111833788-

112037526
ATXN2 SH2B3 1.70x10-13 0.82 0.03 – 7.31x10-5 rs10774624 8.28x10-9 – 1.26x10-3

rs8088891
chr18:60007263-

60029292
TNFRSF11A 3.51x10-13 1.22 0.03 – 9.89x10-4 – 1.14x10-3 rs4369774

1.09x10-
13

rs1951459
chr6:167370353-

167455629

FGFR1OP
MIR3939
RNASET2

3.61x10-13 0.81 0.03 rs2247315 3.48x10-9 rs366938 1.14x10-8 – 9.53x10-4

rs64547
chr22:37575469-

37595156
C1QTNF6 SSTR3 8.14x10-13 0.82 0.03 rs229528 2.09x10-8 rs229527 1.55x10-12 – 7.33x10-3

rs831071
chr3:71426419-

71430389
FOXP1 1.01x10-10 1.2 0.03 – 2.11x10-3 rs60135207 3.14x10-9 – 3.40x10-6

rs3116513
chr2:204694611-

204792732
CTLA4 ICOS 1.42x10-10 1.19 0.03 – 2.25x10-2 – 5.64x10-5 – 2.65x10-6

rs644515
chr11:128589472-

128617231
FLI1 1.44x10-9 1.17 0.03 – 2.89x10-5 – 2.89x10-5 – 1.24x10-2
fron
The column SNP contains the top SNP in each locus. The columns P, OR and SE correspond to the top SNP in each locus. The autoimmune disorder specific Top SNP column contains the top
genome-wide significant SNP in the locus that was available in the input dataset. The autoimmune disorder specific P column contains the lowest p-value in the locus that was available in the
input dataset.
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consuming wheat, while the association was negative for VITE,

VITL, PSO, JIA and RA. We also observed the same pattern of AD

associations with the Celiac disease diagnosis phenotype, which

could be indicative of the connection between gluten intolerance

and Celiac disease. There is prior evidence suggesting that a gluten-

free diet could be beneficial not only for patients with Celiac disease

but also for T1D, RA, MS, autoimmune hepatitis, and PSO (54).

Smoking was another factor that we found significantly

associated with SLE and PSC genetic risk. Indeed, it has been

previously suggested that smoking is associated with higher risk for

double-stranded DNA seropositivity, a marker used for SLE

diagnosis, in SLE patients (55), while for PSC, there is some

evidence to suggest that smoking is associated with lower risk for

developing the disease (56, 57), although not always consistently

supported (58). Interestingly, a previous study found that severe

sunburn incidents and higher tanning ability in women are

associated with higher risk of developing Vitiligo (59), however,

we actually observed the opposite association for Vitiligo genetic

risk, perhaps indicating different behavior towards sun exposure

based on genetic risk. We also observed a negative association

between CEL genetic risk and the weight of the first child. Previous

studies have shown that women with undiagnosed or untreated
Frontiers in Immunology 11
celiac disease have higher risk to deliver a baby with reduced

birthweight (60).

The link between autoimmune disorders and mental health has

been previously described. For instance, exposure to stress-related

disorders was found to be associated with higher risk for ADs (61),

and both positive and negative associations of ADs with psychotic

disorders have been summarized elsewhere (22). In our study, we

observed that risk for VITL and PSO was positively associated with

self-reported outcomes describing poor mental health, which is in

line with previous works (22, 61–63). We also observed that risk for

SLE and PSC was associated with better mental health outcomes.

Epidemiological studies have reported higher psychological distress

in patients with SLE and PSC (61, 64–67). However, in a study

exploring the genetic correlation between immune and psychiatric

related phenotypes using GWAS summary statistics, SLE was found

to be significantly positively correlated only with Schizophrenia and

no other psychiatric phenotypes (68). Additionally, a study using

Mendelian Randomization between SLE and depression showed

SLE genetic variants mildly reduce the odds of depression,

suggesting that the observed association between SLE and

depression might not be attributed to genetic factors (69). Thus,

further analyses could be useful to explore the gap between the
A B

C

FIGURE 6

Network plots of the enrichment analysis for the cross-disorder meta-analyses. (A) Results of the significantly enriched terms from the genes
identified in the VITE-VITL-MG meta-analysis. Results are also shown in Supplementary Table 5. (B) Results of the significantly enriched terms (after
excluding the IEA terms) from the genes identified in the SLE-MG-RA meta-analysis. The full results are also shown in the Supplementary Table 7. (C)
Results of the significantly enriched terms from the genes identified in the T1D-MG-PSC meta-analysis. The full results are also shown in the
Supplementary Table 9. Enriched gene sets that remained significant after excluding the IEA GO terms are shown in dark green.
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associations between SLE and mental health phenotypes observed

in epidemiological studies, but not when using genetic data.

Exploring closer the phenotypes that are associated with ADs

belonging to the same genetic factor (as identified by EFA), we

found that for factor three (PSC, T1D and MG) there is a clear

pattern of associations with same direction of effect with

phenotypes belonging in several disease diagnoses, health and

medical history, and lifestyle categories as well as biomarkers. For

two different factors, two and three, we observed the same direction

of association with the Hypothyroidism diagnosis phenotype.

Specifically for the ADs of factor two we detected a positive

association with additional AD diagnoses, which we discussed in

more details earlier here. Interestingly, for disorders in the first

factor (VITE, VITL and MG), we did not observe any phenotype

associated with the same effect direction with all three ADs. This

suggests that although Vitiligo and MG are genetically correlated,

their PRSs are associated with the opposite direction with the

studied phenotypes. The only exception to this was the

association that we observed with the Hypothyroidism disease

diagnosis where VITE and MG PRS show association in the same

direction. On the other hand, for PSC and MS (factor four), we

observed positive associations with other ADs such as Sicca

syndrome, Celiac disease, but not with Hypothyroidsm. Overall,

the shared phenotypes in each factor reveal patterns whose link to

ADs warrants further exploration.

It is well demonstrated that ADs are often comorbid and share

both HLA and non-HLA genetic loci (8–10, 15). In a recent study

(11), where the genetic correlation between 13 (7 of them are also

studied here) autoimmune and inflammatory disorders was also

explored, the authors observed correlations across ADs and similar

patterns to what we also found. Furthermore, we also provide here a

more detailed analysis to understand the genetic architecture of

ADs including EFA to reveal subgroups of disorders and cross-

disorder GWAS to reveal pleiotropic loci that could underlie

multiple disorders and drive comorbidities. Indeed, in line with

the existing notion of shared genetic background across ADs, we

detected numerous genome-wide significant and pleiotropic loci in

each meta-analysis. All except one had already been previously

associated with at least one of the ADs included in the meta-

analysis, or were associated with the traits in studies of different

ancestries or larger sample GWAS which we could not analyze here

because summary statistics data were not available. Importantly, we

identify one novel genome-wide significant and pleiotropic locus in

the meta-analysis of T1D-MG-PSC. This is a previously unknown

locus that could play a role in the etiology of all three disorders and

is found 23Kb downstream of CLNK gene that encodes Clnk, an

adapter of the SLP76 family, is involved in the regulation of

immunoreceptor signaling (70).

This study comes with both strengths and limitations. The

PheWAS analysis allowed us to detect significant associations

between AD risk and multiple phenotypes, even after excluding

the HLA region. Additionally, we were able to detect pleiotropic loci

in the autoimmune subgroups that are involved in immune-related

processes as the gene-set enrichment analysis revealed. However,

there are limitations in this study that should be considered when

interpreting the results. For the PRS calculations, although we used
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the largest AD summary statistics data available, there were

differences in power regarding their sample size and number of

SNPs. Also, as the number of UK Biobank participants with AD

diagnoses is limited, we were not able to calculate the optimal p-

value threshold for SNPs to be included in PRS calculations, but

rather set as threshold the p-value 10-5.

In conclusion, in this study we observed ADs PRS to be

associated with multiple health-related and environmental factors,

even after excluding the HLA region, and explored the genetic

relationships of the selected ADs by estimating their genetic

correlation and identifying pleiotropic genetic regions that

underlie genetic risk across multiple ADs. Overall, our analyses

indicate potential factors associated with genetic risk for ADs, some

of which have been reported previously, and novel observations that

need further exploration. These results suggest that the assessment

of additional exposures related to lifestyle, mental and physical

health risks by clinicians, could be beneficial for individuals with

higher risk for autoimmune disorders.
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SUPPLEMENTARY TABLE 1

Demographic information of the 330,841 UK Biobank participants included in

the analysis. The ICD10 Disease Diagnoses category includes the diagnoses
for the autoimmune disorders that are included in this study and were present

in the UK Biobank.

SUPPLEMENTARY TABLE 2

PRS-PheWAS results for association of genetic risk of 11 autoimmune

disorders with 3,254 phenotypes in UK Biobank. Genetic risk scores were

calculated as the weighted standardized sum of the effect of independent
SNPs with p-values<10-5 for each disorder. The estimation of the genetic risk

scores was repeated after excluding the extended HLA region (hg19, chr6 25-
33 Mb). Estimates were generated by PHESANT.

SUPPLEMENTARY TABLE 3

Associations of AD PRS with disease diagnosis phenotype for the same

disorder. The table shows the associations of the disease diagnosis
phenotypes and the same AD PRS with and without HLA, only for the ADs

that the same diagnosis was available. For the Vitiligo early and late onset we
used the general Vitiligo diagnosis phenotype that was available in the

UK Biobank.

SUPPLEMENTARY TABLE 4

Nagelkerke’s pseudo-R2 values for the studied ADs. The table shows the
Nagelkerke’s pseudo-R2 values and the liability scale Nagelkerke’s pseudo-

R2, using the population prevalence as listed in the Prevalence column. The
PMID column refers to the studies reporting the prevalence values included in

the analysis.

SUPPLEMENTARY TABLE 5

Significantly enriched gene sets genes identified in the VITL-VITE-MG meta-
analysis. The p.Val column is the adjusted p-value using the suggested g:SCS
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method by the g:Prolifer tool used for the analysis. The Genes column
contains the provided genes that are in each identified gene set.

SUPPLEMENTARY TABLE 6

Genome-wide significant (p<5x10-8) LD independent loci from the SLE-RA-

MG meta-analysis. The column SNP contains the top SNP in each locus. The
columns P, OR and SE correspond to the top SNP in each locus. The

autoimmune disorder specific Top SNP column contains the top genome-
wide significant SNP in the locus that was available in the input dataset. The

autoimmune disorder specific P column contains the lowest p-value in the

locus that was available in the input dataset.

SUPPLEMENTARY TABLE 7

Significantly enriched gene sets genes identified in the SLE-MG-RA meta-

analysis. The p.Val column is the adjusted p-value using the suggested g:SCS
method by the g:Prolifer tool used for the analysis. The Genes column

contains the provided genes that are in each identified gene set.

SUPPLEMENTARY TABLE 8

Genome-wide significant (p<5x10-8) LD independent loci from the T1D-MG-PSC

meta-analysis. The column SNP contains the top SNP in each locus. The columns
P, OR and SE correspond to the top SNP in each locus. The autoimmune disorder

specific Top SNP column contains the top genome-wide significant SNP in the
locus that was available in the input dataset. The autoimmune disorder specific P

column contains the lowest p-value in the locus that was available in the

input dataset.

SUPPLEMENTARY TABLE 9

Significantly enriched gene sets genes identified in the T1D-MG-PSC meta-

analysis. The p.Val column is the adjusted p-value using the suggested g:SCS
method by the g:Prolifer tool used for the analysis. The Genes column

contains the provided genes that are in each identified gene set.

SUPPLEMENTARY TABLE 10

Genome-wide significant (p<5x10-8) LD independent loci from the PSC-MS
meta-analysis. The column SNP contains the top SNP in each locus. The

columns P, OR and SE correspond to the top SNP in each locus. The
autoimmune disorder specific Top SNP column contains the top genome-wide

significant SNP in the locus that was available in the input dataset. The

autoimmune disorder specific P column contains the lowest p-value in the
locus that was available in the input dataset.

SUPPLEMENTARY TABLE 11

Significantly enriched gene sets genes identified in the PSC-MS meta-
analysis. The p.Val column is the adjusted p-value using the suggested g:

SCS method by the g:Prolifer tool used for the analysis. The Genes column

contains the provided genes that are in each identified gene set.
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