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Background: Deep metabolomic, proteomic and immunologic phenotyping of

patients suffering from an infection with severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) have matched a wide diversity of clinical symptoms

with potential biomarkers for coronavirus disease 2019 (COVID-19). Several studies

have described the role of small as well as complex molecules such as metabolites,

cytokines, chemokines and lipoproteins during infection and in recovered patients.

In fact, after an acute SARS-CoV-2 viral infection almost 10-20% of patients

experience persistent symptoms post 12 weeks of recovery defined as long-term

COVID-19 syndrome (LTCS) or long post-acute COVID-19 syndrome (PACS).

Emerging evidence revealed that a dysregulated immune system and persisting

inflammation could be one of the key drivers of LTCS. However, how these

biomolecules altogether govern pathophysiology is largely underexplored. Thus, a

clear understanding of how these parameters within an integrated fashion could

predict the disease coursewould help to stratify LTCS patients from acuteCOVID-19

or recovered patients. This could even allow to elucidation of a potentialmechanistic

role of these biomolecules during the disease course.

Methods: This study comprised subjects with acute COVID-19 (n=7;

longitudinal), LTCS (n=33), Recov (n=12), and no history of positive testing

(n=73). 1H-NMR-based metabolomics with IVDr standard operating

procedures verified and phenotyped all blood samples by quantifying 38

metabolites and 112 lipoprotein properties. Univariate and multivariate statistics

identified NMR-based and cytokine changes.
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Results: Here, we report on an integrated analysis of serum/plasma by NMR

spectroscopy and flow cytometry-based cytokines/chemokines quantification in

LTCS patients. We identified that in LTCS patients lactate and pyruvate were

significantly different from either healthy controls (HC) or acute COVID-19

patients. Subsequently, correlation analysis in LTCS group only among

cytokines and amino acids revealed that histidine and glutamine were uniquely

attributed mainly with pro-inflammatory cytokines. Of note, triglycerides and

several lipoproteins (apolipoproteins Apo-A1 and A2) in LTCS patients

demonstrate COVID-19-like alterations compared with HC. Interestingly, LTCS

and acute COVID-19 samples were distinguished mostly by their phenylalanine,

3-hydroxybutyrate (3-HB) and glucose concentrations, illustrating an

imbalanced energy metabolism. Most of the cytokines and chemokines were

present at low levels in LTCS patients compared with HC except for IL-18

chemokine, which tended to be higher in LTCS patients.

Conclusion: The identification of these persisting plasma metabolites,

lipoprotein and inflammation alterations will help to better stratify LTCS

patients from other diseases and could help to predict ongoing severity of

LTCS patients.
KEYWORDS

long COVID-19, Post-Acute COVID-19 syndrome (PACS), NMR, in-vitro diagnostics,
quantitative, metabolomics, lipoproteins, inflammation
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Layman summary and significance of
the research

Almost 10-20% of individuals infected with the SARS-CoV-2

virus regardless of hospitalization status experience long-term

COVID-19 syndrome (LTCS). It is devasting for millions of

individuals worldwide and hardly anything is known about why

some people experience these symptoms even 3 to 12 months after

the acute phase. Therefore, we attempted to understand whether

dysregulated metabolism and inflammation could be contributing

factors to the ongoing symptoms in LTCS patients. Total blood

triglycerides and the Cory cycle metabolites (lactate and pyruvate)

were significantly higher, lipoproteins (apolipoproteins Apo-A1

and A2) were drastically lower in LTCS patients compared with

healthy controls. Correlation analysis revealed that either cytokines

or gender are positively correlated with several metabolites (citrate,

glutamate and histidine) in LTCS patients. Several cytokines and

chemokines were also positively correlated with metabolites and

lipoproteins thus, dysregulation in metabolism and inflammation

could be a potential contributory factor for LTCS symptoms.
Introduction

So far, more than 643 million people worldwide have been

infected with COVID-19 and more than 6.6 million lives have been

lost during the course of the pandemic (1). Yet, even three years

after the first SARS-CoV-2 viral infections, the COVID-19

pandemic is still ongoing. Emergence of new variants of concern

(VOC) is a great concern despite the development of several

successful vaccines. Many scientific reports have identified the

important role of metabolites in the serum and plasma of mild,

moderate, severe, and recovered COVID-19 patients. In fact, in

COVID-19 disease or any other viral infection, immune cells

require a lot of energy to fight off the infection. Therefore, their

metabolism demands a drastic increase to produce cytokines and

chemokines (2, 3). A previous study described that peripheral blood

mononuclear cells (PBMCs) show a dysregulated glycolysis and

oxidative phosphorylation related metabolic profile, with

specifically higher lactate and lower glucose levels in mild and

moderate COVID-19 patients compared with either healthy

controls (HC) or convalescent (Co) COVID-19 individuals (4).

Furthermore, specific T cell subsets from acutely infected COVID-

19 patients displayed a more extensive mitochondrial metabolic

dysfunction, especially cells in CD8 T cell lineages (5). Finally, in

vitro activated T cells from acutely infected COVID-19 patients

showed a reduced glycolytic capacity and decreased glycolytic

reserve, accompanied by a relatively low activation of mTOR

signaling compared with HC (5). Of note, dysregulated

metabolites can be released from both dysfunctional immune cells

as well as from damaged tissue due to the viral infection in the blood

(6, 7). Thus, the detection of metabolites from blood serum or
Frontiers in Immunology 03
plasma (reservoir and exchanger of metabolites) would give us a

hint of the ongoing pathophysiological status of the disease in

more detail.

Several studies have focused on how to predict and model the

progression of COVID-19 based on metabolomics and proteomics,

including the use of machine learning and mathematical modelling

(7–13). These studies correlated metabolites with inflammation

parameters and identified that alterations of several metabolites

could be involved in disease progression, with some of them being

a direct consequence of the disease. Further, in parallel considerable

investigative efforts using genomics, transcriptomics and proteomics

were performed on plasma and even fecal samples (14–20). A

previous study by nuclear magnetic resonance (NMR) spectroscopy

identified that lipoprotein subclasses and free cholesterol were

increased in both mild and moderate COVID-19 patients, and this

study concluded that COVID-19 causes a dysregulation in lipid

metabolism, glycolysis, and the tricarboxylic acid cycle (21).

Another NMR study of recovered COVID-19 patients (Recov) after

3–10 months of diagnosis indicated higher plasma cholesterol and

phospholipids (22). Furthermore, changes in polar metabolites were

determined, e.g. altered amino acids (arginine and glutamine were

lower in COVID-19 patients (19)). Additionally, several studies

highlighted that inflammatory cytokines such as IL-6 and IL-10

were present in highest levels in severe COVID-19 (acute)

compared to moderate/mild or HC (21, 23, 24).

It is reported that several patients after infection develop a long

term COVID-19 syndrome (LTCS) with symptoms such as chronic

fatigue, dyspnea, brain fog, etc. (25). However, how COVID-19

specific metabolite, lipoprotein and inflammatory mediators relate

to the severity of COVID-19 and LTCS outcomes remains poorly

understood. Some studies suggested that mitochondrial dysfunction,

impaired fatty acid metabolism and cytokine IL-10 production were

greatly affected in LTCS patients (22, 26, 27). Thus, the role of host

metabolism and inflammation during the disease progression in

LTCS requires further investigation in defined patient cohorts

including from different geographical regions to validate common

and different features of this fatal health condition.

Of note, a previously launched in vitro diagnostics research

(IVDr) NMR analytical platform demonstrated that for given

samples this method can discover absolute quantitative data on

metabolite and lipoprotein levels in analyzed solutions from either

blood serum and plasma (28). This IVDr NMR platform has been

already successfully implemented for COVID-19 phenotyping (12,

22, 29–36) and we have used the same platform for the purpose of

this study.

The samples for this project were collected dated from June 2020

to February 2021 and correspond to the wildtype mutant of the virus

based on epidemiological knowledge. In the current study, we aimed

to perform similar investigations on LTCS and control cohorts using
1H-NMR based metabolomics, lipoproteome quantification and a

targeted multiplex 13-plex inflammation panel. We hereby identified

that the dynamics of metabolites, lipoproteins and inflammation

parameters are altered in LTCS individuals.
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Materials and methods

Study design and patient recruitments

We used four groups of individuals in this study. The four

groups of participants included in this study (Supplementary

Table 1) were defined as individuals with: Acute COVID-19 (n=7;

with different time points - longitudinal) LTCS (n= 33); Recov (n=

12); and those who lacked any history of positive testing for

COVID-19 (n= 73). A strict standardization in sample collection

is crucial to obtain comparable results and samples were collected

between 9 – 11 AM. in the morning under fasted conditions. Not all

blood samples could be investigated by NMR and cytokine panel

investigation, as not enough blood volume was available, or the

cytokine panel failed. The n-numbers in Supplementary Table 1 are

therefore different for NMR and cytokines. Recov and LTCS groups

were seen in an ambulatory clinical setting. HC samples (except the

additional controls from Bruker BioSpin; see below) were recruited

for normal blood donation and checked for IgG and IgM antibodies

levels to make sure they had no previous SARS-CoV-2 infection (n=

32). Additional HC data (n=41) provided by Bruker BioSpin GmbH

was generated prior the COVID-19 pandemics. The applied

analytical approach by quantitative IVDr-NMR is a certified

toolbox. In several studies it has shown that data from different

times and research sites provide absolute comparability and

reproducibility as the same platform, data generation and data

processing algorithms are used. All participants enrolled were of at

least 18 years of age. LTCS individuals presented patients evaluated

at the Tübingen University Hospital for Post-COVID Care between

June 2020 and February 2021 and part of a multi-omics study

cohort (COVID-19 NGS; Ethics number: 286/2020B1 and Clinical

Trial number: NCT04364828). They were enrolled only if blood was

collected > 28 days after testing positive by SARS-CoV-2 PCR and

were experiencing any symptoms such as fatigue, dyspnea, brain fog

etc. The following additional metadata parameters were received

and considered for analysis: age and gender status (0 – male, 1 –

female, for the purpose of categorization within statistical software).

This study was performed in accordance with the Declaration of

Helsinki and all patients have been given written consent.
Sample preparation for the study

Blood samples were collected in the morning at the clinics and

delivered to our institute in the afternoon. Initial samples were

collected in 9.0 mL EDTA tubes (S-Monovette® K2 EDTA Gel, 9

ml, cap red; Sarstedt, Germany) for the isolation of DNA for

genomic and epigenomic investigations. After completing routine

blood tests in the clinical laboratory, the remaining discarded blood

samples (2-5 mL) were used for plasma and PBMCs isolation to

analyse metabolites, lipoproteome and inflammation parameters.

Plasma separation was performed within 3-4 h after blood

collection by centrifuging the blood samples at 2,000 x g for 10

min at room temperature and collected the upper layer. Plasma was

stored at – 80°C or until use for both IVDr NMR spectroscopy and

13-plex inflammatory cytokine panel measurements.
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Flow cytometry-based 13-plex
inflammatory cytokine assay

To determine cytokine levels from plasma samples obtained

from HC, Recov and acute COVID-19 patients, we employed the

LEGENDplex™ Human Inflammation Panel 1 (13-plex) flow

cytometry-based assay kit (#740809, BioLegend, San Diego, CA,

USA). This panel allowed us simultaneous quantification of 13

human inflammatory cytokines and chemokines (IL-1b, IFN-a2,
IFN-g, TNF-a, MCP-1 (CCL2), IL-6, IL-8 (CXCL8), IL-10, IL-

12p70, IL-17A, IL-18, IL-23, and IL-33). The measurement

principle is based on beads which are differentiated from each

other based on their size and internal fluorescence intensities on a

flow cytometer platform. Each bead set is bound with a specific

antibody on its surface and forms capture beads for individual

analytes. To detect the cytokine levels, we followed the protocol as

recommended by manufacturer’s instruction. Briefly, we first

prepared the standard using 1:4 dilution of the top standard (C7)

as the highest concentration, then serial dilutions were done for C6,

C5, C4, C3, C2, and C1 by taking 25 µL of the diluted standard and

added into 75 µL assay buffer. Following, 15 µL of plasma samples

were equally diluted with 15 µL assay buffer. Next, 25 µL of the

diluted samples were carefully transferred to each well. 25 µL of

mixed beads were added to each well. Importantly, beads were

mixed well by vortex for 30 seconds before using to avoid bead

setting in the bottle. The plate was sealed with a plate sealer and

covered with aluminum foil to protect the plate from light and put

on a plate shaker at 800 rpm for 2 h incubation at room temperature

(RT). After incubation, the plate was centrifuged at 1.050 rpm for 5

minutes, then the supernatant was carefully discarded by flicking

the plate in one continuous and forceful motion. The plate then was

then washed with 200 µL washing buffer. 25 µL of detection

antibodies were added to each well, the plate was again sealed

with a plate sealer, covered with aluminum foil, and incubated for 1

h at RT. After incubation, 25 µL of streptavidin-phycoerythrin (SA-

PE) was directly added to each well without washing the plate,

sealed and covered in the same manner as described in a previous

step. The plate was then centrifuged for 5 minutes and washed in

the same manner as before. Finally, 150 µL of washing buffer was

added to each well and the samples were stored in the cold room

until the reading by BD Fortesa (BD Bioscience) flow cytometer.

Data were analyzed both manually and automatically by standard

curve detection (online software platform from Biolegend). In

automatic gating strategy, two sets of beads were used in this

experiment. Each set has a unique size that was identified by its

forward scatter (FSC) and side scatters (SSC) profiles. Based on the

internal fluorescence intensities of each set of beads, different

resolutions were achieved by flow cytometry. BD Fortesa flow

cytometer was used for the internal dye detection via the APC

channels. In Beads A there are six bead populations, whereas, in

Beads B, there are seven bead populations. The predicted concentration

of the cytokine standard levels was depicted in different colors. C7

represents the highest level of cytokines and C0 represents the lowest

level of cytokines. Log5P analysis were performed to calculate the

concentrations of each cytokine for multiple samples based on cloud-

based online software provided by BioLegend.
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1H-NMR spectroscopy-based
metabolomics and lipoprotein
quantification

Raw NMR spectra were recorded using Bruker IVDr (B.I.)

methods package for blood samples, which is compatible with

EDTA-(ethylenediaminetetraacetate), citrate-, and heparin blood

plasma as well as serum samples (37). The sample preparation was

performed following standard operating procedure (SOP) to

ensure reliable results. For quality control, the B.I. BioBank

QC™ module was applied. For quantification, the modules B.I.

QUANT-PS™ for metabolites and B.I. LISA™ for lipoproteins,

respectively, were applied. Blood plasma samples were thawed for

approximately 30 minutes at RT. An aliquot of 120 mL of each

aliquot was pipetted into a 1.5 mL polytetrafluoroethylene (PTFE)

container and mixed with 120 mL of commercially prepared pH

7.4 sodium phosphate plasma buffer (Bruker BioSpin GmbH,

Ettlingen, Germany). The mixture was then shaken gently for 1

min before transferring 200 mL of it to fill a 3 mm NMR tube

(Bruker BioSpin GmbH, Ettlingen, Germany). The autosampler

cooling setting was set to 4°C. 1D 1H-NMR spectra were acquired

using a 5 mm triple resonance (TXI; 1H, 13C, and 15N) RT probe

on a Bruker IVDr Avance III HD 600 MHz system (Bruker

BioSpin GmbH, Ettlingen, Germany), which was operated using

Bruker’s standard NMR software TopSpin (version 3.6.2). Five

one-dimensional 1H-NMR spectral experiments were run for each

blood sample with water peak suppression and varied pulse

sequences to selectively observe molecular components. Firstly,

a Nuclear Overhauser Effect SpectroscopY (NOESY) 32-scan

NMR experiment was used to show NMR spectrum quality (via

the B.I. BioBank QC™) and to enable quantification of

metabolites (e.g. glucose, lactic acid, amino acids of the B.I.

BioBank Quant-PS™) and high-molecular-weight compounds

lipoproteins (as shown in B.I. LISA™). Then, a 32-scan (CPMG

Carr-Purcell-Meiboom-Gill, filtering out macromolecular

resonance signals) program was run, as well as 32-scan

DIFFusion measurement of, primarily, macromolecular signal

massifs (DIFF). Also, a two-dimensional NMR experiment is

included within the IVDr methods package and 2-scans J-

RESolved spectroscopy (JRES) were recorded to analyse J

coupling constants. Additionally, JRES can be useful for a

manual data look-up. NMR experiments utilize a group of

sample-dependent parameters of frequency offset O1 and

duration of 90° pulse P1. Using the B.I. QUANT-PS™ module,

final concentration values as per reports were used for analysis.

The annotation and quantification of serum spectra were provided

automatically and server-based by Bruker BioSpin GmbH. Herein,

38 metabolites (via Bruker IVDr Quantification in Plasma/Serum,

B.I. Quant-PS™, analysis package) and 112 lipoprotein

parameters (via Bruker IVDr Lipoprotein Subclass Analysis, B.I.

LISA™, analysis package; Supplementary Table 2) were identified

and quantified in all spectra. As input, final concentrations from

B.I. reports were employed.
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Statistical analysis

Statistical analysis was performed with the quantified

parameters using the web-based tool MetaboAnalyst 5.0 (38). For

the software’s analyses, we excluded all features that showed >50%

missing values, metabolite and cytokine data panels only.

Importantly, the over 50% missing value threshold is already

stringent for more than three or more than three group-based

comparisons, and these comparisons are functioning per feature.

The remaining missing values were estimated (imputation) using

the feature-wise replacement with 1/5 of a minimum variable value

via the Singular Value Decomposition (SVD) computation (39).

Different to lipoproteins, blood serum metabolites are amenable to

fall below the analytical limit of quantification which is dependent

on the individual metabolite SNR (signal to noise ratio). In order to

use such metabolites still for statistics, we applied an imputation

method accounting for up to 50% of missing values, as within

disease research a single group (e.g. LCTS) might show distinct

unique features that are not measured in any of the other groups

(e.g. HC).

The probabilistic quotient normalization (PQN) technique was

used to adjust for dilution effects in the corresponding metabolite

concentration spreadsheets (40). To correct for heteroskedasticity,

which is not uncommon in this context as concentration magnitudes

from metabolites, lipoproteins, and other markers vary strongly, we

performed a logarithmic transformation prior to statistical analysis.

For univariate analysis, volcano plots were generated (combination of

p-values generated from unpaired t-tests, and fold change (FC)). For

figure generation, thresholds for the p-value were established at 0.10

and for the FC at 1.2, respectively. However, for two-group based

comparisons (with no normalization techniques applied; unequal

group variance; non-parametric t testing) were carried out via the

utilization of Wilcoxon Rank Test, including false discovery rate

(FDR) adjustment for output p values. For correlation analyses,

including PatternSearch function of MetaboAnalyst, we focused on

Spearman’s correlation coefficient. Further analyses were conducted

using the multivariate approach of unsupervised principal

component analysis (PCA) and supervised orthogonal partial least

squares discriminant analysis (oPLS-DA). Besides that, PLS-DA was

used to assess the discrimination between two groups and identify the

parameters that drive this separation. MetaboAnalyst’s biomarker

toolbox was used for further biomarker analysis (41). Without any

alteration to the data matrix, such as logarithmic scaling or

elimination of zero values, the pathway analysis tool worked

correctly with only metabolite data. The univariate analysis (via

Mann-Whitney tests), correlational analysis were performed and

violin plots were illustrated using GraphPad PRISM 9.0.1.

However, the main correlational analysis of combined NMR and

cytokine data (without any alteration to the data matrix, such as

logarithmic scaling or elimination of zero values; including FDR-

method adjusted p-value calculations) was conducted using the

“bcdstats” R package. BioRender.com services were utilized to

create some figures within this work.
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Results

Cohort description and patient
demographics

To better interpret the obtained NMR and cytokine data, basic

metadata from all recruited patients was considered in this study.

We hereby identified in the healthy control group (HC) an age

average of 54.4 years, whereas Recov was 67.5 years, LTCS was 56.9

years and acute COVID-19 was 61.1 years (Figure 1A). Kruskal-
Frontiers in Immunology 06
Wallis multiple test comparison revealed that the HC group age was

significantly less compared with Recov (padj=0.022, Dunn’s multiple

comparisons test multiplicity adjustments performed) patients.

However, no statistical difference was observed among Recov,

LTCS, and acute COVID-19 patients’ age. Gender based analyses

were also performed for each group and male and female subjects

appeared to be distributed equally in HC and LTCS patients

(Figure 1B; Supplementary Table 1). Further, we identified the

post-acute COVID-19 (more than 4 weeks) or LTCS patient sample

collection from date of infection to plasma collection for the study
A B

DC

FIGURE 1

Patient demographics of LTCS patients and study cohort. (A) Age dependency in clinical patient groups and a substantial age difference between HC and
recovered patients. (B) Gender-based structural map for the patient groups. (C) Sample collection time. There is a statistically significant difference
between the recovered group and the LTCS group in number of days post infection registered. (D) The rows graph shows percentages, comorbidities as
subclinical cofactors for the LTCS group. A statistically significant difference was indicated when the value of P was less than 0.05 (* - P ≤ 0.05).
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based on NICE guideline released in November 2020 (42). Later 7th

December 2022, World Health Organization (WHO) defined LTCS

as the continuation or development of new symptoms 12 weeks

after the initial SARS-CoV-2 infection, with these symptoms lasting

for at least further 8 weeks with no other explanation. We identified

that the median of the sample collection was 152 days which qualify

the NICE and WHO guidelines. In our cohort, we had few samples

(<10% patients (n=3: 47, 73, 80 days) used in this study) after viral

infection (wild-type SARS-CoV-2) with minimum 47 and

maximum 308 days (Figure 1C), whereas in the case of Recov

patient group it was 128 days (Figure 1C). LTCS and Recov patients

sample collection was significantly different (p=0.03), thus it

appeared that LTCS patients and Recov patients had a clear

demarcation of the symptoms. Herein, a total of ten major

different symptom parameters was used to define LTCS patients:

we identified that our cohort (n=33) had fatigue (>54.5%), dyspnea

(>51.5%), dizziness (>21%) as major symptoms (Figure 1D).

Anosmia (>15%), ageusia (>15%), headache (>9%), anxiety

(>9%), myalgia (>9%), and neuropathy were fewer common

symptoms (>6%).
Dysregulated metabolites in severe and
LTCS patients

Several studies identified that blood metabolites are

dysregulated especially in severe COVID-19 patients and in

recovered patients (3, 41, 43–45). This is further affected by

different variant strains and collection times (46). However,

information on how metabolites and inflammation parameters

affect LTCS patients has started to emerge only recently (22, 26).

In our study, we used quantitative IVDr 1H-NMR spectroscopy to

distinguish metabolites levels in HC, Recov, LTCS, and acute

COVID-19 patients. The herein applied IVDr metabolomics

biofluid approach was first introduced in 2016 (47) and is based

on harmonized SOPs for sample preparation and data acquisition

by (1H) 600 MHz NMR. In order to validate the reproducibility of

the IVDr NMR methods, different ring trials were performed by

both the analytical company as well as by the research community

(34). We first compared the entire cohort of samples with different

groups based on quantifiable metabolite data (B.I. QUANT-PS™)

and untargeted PCA. Later on, there will be a section about the 112

parameters (B.I. LISA™) available for investigation on the

lipoprotein panel data (Supplementary Table 2). We hereby found

that the acute COVID-19 patient group showed a clear separation

with either LTCS, Recov or the HC group (Figure 2B). PCA loading

scores investigation was performed as well (Supplementary

Figure 1). Further, PLS-DA’s variables in projection importance

score plot (VIP) suggested that the amino acid creatine and the

ketone body 3-hydroxybutyrate was present at the highest level in

the plasma samples of acute COVID-19 patient whilst citrate and

histidine were present in LTCS patients at highest levels among all

other groups (Figure 2C). Recov patients showed the highest

amount of pyruvate and lactate levels (Figures 2C, D), as

illustrated also on the heat map plot. Further, we identified that

formate, acetone, and citrate were present in higher amounts in
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LTCS compared with Recov patients (Supplementary Figure 2).

Due to the limited number of samples in the Recov and acute group,

we mostly focused for this study on the comparison between HC

and LTCS. A supervised classification model was built using oPLS-

DA to distinguish between HC and LTCS patients, using

metabolites as variables. We observed a clear difference and

elevated levels of pyruvate, lactate, methionine and alanine in

LTCS patient compared to HC (Figures 2E-G). The regression

analysis also highlighted that pyruvate, lactate and methionine as

top variables in the oPLS-DA S-plot. Furthermore, the metabolite

panel in the volcano analysis showed trend-like (FC > 1.2, p (FDR-

adjusted) ≤ 0.10) changes for lactate, pyruvate, and methionine (up)

and phenylalanine, glycine, Gln/Glu (glutamine-glutamate ratio),

lysine and acetate (down) in LTCS compared with HC (Figure 2H).

Finally, we compared and revealed the overall changes in the

metabolites among all different groups (Figure 2I).

We delineated that LTCS compared with acute COVID-19

patients have a highly significant change in several metabolites

including alanine, histidine, citrate, lactate, pyruvate, and glucose

(Supplementary Table 3, FDR-adjusted significances shown). Yet,

we have been unable to establish any differences between the LTCS

and Recov groups that are statistically significant. This is also not

surprising, as the n-number for the Recov group is very small. The

examination by a regression model, however, made it possible to

identify several indicative changes (Supplementary Figure 2). Those

were elevated levels of formate in LTCS, but the group also had a

tendency of lowered amounts of acetate, creatinine, lysine, valine,

pyruvate, phenylalanine, and lactate when compared with Recov

individuals. Overall, the energy metabolites of citrate and pyruvate

were much higher in the LTCS and Recov groups than in acute

COVID-19 patients (Figure 2; Supplementary Figure 3).

We next identified pathway alterations. Overall, six pathways

were mainly identified which had a significant difference including

the TCA cycle, ketone bodies, alanine/aspartate/glutamate

metabolism, glycolysis, glycine/serine/threonine metabolism, and

arginine/proline metabolism. From all six pathways, metabolites

from the glycolysis pathway were deemed to be less abundant in

acute patient samples. At the same time, TCA cycle metabolites

were high in both Recov and LTCS patient groups with high

significance levels. Finally, we were able to observe slightly

lowered levels of glycolysis metabolites in the LTCS group as well.

Thus, our data defines a metabolic dysregulation in LTCS and acute

COVID-19 patients.
Imbalanced lipoproteins are key
characteristics for LTCS

Several studies on mild/moderate and acute COVID-19 patients

have implicated the importance of lipoproteins in disease

development (12, 30, 34, 37, 48–50). In our study, the four cohort

groups based on lipoprotein parameters were partially separated by

the PCA (Figure 3A, PCA loadings plot – Supplementary Figure 4).

The Recov group was characterized by the highest levels of LDL-5

and LDL-6 subfraction cholesterol content (Figure 3B). By contrast,

lipoproteins such as, V5FC, V5CH, and L6TG were increased
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FIGURE 2

Identification of metabolites in LTCS patients. (A) The image above depicts the study’s methodology. (B) PCA and PLS-DA studies were performed

for the whole cohort data. This analysis was done out based only on quantifiable metabolites data (B.I. QUANT-PS™). The 4-group distribution was
shown in using the coordinates of principal components 1 and 2. (C) The values that contributed the most to these VIP scores are shown here by
the subplot, which are sorted from most significant to least significant. (D) The metabolite panel variables’ average trends were presented by sub-
plot. (E) oPLS-DA study was performed, and LTCS vs control patients (HC) were compared. This analysis was done out based only on quantifiable

metabolites data (B.I. QUANT-PS™). The two-group distribution was shown using the coordinates of loading components 1 and 2. (F, G) The values
that contributed the most to these VIP scores and S-plot data of the regression model are shown here by the subplots, which are sorted from most
significant to least significant. (H) Metabolite panel Volcano analysis results showing trend-like (FC > 1.2, p (FDR-adjusted) ≤ 0.10) changes in ratio of
LTCS/HC as presented by sub-plot. (I) For each patient group (Recov (EDTA plasma) n=12, HC (serum or heparin plasma) n=73, LTCS (EDTA plasma)
n=33, Acute (Heparin plasma) n=16 samples), an average normalized (scaled 0 to 1, averages were divided by a maximal average per variable) heat
map analysis conducted by sub-plot.
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mostly in LTCS patients (Figures 3B, C). We also identified that

several lipoproteins were present in lower amounts in LTCS

compared with Recov patients (Supplementary Figure 5). Herein,

we found that HDL-4 triglycerides were considerably higher in the

Recov group compared with the LTCS group.

Due to the small n-number in the Recov group we focused

only on HC and LTCS patients. Here we observed in the oPLS-

DA plots that HC and LTCS form two clusters though not being

entirely separated (Figure 3D). Variable projection regression

analysis revealed that a greater number of lipoproteins were

highly abundant in HC compared to LTCS patients (Figures 3E,

F). Based on volcano plots, we identified that 18 lipoproteins

were increased whilst 34 lipoproteins were decreased in LTCS

patients compared with HC (Figure 3G). On the Volcano

analysis plot, we observed decrease in Apo-A2 (TPA2) and

(fold changes > 1.2, p values (FDR-adjusted) ≤0.10) increased

triglycerides. We carefully observed the substantial differences in

several metabolites between LTCS and severe acute COVID-19

patients, including HDL cholesterol and apolipoprotein B100

Apo-B (TPAB) (Figure 3H).

Performing an additional analysis based on the Wilcoxon Rank

Test (Supplementary Table 4, FDR-adjusted significances shown),

we identified that Recov (*), acute (****), and LTCS (****) patients

had higher blood triglycerides than the HC group, something that

has been reported for COVID-positive individuals previously (12,

32, 48). Moreover, no lipoproteins (according to the FDR p values),

while very-low-density lipoprotein (VLDL) phospholipids were

elevated in LTCS (***, Supplementary Table 5, FDR-adjusted

significances shown). Interestingly, free cholesterol levels were not

significantly different between LTCS and acute COVID-19 groups.

Of note, the acute COVID-19 group showed the highest blood

triglyceride levels versus the Recov (**) and LTCS (**) groups

(Supplementary Table 4).
The combination of metabolites,
lipoproteins and cytokines orchestrates
pathological phenotypes

Several studies reported that inflammation, metabolism, and

lipoprotein parameters act in unison to overall inform about the

specific disease status such as mild, moderate, or severe. This

knowledge thus can be used to predict and stratify disease

severity (2, 3, 21, 37, 49, 51–54). Indeed, our cytokine and

chemokine profiling showed that acute COVID-19 samples

showed a trend of highest levels of cytokines & chemokines

compared to either HC, LTCS or Recov (Supplementary Table 6).

Furthermore, most of the cytokines and chemokines had a tendency

of lower levels in either the LTCS or Recov group compared with

HC, except IL-18 chemokine. In fact, IL-18 (mean value, compared

via the Tukey’s multiple comparisons test computing adjusted p

values) was found to be higher in LTCS and Recov compared with

HC, however not reaching a significance level (Supplementary

Figure 6; Supplementary Tables 6, 7). We validated previously

published data that IL-8 chemokine and IL-6 and IL-10 cytokines

were abundantly present in acute COVID-19 patients (55, 56). With
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our data we also performed PCA and PLS-DA analysis and could

identify a major separation among acute and LTCS patients

(Supplementary Figure 7A).

Notably, in a correlation analysis of cytokines, chemokines and

metabolites revealed that acute COVID-19 patients showed the

highest levels of cytokines (Supplementary Figure 7B). The Recov

patients showed medium levels compared with LTCS, whereas all

these cytokines and chemokines were present in low abundance in

LTCS patients in overall comparison (Supplementary Figures 7B,

C). A key observation is high citrate, histidine and ornithine

abundance in LTCS patients compared with any other group

(HC, Recov, and acute) (Supplementary Figures 7B, C and

Supplementary Table 8). Furthermore, Spearman correlation

analysis was performed (Supplementary Figure 7D, shown

correlations are FDR-corrected p (FDR) < 0.005) to identify

possible interactions among cytokines, chemokines, metabolites

and lipoproteins (Supplementary Table 9). In doing so, we

identified relatively high negative correlations against 2-

aminobutyrate (2-AB), an antioxidant synthesis controlling

metabolite (57), alanine, threonine, pyruvate, tyrosine, sarcosine,

ornithine, glutamine, citrate, and several additional cytokine panel

parameters (IL-10/23/12p70/8/33/6/1b/18/17A, INF-g, IFN-a2,

TNF-a, and MCP-1). In the other hand, the amino acid histidine

was also highly elevated in the LTCS group. These results indicate a

metabolic shift in LTCS individuals. Some of these findings above

were confirmed in previously published studies (29, 58). Our

interpretation is that with deterioration in health, phenylalanine

and histidine concentrations increased, as did ketone body levels

(48). We believe that these results are novel regarding

LTCS patients.

One further interesting finding was based on investigating the

impact of gender on LCTS. Spearman correlation analysis with

thresholds of |r| ≥ 0.5 and p < 0.05 demonstrates (Figure 4) that the

acute group appeared to have a strong gender-based bias positive to

succinate, glycerol, 3-hydroxybutyrate (3-HB), acetoacetate; and a

negative correlation towards HDL free cholesterol, lactate, and

phospholipids (Figure 4A). Several cytokine panel data entries

had a positive correlation especially with VLDL triglycerides

(Figure 4A). A negative correlation among cytokines and

creatinine together with sarcosine was also observed. Also, the

macrophage attractant chemokine protein MCP-1 had a special

correlational profile dedicated in a r positive towards creatine and

VLDL triglycerides whilst, r negative for the correlations with

lactate, HDL free cholesterol and phospholipids. These findings

highlight a complex nexus in acute COVID-19 patients among

inflammation and metabolic regulation.

We were further interested to decipher and understand a

correlation for the Recov and LTCS patients. We were able to

identify a strong positive correlation among glutamate (with TNF-

a), ornithine, lactate (with IL-8), and pyruvate (with IFN-a2)

(Figure 4B). In contrast, lipoproteins showed a mostly negative

correlation to cytokines. A gender-based bias positive correlation

was identified for apolipoproteins A1 and A2 whilst, histidine

negatively correlated with gender. Age appeared to be positively

associated with HDL cholesterol and negatively with overall blood

LDL/HDL lipoproteins fraction ratio (Figure 4B).
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In case of LTCS patients some unique findings were identified.

We were able to determine that a large set of cytokines were

changing in a similar way to Recov amongst patients as histidine

and glutamate (Figure 4C). Negative associations were found for
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glutamine and IL-1b. A strong gender/age-based bias was found for

acetate in LTCS patients.

In case of HC only two major negative correlations were found

for the healthy controls: creatinine – gender and ornithine – IL-
A B

D E F

G H

C

FIGURE 3

Lipoprotein profiling in LTCS patients. (A) PLS-DA was done out based only on the lipoprotein data panel (B.I. LISA™). The 4-group distribution was
shown using the coordinates of loading components 1 and 2. (B) The values that contributed the most to these VIP scores are shown here by the
subplot. (C) Lipoprotein data variables’ average trends were presented by sub-plot. (D) oPLS-DA study was performed, and LTCS vs control patients

(HC) were compared. This analysis was done out based only on the lipoprotein data panel (B.I. LISA™). The two-group distribution was shown using
the coordinates of loading components 1 and 2. (E, F) The values that contributed the most to these VIP scores and S-plot data of the regression
model are shown here by the subplots, which are sorted from most significant to least significant. (G) Lastly, the lipoprotein panel Volcano analysis
results showing trend-like (FC > 1.2, p (FDR-adjusted) ≤ 0.10) changes in ratio of LTCS/HC as presented by sub-plot. (H) Lastly, the main lipoprotein
panel variables’ average trends were presented by sub-plot (H). For each patient group (Recov (EDTA plasma) n=12, HC (serum or heparin plasma)
n=73, LTCS (EDTA plasma) n=33, Acute (Heparin plasma) n=16 samples), an average normalized (scaled 0 to 1, averages were divided by a maximal
average per variable).
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12p70 (Figure 4D). An overall graphical summary of our key

findings is provided in Figure 5 and Supplementary Table 10.

Thus, it seems that each disease state has its own bubble network

to combat the virus and regulate the function of host system.
Discussion

LTCS is a condition which is thought to debilitate a person’s life

after a SARS-CoV-2 viral infection and post-recovery for several

months up to years. It is estimated that approximately 10-20% of all
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COVID-19 patients are susceptible to develop LTCS. Through our

integrative approach of quantitative measurement of metabolites,

lipoproteins, inflammation parameters and cytokines, we identified

several features, which are uniquely dysregulated in LTCS patients

(Figure 5). Our major findings revealed that lactate and pyruvate

were highly upregulated in LTCS patients compared with HC and

similar metabolites were also upregulated in Recov patients. This

could be due to dysregulated oxidative phosphorylation in Recov or

LTCS patients. Furthermore, phenylalanine, glycine, acetate, Gln/

Glu ratio, glutamine, and creatinine were decreased in LTCS

patients compared with HC or Recov. This may be indicative of
A

B

D

C

FIGURE 4

Integrated analysis of metabolites, lipoproteins, chemokines and cytokines in LTCS and comparators groups. For each patient group (Recov (EDTA
plasma) n=11, HC (Heparin plasma) n=32, LTCS (EDTA plasma) n=24, acute (Heparin plasma) n=15 samples), based on the cytokine data availability,
Spearman correlation test with exact p values (r values of the correlational analysis scaled -1 to 1, colored blue to red respectively) was conducted.

Based on measurable metabolites data (B.I. QUANT-PS™) and a selection of lipoprotein parameter list data (B.I. LISA™). (A) The graphical
representation is performed with filters of |r| ≥ 0.500 and p < 0.05 has been shown in panels – acute group, (B) – Recov group, (C) – LTCS group,
(D) – HC group). Correlational values for Ca-EDTA and K-EDTA not shown. ▪ (ORANGE) – FDR-adjected p value of a correlation is < 0.10 in a
patient group; ▪ (GREEN) – Significant, FDR-adjected p value of a correlation is < 0.05 in a patient group. A statistically significant difference was
indicated when the value of raw P was less than 0.05 (* - P ≤ 0.05, ** - P ≤ 0.01, *** - P ≤ 0.001).
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the LTCS symptoms. A sign of the greater long COVID-related

severity state could be further associated with phenylalanine, ketone

bodies (acetoacetate, acetone, and 3-HB), formate, histidine, and

glutamate blood levels (Figure 5). As there is a demand for the

amino acid and its further pathway products, phenylalanine levels

decay in the COVID recovery phase as reported previously (59),

similarly to currently investigated LTCS group versus Recov

comparison. In here, a slight change of acetoacetate could be an

indicator of starvation-like conditions (60). This together with other

statistically significant parameters could predict COVID-19 disease

severity (3). From the correlational analysis, we were able to

determine that correlations of glutamate, glutamine, and histidine

were stronger to the cytokine data in the LTCS group. The findings

therefore suggest a contrastingly higher role of glutamate to IL-1b,

INF-g (predominantly), TNF-a, IL-8/10/18 cytokines positive

correlations among the LTCS individuals. This finding is similar

to the previously reported association of mild/acute COVID-19

patients metabolomic analysis and its classification to the cytokine

panel data (10).

Whilst considering previously reported metabolic shifts for

COVID-19-positive patients (15, 32, 59), these LTCS-specific

metabolites - creatine and 3-HB can provide an insight which

metabolic shifts could be persisting and represent a continuous risk

to the patients’ health. Interestingly, the LTCS profiles of the

metabolites citrate, 3-HB and histidine were changed in contrast

to acute COVID-19 patient. Furthermore, LTCS patients had higher

levels of formate and acetone than Recov patients. Since lactate and

pyruvate levels in LTCS patients were significantly different from

those of either HC or acute COVID-19 patients (to a lesser extent).
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We concluded that blood metabolic changes were primarily

responsible for increased energy demand for the immune

response, which was also prominent in individuals with severe

respiratory distress (61). We detected a higher blood lactate level in

LTCS patients, which may be associated with acidosis, which might

explain symptoms such as fatigue and brain fog (62). Additionally,

decreased blood glutamine levels that had previously been identified

are crucial in acute and post-acute COVID and were advised to be

supplemented to patients (33, 63). Our study is in line with the

published studies and suggested that glutamine deficiency in the

LTCS condition. Our finding could potentially helpful for

evaluation of patients’ wellbeing (64).

Somehow as expected, Recov and LTCS patients showed very

similar types of metabolic dysregulations. However, we identified

some difference between the groups especially for formate, acetate,

creatinine, due to the small n-number no significance level was

achieved. Moreover, HDL-4 triglycerides and HDL-4 ApoA1 were

considerably greater in the Recov group than in the LTCS group.

While the smaller HDLs and their Apo-A1 content, e.g. HDL-4 were

previously reported to indicate the severity of the pulmonary arterial

hypertension condition (65), other research - in regards to the

increased risk of COVID infection to arterial hypertension

condition (66). Consequently, these lipoprotein modifications

might be mapped and continue to reveal subtly altered triglycerides

characteristics that depict COVID-associated dysregulation (48).

When blood ketone body levels rise, so do triglyceride levels, which

is more indication of an acute energy reliance.

We further identified an elevation of citrate and pyruvate in

blood of the LTCS patient group compared with HC. This is in line
A

B C

FIGURE 5

Graphical summary of the study. (A) focuses on phenylalanine, and formate as significant variables identified via regression model analysis.
(B) demonstrates further strong metabolite correlations with the cytokine data. (C) is showing highlights of the lipoprotein data analysis.
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with another study which identified higher levels of pyruvic acid

accumulated in the blood stream of COVID-19 patients and which

could be used to prognose disease severity (67). Further, greater

levels of lactate in COVID-19 patients are an already established

finding (68). We therefore hypothesize that glycolysis/

gluconeogenesis and Krebs cycle metabolic pathways will lead to

an elevated consumption of glucose to produce citric acid. It is

interesting to note that citrate levels did not significantly correlate to

any of the chemokine or cytokines, yet it was only connected to the

gender factor. Therefore, gender based metabolic dysregulation

could play an important role to understand the disease severity.

This is especially important as certain LTCS symptoms have been

reported more or even only for female or male patients.

Maintained triglyceride and other lipoproteins change indicate

that COVID-19 like features persist in LTCS patients when

comparisons were made with HC. Therefore, elevated

apolipoproteins ratio B100 to A1 and overall blood triglycerides

could be attributed to the disease group (12). Our data implies that

HDL cholesterol (HDCH) is lowered in the LTCS patients.

Previously, it was identified that severe immunosuppression is a

key for the severity of COVID-19 rather than the cytokine storm

(69). Thus, it is plausible that lower level of lipids and inflammatory

cytokines may be of important for further disease symptoms in

LTCS patients. Another correlation of the LTCS group to acute

COVID-19 patients is noticed via lowered apolipoproteins A1 & A2

levels, among other close structures they had been lowered in ill

subjects (70, 71).
Conclusion and limitation of the study

In this study we compared quantitative NMR serum parameters

of four different groups. One obvious limitation was the low number

of samples in the “acute” (n = 16) and “recovered” (n = 12) group.

The focus was thus set on the discussion of results obtained from

the comparison between healthy controls (n = 73) and LTCS (n =

33). These numbers are suitable for a statistical metabolomics

approach based on IVDr-NMR spectroscopy. We identified a

large set of quantitative NMR data on metabolites and

lipoproteins and inflammation parameters in LTCS patients and

highlight that glutamate, citrate, lactate, pyruvate, histidine, HDL

(HDL-4) and total blood triglycerides, HDL (HDL-4)

apolipoproteins Apo-A1, IL-18, TNF-a, IL-23, IL-8, MCP-1 could

be key parameters in the pathophysiology of maintained disease

symptoms and even progression. It should be noted as a limitation,

that for this analysis only a very basic set of patient metadata was

available. Thus, the estimation of the role of underlying

comorbidities and the comparability to healthy controls is limited.

Especially with severe COVID-19 patients (i.e. those who were

hospitalized) it can be assumed that a majority of them had risk

factors like diabetes, obesity, hypertension, etc. – adjustment for

these risk factors in the “healthy controls” would be very interesting.

The core of this study therefore was based on the two larger groups

LTCS and HC, however also within LTCS comorbidities might have

contributed to changes. Furthermore, the limited number and only
Frontiers in Immunology 13
single time point of samples for the Recov and acute group should

be considered when comparing the results of this study with similar

projects. Another clear limitation of the study is the age difference

between Recov and all other groups, as it is known that age-related

metabolic disorders such as diabetes or hypertension have an

impact on the blood metabolome and lipoproteome. Furthermore

we want to point out the difference in the delays between the acute

COVID-19 infection diagnosis and the plasma collection in

between Recov and LTCS group as another potential confounder.

Nonetheless, our results confirm and align with some of the

previously published results and show novel insights into

persisting altered blood metabolome, lipoproteome and

inflammation parameters when comparing healthy controls with

LTCS specimen.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving human participants were reviewed and

approved by COVID-19 NGS; Ethics number: 286/2020B1 and

Clinical Trial number: NCT04364828. According the declaration of

Helsinki, the patients/participants provided their written informed

consent to participate in this study.
Author contributions

GB: Performed the NMR spectroscopy experiments, processed the

samples, analyzed the integrated data, figure preparation, manuscript

writing. RB: Performed the experiments, patient recruitment and

processing of blood plasma. AL, SG, HH, KK, MB: Patient

recruitment, blood sample collection, patient metadata collection,

editing the manuscript. CC, HS: provided control samples and IVDr

software license. CT: Planned the experiments, performed the NMR

spectroscopy experiments, processed the samples, analyzed the

integrated data, figure preparation, manuscript editing. YS: Overall

project management and execution, planned the experiments, cytokine

assay and data analysis, preparation of the final figures, manuscript

writing. All authors contributed to the article and approved the

submitted version.
Funding

The current research in part is supported by Ferring Pharma

(YS). CT and GB report grants from Bruker BioSpin GmbH in the

context of an advanced research collaboration. Funders have no role

in study design and publication of these results.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1144224
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Berezhnoy et al. 10.3389/fimmu.2023.1144224
Acknowledgments

We thank Prof. Dr Olaf Riess for providing the infrastructure to

perform the study, sharing the plasma samples from the COVID-19

genomic study and help with ethics writing for this project. We

thank the Werner-Siemens Imaging Center with the Chair of

Department Prof. Dr. Bernd Pichler for the opportunity to

conduct this study. We acknowledge the Tubingen university

library for open access funds for the publication.
Conflict of interest

CC and HS are employed by Bruker BioSpin GmbH but were

not involved in study design and analysis of the present data. Their

contribution consisted in providing age- and sex-matched healthy

control data and IVDr software.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1144224/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

The loadings plot of the principal component analysis (PCA) of the

metabolomics data that were examined using PCA for the full cohort is
shown in Figure 2B.
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SUPPLEMENTARY FIGURE 2

Identification of metabolites in LTCS and Recov patients via o PLS-DA studies.
This analysis was performed based only on quantifiable metabolites data (B.I.

QUANT-PS™). The 4-group distribution was shown in (A, B) using the

coordinates of T score and orthogonal T score. The values that contributed
the most to these VIP scores and S plot loadings of the regression model are

shown here by the subplot (C). Lastly, the metabolite panel variables’ average
trends were presented by sub-plot (D).

SUPPLEMENTARY FIGURE 3

Pathway analysis of dysregulated metabolites and lipoproteins. For each

patient group pairs (Recov (EDTA plasma) n=12, HC (Heparin plasma) n=32,
LTCS (EDTA plasma) n=33, acute (Heparin plasma) n=16 samples), a number

of metabolic pathways, as shown on the subplots (A–F), related to the
measurable metabolites data (B.I. QUANT-PS™) were identified in the

patient groups. Predicted metabolic pathways are listed with p-values after
the FDR applied (false discovery rate correction). The group distribution

whose statistical importance has been shown in panels. Statistical

significances: ns p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤

0.0001. ▪ (RED) - higher average levels in a patient group; ▪ (CYAN) – lower

average levels in a patient group. TCA cycle – tricarboxylic acid cycle. CoA –

coenzyme A. ATP – adenosine triphosphate. ADP – adenosine diphosphate.

SCFA – short-chain fatty acids.

SUPPLEMENTARY FIGURE 4

Analysis supplement based on the PLS-DA. As illustrated in Figure 3A, B, the
sub-plot is a depiction of the applied lipoprotein parameters in the PLS-DA

analysis loadings coordinates for components 1 and 2.

SUPPLEMENTARY FIGURE 5

oPLS-DA study was performed, and LTCS vs recovered patients (Recov) were

compared. This analysis was performed based only on lipoprotein data panel

(B.I. LISA™). The two-group distribution was shown in (A) using the
coordinates of loading components 1 and 2. The values that contributed

the most to these VIP scores and S-plot data of the regression model are
shown here by the subplots (B) and (C), which are sorted from most

significant to least significant. Lastly, the metabolite panel regression model
analysis highlighted results (VIP > 1.0) visualized via a Heat map as presented

by sub-plot (D).

SUPPLEMENTARY FIGURE 6

IL-18 concentration levels of the subjects. Statistical significances: ns p >
0.05, * p ≤ 0.05, ** p ≤ 0.01.

SUPPLEMENTARY FIGURE 7

PLS-DA study was performed, and the available data from the cytokine panel

table (Supplementary Table 6) were compared. The group distribution was
shown in (A). The values that contributed the most to these loadings of the

regression model are shown here by the subplots (B) by Component 1) and
(C) by Component 2, which are sorted from most significant to least

significant via variables in projection score (VIP) plots. Lastly, variables’
panel of Spearman correlations for IL-10 cytokines showed trends against

the main cytokine parameters by sub-plot (D).
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