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An integrated co-expression
network analysis reveals novel
genetic biomarkers for immune
cell infiltration in chronic
kidney disease

Jia Xia1†, Yutong Hou2†, Anxiang Cai1, Yingjie Xu2, Wen Yang2,
Masha Huang2* and Shan Mou1*

1Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China, 2Department of Biochemistry and Molecular
Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao
Tong University School of Medicine, Shanghai, China
Background: Chronic kidney disease (CKD) is characterized by persistent

damage to kidney function or structure. Progression to end-stage leads to

adverse effects on multiple systems. However, owing to its complex etiology

and long-term cause, the molecular basis of CKD is not completely known.

Methods: To dissect the potential important molecules during the progression,

based on CKD databases from Gene Expression Omnibus, we used weighted

gene co-expression network analysis (WGCNA) to identify the key genes in

kidney tissues and peripheral blood mononuclear cells (PBMC). Correlation

analysis of these genes with clinical relevance was evaluated based on

Nephroseq. Combined with a validation cohort and receiver operating

characteristic curve (ROC), we found the candidate biomarkers. The immune

cell infiltration of these biomarkers was evaluated. The expression of these

biomarkers was further detected in folic acid-induced nephropathy (FAN)

murine model and immunohistochemical staining.

Results: In total, eight genes (CDCP1, CORO1C, DACH1, GSTA4, MAFB, TCF21,

TGFBR3, and TGIF1) in kidney tissue and six genes (DDX17, KLF11, MAN1C1,

POLR2K, ST14, and TRIM66) in PBMC were screened from co-expression

network. Correlation analysis of these genes with serum creatinine levels and

estimated glomerular filtration rate from Nephroseq showed a well clinical

relevance. Validation cohort and ROC identified TCF21, DACH1 in kidney tissue

and DDX17 in PBMC as biomarkers for the progression of CKD. Immune cell

infiltration analysis revealed that DACH1 and TCF21 were correlated with

eosinophil, activated CD8 T cell, activated CD4 T cell, while the DDX17 was

correlated with neutrophil, type-2 T helper cell, type-1 T helper cell, mast cell,

etc. FAN murine model and immunohistochemical staining confirmed that these

three molecules can be used as genetic biomarkers to distinguish CKD patients
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1129524/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1129524/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1129524/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1129524/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1129524/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1129524&domain=pdf&date_stamp=2023-02-17
mailto:martha0126@163.com
mailto:shan_mou@126.com
https://doi.org/10.3389/fimmu.2023.1129524
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1129524
https://www.frontiersin.org/journals/immunology


Xia et al. 10.3389/fimmu.2023.1129524

Frontiers in Immunology
from healthy people. Moreover, the increase of TCF21 in kidney tubules might

play important role in the CKD progression.

Discussion: We identified three promising genetic biomarkers which could play

important roles in the progression of CKD.
KEYWORDS

biomarkers, CKD, WGCNA, TCF21, DACH1, PBMC, DDX17
Introduction

Chronic kidney disease (CKD) is a global public health issue

with a prevalence of 13.4% (1). It is clinically defined as renal

structure abnormalities or dysfunction (estimated glomerular

filtration rate, eGFR < 60 ml/min/1.73m2) that has persisted for

more than 3 months (2). CKD has a poor prognosis and can easily

progress to end-stage renal disease (ESRD). Renal biopsy is an

essential tool for diagnosing the pathology of CKD. Owing to the

complex etiology and long-term cause, the molecular basis of CKD

is not completely known, and it is difficult to predict patient

responses to treatment (3, 4). With the development of omics

technologies in the past decade, transcriptional bioinformatics

analyses of chronic diseases have improved our understanding of

molecular processes involved in CKD and have identified some

novel biomarkers (5–7). In addition, integrated analyses using

appropriate methods have identified some candidate genes based

on the transcriptome data from such single-gene studies (8, 9).

Kidney often suffers pathogenic immune responses against

autoantigens in kidney or renal complication of systemic

autoimmune diseases, which drive the renal disease, such as lupus

nephropathy, membranous nephropathy and glomerulonephritis

(10). The immune cell infiltration in kidney worsens the renal

function and aggravates renal fibrosis (11). On the other hand,

uremic retention solutes in blood have toxic effect on immune cells

and contribute to systemic inflammatory and immune dysfunction

(12). It is valuable to give new insight into the immune cell

infiltration and find novel genetic biomarker for elucidating the

molecular mechanism of CKD.

However, due to the invasion, frequent renal biopsy greatly

increases the risk of complications. In end-stage CKD, many uremic

toxins remain in the blood. Peripheral blood mononuclear cells

(PBMC) respond to such environmental stimuli and undergo

functional changes (13). Therefore, as a non-invasive method,

blood tests can help identify key genes or pathways involved in

CKD progression (14).

For bioinformatics analysis, the algorithm and dataset sample

size have a major impact on analysis results. To our knowledge, no

network analysis using multiple methods has been performed on

CKD kidney tissue and PBMC samples to find key genes related with

immune cell infiltration. Weighted gene co-expression network

analysis (WGCNA) is an algorithm that can analyze gene
02
expression profiles to filter out disease-related modules and find

hub genes. It is the most commonly used algorithm when searching

for genes associated with clinical characteristics (15). In this study,

we aimed to use the WGCNA algorithm in combination with

differentially expressed genes (DEGs) and least absolute shrinkage

and selection operator (LASSO) analysis, integrating three Gene

Expression Omnibus (GEO) databases comprising PBMC and

kidney tissue samples, to obtain reliable key genes related with

immune cell infiltration evaluation for distinguishing the CKD

patients from healthy people. In addition, we used online kidney

disease databases (www.nephroseq.org), immunohistochemical

(IHC) staining detection and murine CKD model for verification.
Results

Flowchart of bioinformatics analysis

The steps of our bioinformatics analysis are shown in the

flowchart (Figure 1). Briefly, the CKD biomarker identification

study was divided into the following main steps: (1) Peripheral

blood mononuclear cell and renal tissue (TISSUE) data extraction

and identification of DEGs; (2) Construction of co-expression

network to identify hub genes; (3) Integrated analysis to extract

key genes from DEGs and hub genes; (4) Expression validation to

test credibility using validation group and external online cohort;

(5) Multiple evaluation of candidate genes by online clinical

database and murine experimental CKD model.
Identification of DEGs in PBMC and renal
tissue from CKD datasets

First, we extracted transcriptome data from GEO datasets of

CKD patients. In the clinic, blood tests and renal biopsies reveal

various clinical features including abnormal kidney function,

morphological changes and immunological dysfunction. In this

study, GEO datasets of both PBMC and TISSUE samples were

included and analyzed to explore the novel gene biomarkers in

tissue and PBMC. The PBMC controls were from kidney-disease-

free patients or healthy individuals and the TISSUE controls were

from adjacent normal tissues of patients treated with tumor
frontiersin.org
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nephrectomy. To remove the batch effect, the R package ComBat

was used. Principal component analysis (PCA) showed the

normalized GEO samples (GSMs) from different GEO datasets

(Figure 2A). GSMs were randomly divided into discovery and

validation cohort (approximately a 4:1 ratio, Table S1). The DEGs

had to meet the selection criteria (adjusted P < 0.05). Preliminarily,

we found 30 DEGs from PBMC and 142 DEGs from TISSUE

samples (Table S2 and S3). Figure 2B shows the fold-change

threshold (|log10(FC)| > 0.3 for PBMC and |Log10(FC)| > 0.52

for TISSUE), and Figure 2C showed the ranking of DEGs. Overall,

we identified many DEGs in PBMC and kidney tissues from CKD

patients, as compared with levels in controls.
Kyoto encyclopedia of genes and
genomics and gene ontology
analysis of DEGs

To interpret the general biological properties of DEGs, we used

STRING to create the protein–protein-interaction (PPI) network.

We found a close interaction among DEGs from PMBC (7/30) and

TISSUE samples (22/142) (Figures 3A, B). Furthermore, we

analyzed the DEGs via Kyoto Encyclopedia of Genes and

Genomics (KEGG) pathway and Gene Ontology (GO) biological

process analysis. The top KEGG terms associated with PBMC and

TISSUE samples are shown in Figures 3C, D. PBMC DEGs were

enriched in transcriptional misregulation in cancer, ubiquinone and
Frontiers in Immunology 03
other terpenoid-quinone biosynthesis and other glycan

degradation, indicating the possible effect of the CKD status on

energy metabolism and protein glycosylation. TISSUE DEGs were

mainly involved in cell–ECM interactions, such as focal adhesion

and ECM-receptor interaction. In addition, several signaling

pathways were enriched, including TGF-beta signal pathway,

AGE-RAGE signal pathway in diabetic complications, PI3K-Akt

signal pathway and Hippo signaling pathway, which have been

reported to play a role in CKD progression (16, 17). GO analysis

results (Figures 3E, F) were similar to KEGG results. It can be seen

that PBMC DEGs were involved in ketogenesis (cellular ketone

metabolic process, ketone biosynthetic process), glycosylation

processes (protein deglycosylation, hydrolase activity, hydrolyzing

O-glycosyl compounds, etc.). In addition, TISSUE DEGs were

enriched in ECM interactions and formation terms, such as

collagen-containing extracellular matrix and complex of

collagen trimers.
WGCNA highlights and functional
analysis of CKD-associated gene
co-expression modules

DEGs included only the most significantly regulated genes and

other regulated genes may be missing from the transcripts. Here, we

use WGCNA to robustly construct multiple gene co-expression

modules. Hierarchical clustering was used to define branches of the
FIGURE 1

Flowchart to identify chronic kidney disease (CKD) biomarkers, including data extraction, processing and analysis.
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cluster dendrogram in multiple randomly color-coded modules

(Figure 4A left, PBMC; Figure 4B, left, TISSUE). The heatmap of

correlations between module eigengenes and clinical traits (CKD or

not) is shown in Figure 4A (right, PBMC) and Figure 4B (right,

TISSUE). The darkolivegreen1 module (Corresponding

Correlation, CC = −0.31, P = 0.01) showed the highest negative

correlation with CKD trait in PBMC (Figure 4A, right). The

lightgreen module (CC = −0.25, P = 0.002) showed a high

negative correlation with CKD trait in TISSUE samples

(Figure 4B, right). The hub genes of each sample type were

filtered from these modules that met the selection module

member (MM) and gene significance (GS) criteria described in

the methods (Table S4 and S5). Hub genes of the PBMC

darkolivegreen1 module included DDX17, KLF11, MAN1C1,

POLR2K, ST14, TRIM66 and 121 other genes. Hub genes of the

TISSUE lightgreen module include CDCP1, CLIC5, CORO1C,

DACH1, DENND2D, DPP6, GSTA4, MAFB, MAPK10, MYLIP,
Frontiers in Immunology 04
NEBL, NES, PDLIM2, PFKP, PLA2R1, TCF21, TGFBR3 and GIF1.

The GO analysis of hub genes was performed on Metascape (http://

metascape.org/). The top three GO terms of TISSUE hub genes were

mesenchymal cell differentiation, actin cytoskeleton and DNA-

binding transcription repressor activity, RNA polymerase II-

specific (Figure 5A). DisNET analysis revealed that hub genes

were c lose ly re la ted wi th g lomerular d isease ( foca l

glomerulosclerosis and membranous glomerulonephritis) and

renal carcinoma (Figure 5B). As for the hub genes of PBMC, the

top three GO terms were leukocyte activation, positive regulation of

cytokine production and positive regulation of leukocyte cell-cell

adhesion (Figure 5C). Among them, The Molecular Complex

Detection algorithm (MCODE) analysis enriched ribosome

biogenesis and lymphocyte activation (Figure 5D). Above, the

hub genes of TISSUE are closely correalted with DNA

transcriptional dysregulation in kidney disease, while the hub

genes of PBMC may actively affect the lymphocyte activation.
A B

C

FIGURE 2

Identification of differentially expressed genes (DEGs) in peripheral blood mononuclear cell (PBMC) and TISSUE samples (A) Principal component
analysis (PCA) of the GSM datasets. The samples were visualized by scatter plots based on two principal components (PC1 and PC2) of gene
expression profiles without (left) or with (right) batch effect removal. Top, PBMC; bottom, TISSUE. (B) Volcano plots of the DEGs. The orange dots
meant significantly upregulated genes, and the green dots represented significantly downregulated genes. The grey dots represented non-
significantly changed genes. Top, PBMC; bottom, TISSUE. (C) Heatmap showing DEGs in different samples. Left PBMC, Right TISSUE.
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FIGURE 3

Functional enrichment analysis of DEGs (A) Protein–protein interaction (PPI) network of total DEGs from PBMC. Different colors of dots in the
circle plot represented different proteins. The connectivity degree was represented by dot size. The edge width was proportional to combined
score. (B) PPI network of total DEGs from TISSUE samples. (C) Enriched KEGG pathways among PBMC DEGs. The gene ratio was represented on
the horizontal axis. The vertical axis indicated the KEGG signaling pathway terms, and the purple-to-blue gradually changing color indicated the
change of significance from low to high. (D) Circular enrichment of KEGG pathways among TISSUE DEGs (hsa04510: Focal adhesion; hsa04512:
ECM-receptor interaction; hsa05146: Amoebiasis; hsa05222: Small cell lung cancer; hsa05205: Proteoglycans in cancer; hsa04350: TGF-beta
signaling pathway; hsa04933: AGE-RAGE signaling pathway in diabetic complications; hsa04810: Regulation of actin cytoskeleton; hsa04151:
PI3K-Akt signaling pathway; hsa01200: Carbon metabolism; hsa00650: Butanoate metabolism; hsa04971: Gastric acid secretion; hsa04710:
Circadian rhythm; hsa04270: Vascular smooth muscle contraction; hsa04610: Complement and coagulation cascades; hsa05410: Hypertrophic
cardiomyopathy; hsa04390: Hippo signaling pathway). (E) Enriched GO terms among PBMC DEGs. (F) Circular enrichment of GO terms among
TISSUE DEGs (GO:0055006: cardiac cell development; GO:0060537: muscle tissue development; GO:0014706: striated muscle tissue development;
GO:0035051: cardiocyte differentiation; GO:0048738: cardiac muscle tissue development; GO:0055013: cardiac muscle cell development;
GO:0062023: collagen-containing extracellular matrix; GO:0043202: lysosomal lumen; GO:0044291: cell-cell contact zone; GO:0031252: cell
leading edge; GO:0043292: contractile fiber; GO:0098644: complex of collagen trimers; GO:0008307: structural constituent of muscle; GO:0030021:
extracellular matrix structural constituent conferring compression resistance; GO:0005201: extracellular matrix structural constituent; GO:0003779:actin
binding; GO:0043027: cysteine-type endopeptidase inhibitor activity involved in apoptotic process; GO:1901681: sulfur compound binding).
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Identification and validation of common
hub genes

Functional analysis based on hub genes did not exactly match

the analysis based on DEGs. Therefore, to identify the key genes

involved in CKD progression, we tried to define the common hub

genes belonging to both DEGs and hub genes from WGCNA

module (Figure 6A). 7 genes in PBMC and 14 genes in TISSUE

were screened out. Using the LASSO regression algorithm, the

common hub genes were reduced to six in PBMC (DDX17, KLF11,

MAN1C1, POLR2K, ST14 and TRIM66) and eight in TISSUE

(CDCP1, CORO1C, DACH1, GSTA4, MAFB, TCF21, TGFBR3 and

TGIF1), which were identified as key genes (Figure 6B).

Interestingly, DDX17 and MAN1C1 from PBMC hub genes and

CORO1C, TCF21 and TGFBR3 from TISSUE hub genes were

among the top-ranked genes in the PPI network. To examine

whether the expression of these genes influenced CKD

progression, we obtained clinical parameters (eGFR and serum

creatinine, SCr) of these 8 tissue genes from www.nephroseq.org.

Woroniecka Diabetes Glom database was used to evaluate the eGFR

status, while the Ju CKD Glom was used to evaluate the SCr level.

Consistently, the low-expressed genes, GSTA4, MAFB, TGFBR3,

DACH1 and TCF21 expression was positively related with eGFR

and negatively related with SCr. The high-expressed genes, CDCP1,

CORO1C and TGIF1 expression was negatively related with eGFR
Frontiers in Immunology 06
and positively related with SCr (Figures 7A–H). The expression and

significance of these hub genes were highlighted in Figure 7I.

To determine the association between these genes and CKD

status, we examined these 14 key genes in the validation cohort.

Among them, the expression of DDX17 in PBMC, DACH1 and

TCF21 in TISSUE samples showed similar characteristics with those

in the discovery cohort (Figures 8A–C). Consistently, DACH1 and

TCF21mRNA level were also decreased in the Woroniecka diabetic

nephropathy cohort (Figure 8D, DACH1, P < 0.0001; Figure 8E,

TCF21, P < 0.0001). Moreover, as shown in Figures 8F–H, receiver

operating characteristic curve (ROC) was used to investigate

whether these three key genes could discriminate between healthy

and CKD samples. The classification accuracy (area under the ROC

curve, AUC) of these three key genes (DDX17, DACH1, TCF21) was

0.828, 0.825 and 0.981 in the discovery cohort and 0.885, 0.838 and

0.949 in the validation cohort, respectively, showing strong ability

to discriminate between CKD and healthy individuals. By reason of

the foregoing, we screened out DDX17, DACH1 and TCF21 as

genetic biomarkers. The correlation between parameters of renal

function and the expression of genetic biomarkers suggested them

may play a renoprotective role. Briefly, the renal DACH1 and

TCF21 expression was positively correlated with eGFR in CKD

patients (DACH1, P = 7.15e-5, R2 = 0.554; TCF21, P = 5.34e-5, R2 =

0.566), whereas it was negatively correlated with SCr levels

(DACH1, P = 0.0022, R2 = 0.366; TCF21, P = 5.04e-7, R2 = 0.707).
A

B

FIGURE 4

Weighted gene co-expression network analysis (WGCNA) revealing gene co-expression networks in samples from CKD patients (A) WGCNA analysis
of PBMC samples. The left dendrogram represented the clusters of differentially expressed genes based on different metrics. Each branch
represented one gene, and each color below branches represented one co-expression module. The right heatmap showed the correlation between
gene modules and CKD. The correlation coefficient in each cube represented the correlation between gene modules and traits, which decreased from
red to blue. (B) WGCNA analysis of TISSUE samples.
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Immune cell infiltration analysis of
genetic biomarkers

The TISSUE genetic biomarkers DACH1 and TCF21 are tumor

suppressor genes. They are low expressed in the Kidney Renal Clear

Cell Carcinoma (KIRC) (Figures S1A, B). The KIRC patients with

high DACH1 and TCF21 expression has a better prognosis (Figures

S1C, D). On the other hands, PBMC hub genes are closely related

with lymphocyte activation (leukocyte activation, positive

regulation of cytokine production, positive regulation of leukocyte

cell-cell adhesion, etc.) (Figure S1E). The chronic kidney diseases

and kidney malignant tumors have been demonstrated to be linked

to a more severe immune cell infiltration. We evaluate the immune

cell infiltration of these genetic biomarkers. Immune cell infiltration

analysis revealed that DDX17 in PBMC was found to be correlated

with neutrophil, type 1 helper cell, type 2 helper cell and mast cell

(Figure 8I). The TISSUE DACH1 and TCF21 were both found to be

correlated with eosinophil, activated CD8 T cell and activated CD4

T cell (Figure 8J).
Frontiers in Immunology 07
CKD murine model and
immunohistochemical validation
of genetic biomarker expression

To mimic renal dysfunction and tubulointerstitial fibrosis status

during CKD, we developed a folic acid (FA)-induced CKD murine

model. The results showed that SCr levels were increased

significantly after a 3-day FA treatment (Figure 9A). At day 28,

dach1 mRNA levels in the kidneys of mice treated with FA were

significantly decreased (Figure 9B, P < 0.001) and negatively

correlated with SCr levels (Figure 9C, P = 0.0264, R2 = 0.4800).

Conversely, tcf21 mRNA levels were significantly increased

(Figure 9D, P < 0.0001) and positively correlated with SCr levels

(Figure 9E, P = 0.0128, R2 = 0.5595). In isolated PBMC, ddx17

mRNA levels were significantly downregulated in the FA-treated

kidney (Figure 9F, P < 0.01). These results showed that in the FA-

induced CKD mouse model, dach1 levels in tissue and ddx17 levels

in PBMC were in agreement with the changes in clinical samples.

Interestingly, tcf21 was significantly increased in the FA-induced
A

B D

C

FIGURE 5

Functional enrichment analysis of hub genes in disease-related module (A) Enriched GO terms among TISSUE hub genes. The horizontal axis
represented P-value of GO terms in log10 calculated on Metascape by default parameter. (B) Enriched DisGeNET terms among TISSUE hub genes.
The horizontal axis represented P-value of GO terms in log10 calculated on Metascape. (C) Network of representative GO terms among PBMC hub
genes. The clusters were calculated and visualized with Cytoscape using Metascape online platform by default parameter. The color of the node
represented its cluster identity. One GO term from each cluster was selected to be shown as label. (D) Top MCODE terms of PBMC hub genes. All
PPI among PBMC hub genes formed a network. The Molecular Complex Detection algorithm (MCODE) was used to identify the connected network
components. The network was analyzed by GO enrichment to extract “biological meanings”. One GO term was labelled to represent the MCODE
(GO: 0042254: Ribosome biogenesis; GO: 0046649: lymphocyte activation).
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CKDmouse model, opposite to the transcriptome change in clinical

samples. Furtherly, IHC staining showed the protein expression of

DACH1 and TCF21 in kidney of CKD patients and normal control.

Both DACH1 and TCF21 were mainly expressed in the nucleus of

glomerulus and renal tubule cells. DACH1 expression decreased in

glomerulus and renal tubule of membranous nephropathy (MN)

(Figures 9G, H, P < 0.05), while TCF21 expression increased in MN,

especially in the renal tubule cells (Figures 9I, J, P < 0.05).
Discussion

CKD is a type of kidney disease in which kidney function

deteriorates and/or the structure is abnormal. Owing to its

heterogeneity in etiology, the mechanism underlying its

occurrence and progression is still not well understood. It is

known that the TGF-b/Smad pathway is usually activated in CKD

(18). However, damage to kidney function causes uremic retention
Frontiers in Immunology 08
solutes to remain in the body, resulting in adverse effects such as

inflammation, immune dysfunction and oxidative stress (19–21),

but the biological processes involved are not yet fully understood. In

this study, we analyzed the gene expression profile of kidney tissues

and PBMC from CKD patients, using various bioinformatics

methods to find novel common genes or signaling pathways.

In the first-round screening, based on pathway enrichment

analysis, signal molecules such as TGF-b, AGE-RAGE, PI3K-AKT
and HIPPO play important roles in CKD progression and cross-talk

with other molecules (16, 17, 22, 23). Based on GO analysis, the

major functional terms are mainly enriched in cell adhesion and

cell-extracellular matrix interactions, among others, which are

involved in the critical pathological processes associated with

CKD (24).

It is currently believed that WGCNA is better at identifying

internal functional connections among regulated genes than DEG

analysis. Wang et al. discovered that high expression levels of

CEBPZ, IFI16, LYAR, BRIX1, BMS1 and DDX18 in the kidneys are
A

B

FIGURE 6

Common hub gene selection and least absolute shrinkage and selection operator (LASSO) analysis (A) The common hub genes shared between
DEGs and hub genes were visualized in a Venn diagram. Left, PBMC; right, TISSUE. (B) The number of factors was determined by LASSO analysis. The
procedure of LASSO Cox model fitting was shown in left panel. One curve represented a gene. The coefficient of each gene against the LC-norm
was plotted with the lambda change. L1-norm represented the total absolute value of non-zero coefficients. A coefficient profile generated against
the log (lambda) sequence was shown in the right panel. Continuous upright lines were the partial likelihood deviance ± SE; The optimal values and
gene symbols were depicted, based on the minimum criteria (lambda.min, left vertical dotted line) and 1-SE criteria (lambda.1se, right vertical dotted
line). Top, PBMC; bottom, TISSUE. SE, standard error.
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potential key markers of CKD occurrence and progression (8).

However, few studies combining WGCNA and clinical parameters

using both kidney tissues and PBMC have been performed. In our

study, 6 key genes (KLF11, MAN1C1, POLR2K, ST14, TRIM66,

DDX17) in PBMC samples and 8 key genes (CDCP1, CORO1C,

GSTA4, MAFB, TGFBR3, TGIF1, TCF21 and DACH1) in TISSUE

samples were identified by WGCNA. Several of these genes in tissue

have been reported to contribute to the pathology and molecular

changes in CKD. MAFB is a transcription factor that mediates renal
Frontiers in Immunology 09
tubule development and macrophage maturation (25). TGIF1 can

bind to the MH1 domain of SMAD to inhibit TGF-b pathway

activation (26). Most of them have a well correlation with SCr and

eGFR in the CKD database. Among the PBMC common hub genes,

several genes have been reported to be associated with kidney disease

or hematologic disorder. KLF11 is a Krüppel-type zinc finger protein

whose deficiency enhances chemokine generation and fibrosis in

murine unilateral ureteral obstruction (27) and highly induced by

TGF-b (28). It has been reported that KLF11 inhibits the activity of
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FIGURE 7

Correlation analysis of TISSUE common hub genes and CKD clinical parameters (A–H) The correlation of TISSUE genetic biomarker mRNA levels
with estimated glomerular filtration rate (eGFR) in the Woroniecka Diabetes Glom Cohort (Top) or serum creatinine (SCr) level in the Ju CKD Glom
Cohort (Bottom). (A) CDCP1; (B) CORO1C; (C) TGIF1; (D) GSTA4; (E) MAFB; (F) TGFBR3; (G) DACH1; (H) TCF21. Data were extracted from www.
nephroseq.org. (I) The gene expression level of common hub genes in the discovery cohort.
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SMAD7 and enhances TGF-b pathway activation (29), through

which KLF11 may influence the lymphocyte function. Besides, the

highly upregulation of ST14 promotes cancer cell invasion via

imbalanced matriptase pericellular proteolysis (30, 31). The

upregulation of ST14 in PBMC may promote the inflammatory

activation of endothelial cells in blood vessel, which is a common

uremia-related complication. Thus, these molecules should be

studied intensively. Finally, by examining the validation cohort
Frontiers in Immunology 10
and ROC curve, we identified TCF21 and DACH1 in TISSUE

samples and DDX17 in PBMC as potential biomarkers for CKD.

The correlation of DACH1 and TCF21 with clinical parameters

(eGFR and SCr) in CKD patients suggested that these molecules

are potential renoprotective biomarkers in kidney tissues.

Dachshund family transcription factor 1 (DACH1) has been

previously described as a tumor suppressor that can inhibit breast

cancer invasion and metastasis (32). In the past several years, many
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FIGURE 8

Validation and immune infiltration evaluation of CKD biomarkers from different samples (A–C) Box plots representing expression level of CKD
genetic biomarkers in the discovery and validation cohorts. (D) mRNA level of DACH1 in the Woroniecka Diabetes Glom Cohort. (E) mRNA level of
TCF21 in the Woroniecka Diabetes Glom Cohort. (F–H) Receiver operating characteristic (ROC) curve for the discovery and validation cohorts. (A, F)
DDX17 (PBMC); (B, G) DACH1 (TISSUE); (C, H) TCF21 (TISSUE). (I) Correlation heatmap demonstrating the relationship between DDX17 (PBMC) and
immune cells infiltration. (J) Correlation heatmap demonstrating the relationship between DACH1 and TCF21 (TISSUE) and immune cells infiltration.
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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studies have indicated that DACH1 is a renal-protective molecule.

GWAS analysis showed that loss of DACH1 function was a

susceptibility factor for renal fibrosis (33), and DACH1 can

protect against podocyte damage in diabetic nephropathy model

mice (34). Moreover, tubule-specific DACH1-knockout mice were

more susceptible to renal damage and fibrosis in a FA-induced

nephropathy model (33). In our study, this gene was identified
Frontiers in Immunology 11
through transcriptome bioinformatics analysis and confirmed based

on clinical parameters, FA-induced nephropathy model and the

IHC staining in kidney tissues of CKD patient. This agreement with

reported studies showed that our bioinformatics analysis

was reliable.

Transcription factor 21 (TCF21) is a transcription factor that

plays an important role in the differentiation of mesenchymal cells
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FIGURE 9

Expression of genetic biomarkers in folic acid (FA)-induced CKD murine model and membranous nephropathy (MN) patient’s biopsy (A) SCr level in
FA-induced CKD murine model. Blood serum was harvested 3 days after FA injection. (B) mRNA level of dach1 in kidneys from FA-induced CKD
murine model. (C) Correlation between dach1 mRNA level in kidney tissue and SCr from FA-induced CKD murine model. (D) mRNA level of tcf21 in
kidney tissues from FA-induced CKD murine model. (E) Correlation between tcf21 mRNA level in kidney tissues and SCr from FA-induced CKD
murine model. (F) mRNA level of ddx17 in PBMC from FA-induced CKD murine model. (G) IHC staining of DACH1 in normal kidney tissues and CKD
tissues. The representative pictures of CKD were from the membranous nephropathy (MN) patient’s biopsy. (H) Quantitative results of DACH1
expression in panel (G). The expression level was calculated by average integrated density (Intden) of positive area. (I) IHC staining of TCF21 in
normal kidney tissues and CKD tissues. (J) Quantitative results of TCF21 expression in (I). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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and the development and maturation of gonads, muscle, kidney and

other organs (35). TCF21-knockout mice developed kidney

dysplasia at the embryonic stage and die after birth (36). Mice

with podocyte-specific TCF21-knockout spontaneously developed

proteinuria and exhibit FSGS (focal segmental glomerulosclerosis)

lesions (37). Our bioinformatic analysis showed that TCF21mRNA

levels were decreased in CKD samples and positively correlated with

eGFR. However, in our FA-induced nephropathy murine model,

TCF21 mRNA levels were elevated compared to control group. The

TCF21 staining signal was mainly in the nucleus in the healthy

kidney, while in our mild case of membranous nephropathy, the

signal increased and appeared in the cytoplasm and brush border of

renal tubules. Such inconsistency may be caused by the following

reasons. First, the protective role of TCF21 was mainly reported in

the podocytes, not in the kidney tubules. This finding is supported

by analyzing the tissue datasets of CKD cohort mainly from

glomerular transcriptome (GSE47183 with 100 glomerular

transcriptome samples and GSE66494 with 41 whole kidney

transcriptome samples). Combining the two datasets may bias the

display of key genes in the glomeruli during CKD progression.

Recent study identified TCF21 as a deactivation factor of fibrogenic

HSCs in liver fibrosis (38). It might be a nephroprotective in

tubulointerstitial fibrosis. In our mouse model, high dose of folic

acid mainly destroys the tubules and leads to the consequent

tubulointerstitial fibrosis. Therefore, in the acute injury stage and

early CKD stage of our mouse model, the upregulated TCF21 in

tubule could play a protective role against kidney injury. In fact,

TCF21 protein levels were also elevated in the early stage of diabetic

nephropathy in model mice (39). Second, TCF21 was normally

expressed in nuclei of podocytes and highly accumulate in both

nuclei and cytoplasma of the injured podocytes in glomerular

diseases, even was detected in urine (40). The severe injury of

podocytes in CKD might lead to the loss of this cell population

which lead to the reduction of total TCF21 mRNA in kidney tissue.

It is in line with our bioinformatics analysis and previous reports.

Among key genes from PBMC, we identified DDX17, which an

ATP-dependent RNA helicase that is a coactivator of DNA-

regulated transcription factors and is involved in mRNA

transcription, splicing and maturation (41). DDX17 is an immune-

related gene defined in immunology database and analysis portal

(ImmPort). In our study, it was expressed at low levels in the PBMC

of CKD patients from the GEO database and in the PBMC of FA-

induced CKD mouse model. In PBMC, DDX17 plays an important

role in innate immunity against virus invasion (42–44). DDX17 is an

essential mediator of sterile NLRC4 inflammasome activation (45).

Given the fact that the uremia-associated immune deficiency is a

well-known complication of CKD and it increase the risk of virus-

infection and virus-associated cancers (46), the low DDX17 level in

PBMC might associated with CKD progression.

As for the interrelationship of these three biomarkers. DDX5/

DDX17 complex can co-activate or co-repress transcription factor

transcription. In kidney tissue, the expression of DDX17 was also

decreased in the Woroniecka Diabetes Glom database, which was in

line with the DACH1 and TCF21 expression. There is no report on

the relationship between these three genes in the occurrence and

development of CKD. Mechanically, we speculated that the low
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expression of DDX17 might further down-regulate the activity of

TCF21 and DACH1, worsen the glomerular sclerosis and renal

interstitial fibrosis. Given its critical role in innate immunity against

virus invasion, the low DDX17 level in PBMC may aggravate

immune deficiency in ESRD (42–45), and may result in chronic

inflammation and increased oxidative stress to exacerbate kidney

injury and loss of renal function (47).

During the course of CKD, in addition to the abnormal

activation of some signaling pathways such as TGF-b/Smad and

PI3K-Akt, some central molecules are also lacking. The low activity

of some key molecules that regulate kidney differentiation and

development might lead to dysfunction. DACH1 and TCF21 are

both important transcription factors for kidney development and

maturation. Some studies have demonstrated the association

between their expression and CKD and illuminated their

glomerular-specific roles in kidney disease (33, 34, 36, 37, 48), but

the exact mechanisms underlying their dysregulation in CKD are

still elusive. In our study, GO analysis of DEGs and hub genes

highlighted DNA transcriptional activity in CKD kidney tissues.

Besides, the evaluation of immune cell infiltration showed a positive

correlation of DACH1, TCF21 expression with eosinophil, activated

CD8 T cell and activated CD4 T cell. This analysis suggested that

low expression of DACH1 and TCF21 may lead to pathological

dysregulation through aberrant immune cell infiltration. Folic acid

induced experimental nephropathy models undergo progression

from acute kidney injury (AKI) to CKD with initial damage to

proximal tubules, significant alterations to these two transcription

factors suggest their overall impact on glomeruli and tubules.

Our study also had some limitations. For example, the included

database did not distinguish between the different pathological

types of CKD to find pathology-specific biomarkers. In addition,

we mainly analyzed the mRNA levels of genes, not the protein level.

In addition, many renal proteins can be detected noninvasively in

urine. In a subsequent study, we hope to detect the protein levels of

key genes under investigation.
Materials and methods

Clinical samples

In this study, we adopt three samples from healthy adjacent

kidney tissues of individuals who were performed tumor

nephrectomy, whereas other three samples as CKD group whose

tissues were taken from CKD patients’ biopsy. The pathologist

confirmed these biopsy samples as membranous nephropathy

(MN). The patients in this study consented under the ethics

committee review of Renji Hospital affiliated to Shanghai Jiao

Tong University, School of Medicine.
Folic acid-induced nephropathy
murine model

C57bl/6J mice were obtained from Shanghai Jiao Tong

University, School of Medicine. All mice were maintained with a
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12-hour light-dark cycle and given food and water ad libitum.

Procedures were performed in accordance with guidelines approved

by the ethical committee of animal experiments, Shanghai Jiao

Tong University, School of Medicine. Folic acid was purchased

from Sangon Biotech and dissolved in 300 mM NaHCO3. 12-week-

old mice were intraperitoneally injected with FA (250 mg/kg) or

NaHCO3. Mice were euthanized and sacrificed 28 days after FA

injection. Whole blood was collected in White’s buffer (pH 6.4).

Ficoll-Paque (GE healthcare) was used to separate the PBMC

according to the manufacturer’s instructions. Kidneys were

collected and stored at −80°C for further study.
Microarray data collection from
GEO database

We downloaded 6 gene expression datasets (GSE142153,

GSE15072, GSE70528, GSE47183, GSE6280, GSE66494) from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/). According to

labeling information in the platform, probes were converted into

their corresponding gene symbols. The GSE142153 dataset

contained 7 CKD PBMC samples and 10 control PBMC samples.

The GSE15072 dataset contained 26 CKD PBMC samples and 8

control PBMC samples. The GSE70528 dataset contained 11 CKD

PBMC samples. The GSE47183 dataset contained 122 CKD kidney

samples. The GSE6280 dataset contained 12 control kidney

samples. The GSE66494 dataset contained 53 CKD kidney

samples and 8 control kidney samples. In our study, the discovery

cohorts from the GSE142153, GSE15072 and GSE70528 datasets

were used to build co-expression networks and identify the

predominant genes in the CKD PBMC samples. The discovery

cohorts from the GSE47183, GSE6280 and GSE66494 datasets were

used to build co-expression networks and identify the main genes

associated with CKD kidney samples. The assignment of each

sample to discovery or validation cohorts was shown in Table S1.

The procurement and application for all data were in accordance

with the guidelines and principles of the GEO databases.
Data preprocessing

For both sample types (PBMC and TISSUE), each dataset was

combined into a data matrix. ComBat from the R package sva was

used to account for batch effects (49, 50). Whether the batch effect

was removed was evaluated by PCA. The prcomp function in R was

used to perform PCA. Data visualization was performed using the R

packages ggplot2 (https://ggplot2.tidyverse.org) and RColorBrewer

(https://cran.r-project.org/web/packages/RColorBrewer/

index.html) unless otherwise noted.
DEGs identification

The R packages limma and edgeR were used to identify the DEGs

between CKD and normal samples, respectively (51, 52). Genes with
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an adjusted P < 0.05 and |log10(FC)| > 0.3 were selected as DEGs in

PBMC. Genes with an adjusted P < 0.05 and |log10(FC)| > 0.52 were

selected as DEGs in TISSUE. The R package pheatmap was used to

generate heatmaps (53).
Protein–protein-interaction
network construction

STRING database (http://string-db.org) was used to build the

PPI network, where a combined score > 0.4 was considered

statistically significant (54). The CytoHubba Cytoscape plugin

was used to calculate the nodes using the connectivity degree

method (55). We then used the netVisual_circle function in the R

package CellChat to visualize the PPI network (56).
Functional enrichment analysis

We used the R packages Clusterprofiler and org.Hs.eg.db for

Kyoto Encyclopedia of Genes and Genomics (KEGG) and Gene

Ontology (GO) analysis (57). KEGG pathways or GO function

terms with P < 0.05 were considered statistically significant. The R

package circlize was used to create circos plots (58).
Weighted gene co-expression
network analysis

The R package WGCNA was used to constructed the co-

expression network based on discovery cohorts (15). To merge

modules that might be similar, 0.25 was defined as the cut-off height

threshold. The phenotypes (CKD) were inputted into the co-

expression network and the parameters modulus characteristic

gene (ME), MM and GS were calculated. ME represented the

important part in the PCA of each gene module and MM

represented the connection between modules and genes.

Correlation coefficients ≥ 0.50 and P-values < 0.05 were considered

indicative of key modules for PBMC. Correlation coefficients ≥ 0.60

and P-values < 0.05 were considered indicative of key modules for

kidney tissue. In the modular-trait correlation analysis, genes with

high hub modularity were considered as hub genes. Hub genes of

PBMC met the absolute values of GS > 0.20 and MM > 0.50. Hub

genes of kidney tissue met the absolute values of GS > 0.20

and MM > 0.60.
Common hub gene selection and
LASSO analysis

Common hub genes were defined as the overlap between DEGs

andWGCNA hub genes. Venn diagrams were prepared using the R

package venn. LASSO was a regression analysis algorithm that

performs both gene selection and classification (59). To select hub

genes which were credibly associated with CKD, a logistic LASSO
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regression model was constructed based on common hub genes by

R package glmnet. 10-fold cross-validation was performed for

tuning parameter selection, and the partial likelihood deviance

met the minimum criteria.
Evaluation of immune cell infiltration

A set of genes that mark each infiltrating immune cell type

was obtained (60). The correlation between gene expressions

and immune cells infiltration was calculated using Pearson

correlation analysis.
The Cancer Genome Atlas verification of
genetic biomarkers in TISSUE

GEPIA (http://gepia.cancer-pku.cn/index.html) is a

customizable functionalities website for interactive analysis and

visualization based on The Cancer Genome Atlas database (61).

To further verify the two biomarkers of CKD kidney tissue, the

GEPIA web server was used to plot gene expression level box plots

between kidney renal clear cell carcinoma (KRIC) and normal

tissues in the TCGA database. The patient data were grouped

according to the transcripts per million (TPM) value. Log2 (TPM

+1) was used for log-scale, and four-way analysis of variance

(ANOVA) was applied. Overall survival analyses of biomarkers of

kidney tissue were also performed using GEPIA.
Validation of CKD biomarkers

The R package ggpubr was used to generate the gene expression

box plot for hub biomarkers. The R package pROC was used to plot

the ROC curves (62). The AUC values were calculated to evaluate

the sensitivity and specificity of model (63).
Kidney function

Serum creatinine (SCr) levels were evaluated through

colorimetric assays based on Jaffe’s reaction using deproteinized

serum samples (Nanjing Jiancheng). Absorbance was measured at

OD510 nm (BioTek) and analyzed accordingly.
Immunohistochemistry staining

5 um slides cut from 4% paraformaldehyde fixed and paraffin

embedded kidney tissues as were obtained from pathology

department of Renji Hospital. All sections were de-paraffinized

followed by heat-induced antigen retrieval on a heating block in

Tris-EDTA buffer, PH = 9.0 for 15 min. Primary Rabbit DACH1

antibody (Proteintech) and Rabbit TCF21 antibody (Sigma Aldrich)

was used in a final solution of 1:200 overnight at 4°C. Secondary
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antibody was applied for 30 min at 37°C, and the color was

developed using a diaminobenzidine peroxidase substrate kit

(Dako REAL™ EnVision™, DAKO). Sections were then

counterstained with hematoxylin, dehydrated and mounted. The

expression of DACH1 and TCF21 were imaged by Leica

Microscope X20.
Real-time PCR

Mouse kidney tissues were homogenized in Trizol reagent

(TianGen). Total RNA was extracted and reverse transcribed into

cDNA (HiScriptIII RT SuperMix, Vazyme). Real-time PCR was

performed on LightCycler480 apparatus (Roche) using SYBR Green

Mix (Yeasen). Mouse gapdh was used as internal control gene. The

relative gene expression was analyzed using 2−DDCT method.

Primers were listed: tcf21-F, cgctcacttaaggcagatcc; tcf21-R,

gtcaccacttccttcaggtca; dach1-F, cctgggaaacccgtgtactc; dach1-R,

agatccaccattttgcactcatt; ddx17-F, gatcgggatcgtgacaggga; ddx17-R,

agtcagtcttgctacttctggat; gapdh-F, tggccttccgtgttcctac; gapdh-R,

gagttgctgttgaagtcgca.
Statistical analyses

Data were shown as the Mean ± SEM. A two-tailed independent

student’s test was conducted to assess statistical significance. The

significance was denoted as follows: **** p < 0.0001; *** p < 0.001;

** p < 0.01; * p < 0.05; N.S., not significant.
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