
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhidong Hu,
Fudan University, China

REVIEWED BY

Jianping Xie,
Southwest University, China
Sudeep Kumar Maurya,
University of Pittsburgh Medical Center,
United States

*CORRESPONDENCE

Phillip Ssekamatte

psekamate@gmail.com

SPECIALTY SECTION

This article was submitted to
Systems Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 12 December 2022
ACCEPTED 12 January 2023

PUBLISHED 23 January 2023

CITATION

Ssekamatte P, Sande OJ, van Crevel R and
Biraro IA (2023) Immunologic, metabolic
and genetic impact of diabetes on
tuberculosis susceptibility.
Front. Immunol. 14:1122255.
doi: 10.3389/fimmu.2023.1122255

COPYRIGHT

© 2023 Ssekamatte, Sande, van Crevel and
Biraro. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 23 January 2023

DOI 10.3389/fimmu.2023.1122255
Immunologic, metabolic and
genetic impact of diabetes on
tuberculosis susceptibility

Phillip Ssekamatte1*, Obondo James Sande1, Reinout van Crevel2

and Irene Andia Biraro3

1Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health
Sciences, Makerere University, Kampala, Uganda, 2Department of Internal Medicine and Radboud
Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands,
3Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University,
Kampala, Uganda
Due to the increasing prevalence of diabetes mellitus (DM) globally, the interaction

between DM and major global diseases like tuberculosis (TB) is of great public

health significance, with evidence of DM having about a three-fold risk for TB

disease. TB defense may be impacted by diabetes-related effects on immunity,

metabolism, and gene transcription. An update on the epidemiological aspects of

DM and TB, and the recent trends in understanding the DM-associated

immunologic, metabolic, and genetic mechanisms of susceptibility to TB will be

discussed in this review. This review highlights gaps in the incomplete

understanding of the mechanisms that may relate to TB susceptibility in type 2

DM (T2DM). Understanding these three main domains regarding mechanisms of

TB susceptibility in T2DM patients can help us build practical treatment plans to

lessen the combined burden of the diseases in rampant areas.
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1 Introduction

1.1 Epidemiology and pathogenesis of diabetes mellitus

Diabetes mellitus describes a group of chronic metabolic disorders characterized and

identified by the presence of hyperglycemia (1, 2). The diverse etiopathology includes defects in

insulin secretion or action or both, and alterations in carbohydrate, lipid and protein

metabolism (1). Globally, approximately 537 million adults (aged 20 to 79) were living with

DM in 2021; a number that is expected to rise to 783million by 2045 (2). Type 1 DM (T1DM) is

attributable to the autoimmune destruction of the insulin-producing b-cells of islets of

Langerhans by autoimmune antibodies, making patients insulin-dependent. Though, this

doesn’t include the destruction of b-cells of islets of Langerhans for which specific causes are

known such as cystic fibrosis (3, 4). This is a consequence of the formation of specific auto-islet

b-antigens presented by antigen-presenting cells to activate islet antigen-reactive T-helper (Th1
and Th2) (5). Several studies have demonstrated the importance of islet-reactive b -cells in the
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pathogenesis of T1DM by presenting antigens to T cells and the

production of cytokines and autoantibodies in mice and humans (6–

8). Once activated, Th1 cells secrete interleukin (IL)-2 and interferon-

gamma (IFN)-g. IL-2 then activates cytotoxic T-cells to produce

perforin and granzymes that destroy islet b-cells. IFN-g activates

macrophages to produce proinflammatory cytokines including IL-1b
and tumor necrosis factor (TNF) which further destroy islet b-cells
(9, 10).

In contrast, T2DM is a chronic condition that occurs when body

cells do not respond to insulin, renowned as “insulin resistance” thereby

resulting in hyperglycemia (2). This state prompts a positive feedback

cycle of insulin production, making the insulin ineffective over time (2).

T2DM, the more prevalent diabetes subtype, accounts for

approximately 90% to 95% of all diagnosed diabetes worldwide, with

the highest proportions in low and middle-income countries (1).

Understanding the direct causes of T2DM is not well elucidated, but

there are strong links between overweight and obesity, advancing age,

alcohol abuse, as well as ethnicity and a positive family history of DM.

As with T1DM, T2DM results from a combination of multi-gene

predisposition and environmental triggers (2). Obesity, specifically

excessive visceral adiposity is associated with metabolic syndrome

(hyperglycemia, dyslipidemia, insulin resistance and hypertension)

(11). The progression from obesity-related insulin resistance to

T2DM remains poorly understood, however, it involves a failure of

pancreatic b-cells to compensate for insulin resistance resulting in
Frontiers in Immunology 02
chronic hyperglycemia. Abdominal obesity is associated with low-grade

chronic inflammation and immune system activation, which may play

a role in the aetiology of metabolic disorders linked to obesity, such as

T2DM (12, 13).. White blood cell count (14), pro-inflammatory

cytokines (TNF, IL-1b, IL-6) (15), chemokines including monocyte

chemoattractant protein-1 (MCP-1), IL-8 and interferon-g-inducible
protein-10 (IP-10) (16), and several other indirect markers of

inflammation including c-reactive protein (CRP), fibrinogen, sialic

acid and plasminogen activator inhibitor 1 (PAI-1) (17), have been

identified as predictors of T2DM. In obesity and T2DM, adipose tissue

is characterized by an enrichment of macrophages and T-cells with a

shift from an anti-inflammatory to a pro-inflammatory state (18, 19).

Cytotoxic T-cells, Th1 and Th17 cells stimulate M1 macrophage

polarization (18, 19). During obesity, an imbalance in T-cells,

macrophages and other immune cells increases the production of

chemokines and pro-inflammatory cytokines, which promotes

systemic inflammation and insulin resistance (20). Subsequently, this

immunological imbalance makes obese patients more susceptible to the

development of T2DM, as shown in Figure 1 below. The most common

basis for diagnosing T2DM is by using either glycated hemoglobin

(HbA1c) (≥ 6.5%), fasting glucose (126 mg/dl), random plasma glucose

in patients with hyperglycemic symptoms (200 mg/dl), or a 2-hour

plasma glucose after a 75g oral glucose tolerance test (200 mg/dl) (2).

T2DM patients are prone to complications such as retinopathy,

neuropathy, nephropathy, cardiovascular diseases and diabetic feet (2).
FIGURE 1

DM pathogenesis. DM is an immune-modulated disease. For T1DM, antigen presentation by B cells and DCs drives the activation of b−cell-specific T
cells. In addition, the exposure of B cells to b−cell autoantigens leads to the production of islet b−cell targeting autoantibodies. These lead to b−cell
destruction. For T2DM, IFN-g production by activated CD4+ T cells activates macrophages to produce IL-1b and TNF. This low chronic-grade
inflammation causes insulin resistance or inhibits insulin uptake in tissues. In addition, the cytokines cause insulin secretion by b-islet cells to compensate
for reduced insulin sensitivity. These stimulate the Islet b cells to produce insulin. Persistent IL-1b and TNF production triggers b-cell islet destruction.
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1.2 Epidemiology and pathogenesis
of tuberculosis

According to the world health organization (WHO), in 2021

approximately 10.6 million people developed active TB (ATB)

globally, of whom 1.4 million died (21). The prevalence of TB

varies according to population. The majority of TB cases are found

in South-East Asia (45%), Africa (23%), and the Western Pacific

(18%) (21). TB was the leading cause of death from a single infectious

agent and the 13th largest cause overall in 2019 (21). Natural infection

with Mycobacterium tuberculosis (Mtb) occurs by inhalation of

aerosols infected with bacilli that are deposited on the primary

alveolus (22). The tubercle bacilli then invade resident alveolar

macrophages that provide the major initial replication niche for the

pathogen (22). When viable tubercle bacilli are phagocytosed by

alveolar macrophages, they secrete 6kDa early secretory antigenic

target (ESAT-6). This peptide prevents phagosome-lysosome fusion

and apoptosis, and promotes bacillus cytosolic translocation (23). So,

the bacillus multiplies in a single alveolar macrophage, a process that

develops over a week, making the alveolar macrophage necrotic (24).

The tubercle bacilli then move extracellularly and are phagocytosed

by alveolar macrophages from the interstitial space and those of

neighboring alveoli. Continuous repetition of this process generates

enough tubercle bacilli to stimulate infected alveolar macrophages to

produce an inflammatory response (24). Polymorphonuclear (PMN)

cells and monocytes enter the alveoli, leading to more vigorous

phagocytosis in the affected alveoli, and drainage into lymph nodes.

This infects and generates myeloid dendritic cells (mDCs) (24).

However, it is to be noted that mDCs also convey tubercle bacilli to

lymph nodes once infected (25). These dendritic cells process Mtb

and present epitopes that mostly correspond to the most abundant

antigens secreted including ESAT-6 and the antigen 85 complex

(Ag85 A, B or C) (26). The antigen presentation stimulates the

CD4+ T-cell proliferation and differentiation into subsets, including

Th1, Th17 and regulatory T cells (Tregs). CD8+ T cells may also be

stimulated and proliferate on a small scale (27). These T-cells traffic to

the lung, where IFN-g is produced from the Th1-cells to stimulate

macrophage antimycobacterial specific cytokine production and

cytotoxicity targeting of Mtb infected macrophages (28). This T-

cell-mediated activation of macrophages and other immune cells

including neutrophils, NK cells, B cells, and DCs restricts Mtb

replication through formation of granuloma (29). Primary ATB

may develop in case the immune system and the granuloma cannot

control the initial spread of Mtb infection, especially in immune-

compromised persons (30). If the immune system and granuloma

contain Mtb but do not eliminate the bacteria, the person has latent

TB infection (LTBI), which can progress to ATB at a later stage (30).

Immunosuppression can lead to reactivation of Mtb within the

granuloma, resulting in pulmonary TB, extrapulmonary TB or

miliary TB. Pulmonary TB, the most common form of TB, is

characterized by cough, fever, anorexia, weight loss, night sweats

and chest X-ray abnormalities (30). Miliary TB involves the

hematogenous spread of granuloma throughout the body, while

extrapulmonary TB involves lymph nodes, bones, gastrointestinal

and other organ systems (30). LTBI is characterized by

immunoreactivity to Mtb, in the absence of clinical symptoms or

radiological abnormalities suggestive of ATB. Immunological
Frontiers in Immunology 03
memory to Mtb is measured by the tuberculin skin test (TST) or an

IFN-g release assay (IGRA). The lifetime risk for reactivation of LTBI

is 5% to 15% (31). The distinction between LTBI and ATB can be

subtle, as an estimated 50% of patients with culture-positive ATB are

asymptomatic (‘subclinical TB’) (32), even though they can transmit

the tubercle bacilli to others (33). For the detection of ATB, three

techniques are employed: microbiological tests (microscopy, culture,

molecular tests), imaging and histopathological examination.

Whereas imaging techniques are employed in screening,

microbiological analysis is required for ATB diagnosis. This is

because X-rays have low specificity and therefore abnormal chest

X-rays are followed up with microbiological tests (34). It is to be noted

however that the recent emergence of digital radiology and computer-

aided diagnostic software is providing new insights into the diversity

of lung lesions (35). Owing to its superior sensitivity and specificity to

sputum smear microscopy, the WHO now recommends Xpert MTB/

RIF as the first-line diagnostic test in all adults or children who are

suspected of having ATB (36). Figure 2 summarizes the

TB pathogenesis.
2 Epidemiological effects
of T2DM on TB

2.1 T2DM increases the risk of LTBI and ATB

T2DMhas been reported as a primaryMtb infection risk factor (37,

38). Patients with T2DM (43.4%) and pre-diabetes (39.1%) had

significantly more LTBI than those without T2DM (25.9%), with a

strong association between T2DM and LTBI (adjusted odds ratio: 2.3,

95% confidence interval: 1.2-4.5) (39). In addition, another study

reported T2DM to be strongly associated with increased LTBI risk

(pooled odds ratio: 1.18, 95% confidence interval: 1.06–1.30) (40). A

large cross-sectional study of the US national data also reported that

T2DM significantly increases LTBI risk (adjusted odds ratio: 1.90, 95%

confidence interval: 1.15–3.14) (37). Correspondingly, a systematic

review involving 20 studies also reported a significant LTBI risk by

T2DM (for cohort studies, relative risk: 1.62, 95% confidence interval:

1.02–2.56; for cross-sectional studies, odds ratio: 1.55, 95% confidence

interval: 1.30–1.84) (38). The association between T2DM and ATB has

been well established (41), with T2DM increasing the risk for ATB

development by greater than 3-fold (42). T2DM predisposes

individuals to the acquisition of LTBI and the development of ATB,

with this expected to escalate with the increasing T2DM prevalence (2).
2.2 T2DM increases the risk of multi-drug-
resistant TB

T2DM has been linked with an increased multi-drug resistant TB

(MDR-TB) risk. A meta-analysis reported significantly increased rates

of MDR-TB in T2DM patients (odds ratio: 1.97, 95% confidence

interval: 1.58–2.45) (43). In addition, another systematic review and

meta-analysis reported an approximately 2-fold MDR-TB increased

risk in T2DM patients (odds ratio: 1.97, 95% confidence interval:

1.58–2.45) (44). Using whole genome sequencing, T2DM was

associated with mutations conferring resistance to isoniazid and
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ethionamide (Rv1482c-fabG1) and fluoroquinolone (gyrA) in Mtb

isolates of ATB patients, with the association evident even among

patients with newly diagnosed TB (45).
2.3 T2DM increases TB disease severity,
treatment failure and relapse

Upon chest X-ray, cavities and infiltration have been reported in

ATB patients with T2DM (46), implying that the patients have more

severe disease. In addition, CT scans revealed bilateral pulmonary

involvement and extensive pulmonary disease in TB patients with

T2DM (47). In addition, poorly controlled T2DM was associated with

all-lobe involvement, advanced extensive lesions and more cavities (47).

T2DM is significantly associated with adverse TB treatment outcomes

and mortality (42, 44). In addition, T2DM is associated with early

mortality during TB treatment (adjusted hazard ratio: 4.36; 95%

confidence interval: 1.62–11.76) (48), and more than a 2- fold

increased risk of death (2.16 times) (49).
3 Effects of T2DM on TB functional
immune responses

3.1 Effects of T2DM on TB innate
immune responses

Innate immune cells primarily consist of macrophages, innate

lymphoid cells (ILCs), neutrophils and DCs. They roam in alveolar

tissue and blood where they identify Mtb using pattern recognition

receptors (PRRs), initiating a series of immune mechanisms including

autophagy, apoptosis, and phagocytosis that kill the Mtb (50). The

function of these innate immune cells may be compromised by

metabolic dysregulation in T2DM.
Frontiers in Immunology 04
Macrophages play a central role in the control ofMtb through the

production of antimicrobial agents including reactive nitrogen and

oxygen species, and cytokines. Other macrophage types such as

monocyte-derived macrophages (MDM) are recruited to sites of

infection (50). The expression levels of HLA-DR on H37Rv-infected

MDMs of T2DM patients are decreased, while those of PD-L1 are

increased (51). PD-L1 inhibits T cell proliferation, cytokine

production and cytolytic function. Upregulated PD-L1 expression

inhibits the Th1 immune response of the macrophages resulting in

Mtb-mediated macrophage susceptibility. In addition, alveolar

macrophages from diabetic mice infected with Mtb have increased

CCR2 expression, which decreases monocyte homing to the lungs.

Furthermore, these macrophages exhibit reduced expression of CD14

and macrophage receptor with collagenous structure (MARCO).

These function in recognition of the bacterial cell wall component

trehalose 6,6′-dimycolate (TDM) (52), promoting the susceptibility of

diabetic hosts to TB. In addition, oxidized low-density lipoprotein

(oxLDL)-derived free and esterified cholesterol sequestered within

lysosomes are reported to induce lysosomal dysfunction, supporting

the survival of Mtb within macrophages in TB-T2DM comorbid

patients (53). These data show that T2DM alters the macrophage

activation and function state, impacting the ability of macrophages to

eliminate Mtb in patients with TB-T2DM.

Neutrophils accumulate and peak within 24 hours after Mtb

infection or BCG vaccination in murine and rabbit models (54) and

have shown protection in early tuberculous granuloma in a zebrafish

model by oxidatively killing mycobacteria inside macrophages (55).

In humans, neutrophils are an abundant Mtb-infected cell type early

in infection, within which Mtb rapidly replicates (56). Patients with

ATB-T2DM have elevated levels of absolute neutrophil counts, but

these have decreased adhesion abilities and result in impaired

phagocytosis of Mtb (57). Thus, T2DM reduces neutrophil

antibacterial activity consequently increasing Mtb risk in T2DM

patients. Heightened neutrophil sub-sets have been linked to

inflammation (58, 59) and TB severity, and recovery pre-and post-
FIGURE 2

TB pathogenesis. Virulent Mtb that is phagocytosed by alveolar macrophages causes phagosome membrane damage and translocates to the cytoplasm.
This results in necrosis and spread to other macrophages and dendritic cells. Mtb is processed and presented to CD4+ T cells that produce IFN-g,
enhancing the phagocytosis of infected macrophages and polymorphonuclear cells. In addition, activated CD8+ T cells produce perforin and granzymes
that mediate the cytotoxic activity of infected macrophages.
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treatment (59). Moreover, Berry et al. used modular and pathway

analysis to reveal a whole blood neutrophil-driven interferon (IFN)-

inducible gene profile that consisted of both IFN-g and type I IFNab
signaling correlating with ATB (60). Prada-Medina et al.

demonstrated that this correlation is exacerbated in ATB-T2DM

patients, with neutrophils as the inflammatory nexus between TB

and T2DM (61). The systemic chronic low-grade inflammation, a

characteristic of T2DM, impairs TB immune responses (62). IL-8

levels are elevated in patients with TB-T2DM compared to TB-only

and healthy controls, and these are strongly positively associated with

proinflammatory cytokines including TNF and IL-6 (63), and

neutrophil recruitment during Mtb (64). Resistin, a soluble serum

protein produced majorly by neutrophils (65), causes insulin

resistance and mediates the progression from obesity to T2DM

(66). Elevated resistin levels have been reported to impair

chemotaxis and reactive oxygen species (ROS) production by

neutrophils in ATB-T2DM patients (67). Mechanistically,

exogenous resistin is reported to inhibit ROS and IL-1b production

by macrophages, suppressing the inflammasome, and resulting

in exponential Mtb growth (67). This shows that neutrophils

may be central to the TB-T2DM pathology for targeted host-

directed therapies.

Dendritic cells (DCs) are the most professional antigen-

presenting cells (APCs), activating naïve T cells to initiate adaptive

immune responses (68). Hence, the killing ofMtb-infected cells is also

heavily dependent on the T cell-mediated immune responses. Kumar

et al. reported impaired myeloid and plasmacytoid DC frequencies in

patients with ATB-T2DM at baseline and 2 months of anti-TB

treatment, and the DC frequencies were reversed at 6 months of

anti-TB treatment (69). Reduced DC frequencies impair the ability of

DCs to prime T cells which impacts the host’s ability to kill and clear

Mtb. Mechanistic studies, however, need to evaluate the function of

DCs in TB-T2DM comorbidity.

Innate lymphoid cells (ILCs) are tissue-resident cells especially

found in the intestine (70), lungs (71) and skin (72), with an ability to

quickly respond to pathogens. Tripathi et al. evaluated the protective

role of ILC3 and IL-22 in regulating mortality and inflammation in

Mtb-infected diabetic mice. IL-22 produced by ILC3 was lower in

Mtb-infected diabetic mice compared to controls. Recombinant IL-22

treatment and ILC3 adoptive transfer improved lipid metabolism and

prolonged Mtb-infected diabetic mice survival (73). In humans, we

reported lower IL-22 production by ILC3 (74), and that IL-22

production by ILC3s was critical for early innate immunity and

granuloma formation (75). T2DM probably inhibits IL-22

production, and this pathway may be a potential host-targeted

therapy for intervention in TB-T2DM comorbidity. Recent

nomenclature has grouped NK cells as ILC1 (76). NK cell

frequencies are reported to be elevated, with CD16 and CD56 levels

being highly expressed in ATB-T2DM patients (77). Interestingly,

CD16 and CD56 expression levels decreased following anti-TB

treatment (77), highlighting the clinical significance of the NK cells

in the treatment monitoring of TB-T2DM patients. NK cells and

CD11c are reported to interact producing IL-6 that inhibits CD4+ T

cell proliferation. This reduces the Th1 and Th17 cellular immune

responses, exposing diabetic mice to Mtb and reducing the survival

rate of the mice (78).
Frontiers in Immunology 05
3.2 Effects of T2DM on TB adaptive
immune responses

T-helper type 1 (Th1), Th17 responses and the balance of the

Th1/Th2 ratio are necessary for controlling Mtb pathogenesis (79,

80). It has been reported that Th2 and Th17 cells are significantly

increased while Th1 cells were unchanged in ATB/T2DM patients,

decreasing the Th1/Th2 ratio, with a lower proportion of CD8+

cytotoxic T cells (81). Moreover, ATB-T2DM patients are

characterized by elevated frequencies of CD4+ Th1 and Th17 cells,

but lower frequencies of regulatory T (Treg) cells as compared to ATB

patients without T2DM (82). In addition, LTBI-T2DM patients have

reduced CD4+ Th1, Th2, and Th17 cells (83). Correspondingly,

Faurholt-Jepsen et al. (84) reported that T2DM is associated with

diminished Mtb antigen-specific IFN-g production in ATB patients.

Interestingly, IL-12, a potent promoter of IFN-g production, is

reported to be lowered in ATB-T2DM patients and impairs the

ability of Th1 cells to produce sufficient IFN-g levels to control Mtb

infection (85). The authors further reported heightened IL-10 levels

that were associated with Th1 response inhibition in ATB/DM

compared to ATB alone patients (85). Other immune parameters

have been associated with a decreased TB-specific Th1 response.

Lopez-Lopez et al. demonstrated that Mtb-infected MDMs of T2DM

patients had increased expression of PD-L1 (51), and the PD-1/PD-

L1 pathway inhibited the Th1 response and consequently decreased

IFN- g production (86). Taken together, the Th1 and Th2 imbalance

as a result of diminished Th1 responses during T2DM impairs the

ability of the host to eliminate TB. T cells including their memory

subsets such as central memory and effector memory T cells have

been shown to play critical roles in protective immune responses in

animal models of vaccination (87). ATB-T2DM patients had elevated

frequencies of central memory CD4+ and CD8+ T cells and decreased

frequencies of naïve, effector memory, and/or effector CD4+ and

CD8+ T cells at baseline and after two months of treatment, but not

after six months of treatment in comparison to ATB-T2DM patients

(88). This shows that CD4+ and CD8+ T cells and their memory

subset are restored after anti-TB treatment. Hence collectively, this

data shows that T2DM has profound effects on CD4+ and CD8+ T

cells and their memory subset but is restored following anti-TB

treatment. More studies need to assess the functional responses

among these memory T cell subsets as well as alternations in the

CD8+ T cell cytotoxicity need to be further studied during anti-TB-

treatment. During LTBI, T2DM patients have diminished type 1

(TNF, IL-2 and IFN-g), type 17 (IL-17F), pro-inflammatory (IL-1 and

IL-18) cytokines, as well as the anti-inflammatory cytokine IL-10 (89).

This may be attributable to T2DM potentially directly influencing

and/or decreasing the frequency of Th1 cells in LTBI-T2DM patients,

suggesting that T2DM is associated with a general decrease of CD4+ T

cell subset and cytokine responses. Following Mtb-antigen

stimulation, patients with LTBI-T2DM showed lower frequencies of

CD8+ Tc1, Tc2, and Tc17 cells, with elevated cytotoxic markers

(perforin and granzymes) than those without T2DM and reversing

upon ATB development (90). In conclusion, T2DM compromises the

immunological responses toMtb, resulting in the underproduction of

protective CD4+ and CD8+ T-cell responses, potentially increasing

ATB susceptibility, as summarized by Figure 3.
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4 Effects of T2DM on the
immunometabolic and gene-
transcriptional mechanisms
for TB susceptibility

4.1 Effects of T2DM on the
immunometabolic mechanisms of
TB susceptibility

The major upstream event triggering complications in T2DM,

according to Brownlee and Giacco (91, 92), is hyperglycemia-

dependent mitochondrial superoxide overproduction. These

pathways include increased polyol and hexosamine flux; increased

protein kinase C (PKC) isoform activation; increased advanced

glycation end-products (AGEs) formation; and increased receptor for

advanced glycation end-products (RAGE) and the expression of its

endogenous ligand. In general, all these pathways induce oxidative

stress by upregulating ROS production, increasing pro-inflammatory

signaling and cellular and tissue changes and damage (92). In poorly

controlled DM, highly glycated proteins and AGEs are prevalent.

Glycation of proteins and the production of AGEs impede

complement activation, bacterial absorption via phagocytosis, and

phagocytic killing, resulting in mycobacterial spread (93). After Mtb

infection, certain AGEs intermediates, including methylglyoxal, induce

macrophage apoptosis (94). The stimulation of the mitogen−activated

protein kinase (MAPK) pathway or the production of NF-kB as a result

of RAGE interaction activates the NLRP3 inflammasome inducing IL‐

1b and IL-18 secretion leading to inflammation, which is one of the
Frontiers in Immunology 06
suggested mechanisms for AGE action (95). In addition, AGE induces

excessive mitochondrial ROS production causing oxidative stress and

impaired wound healing (96). Similar to AGE, oxidized low-density

lipoprotein (oxLDL) is a pathologically altered lipoprotein that is

increased due to oxidative stress in T2DM patients (97). To explore

this, Palanisamy et al. found that guinea pigs infected with Mtb had

associated increased macrophage scavenger receptor expression and

oxLDL accumulation in granulomas supported intracellular bacilli

survival and persistence (98). Another study in humans reported

oxLDL supporting Mtb survival in macrophages by inducing

lysosomal dysfunction (53). The authors reported improved

macrophage lysosomal function following anti-oxLDL treatment.

Correspondingly, metformin treatment has anti-mycobacterial

benefits on cellular metabolism, immune function, and gene

expression. In mice and T2DM patients, metformin-educated CD8+

T cells had increased oxidative phosphorylation, survival capacity and

anti-mycobacterial properties (99). Correspondingly, metformin

upregulates genes involved in ROS production and phagocytosis,

while downregulating type 1 IFN response genes and inflammation

(TNF-a, IL-1b, IL-6, IFN-g, and IL-17) following Mtb stimulation

(100). Figure 4 summarizes the metabolic pathways related

to hyperglycemia.

T2DM and obesity are linked to gut microbiome dysbiosis, which

results in changes in the species that produce short-chain fatty acids

(SCFAs) (101). SCFAs are bacterial metabolites that alter the activity of

different cell types, including lymphocytes, neutrophils, and

macrophages, hence modulating inflammatory and immunological

responses (102). SCFAs have been reported to regulate glucose

homeostasis mechanisms (103). In addition, intestinal microbiota has
FIGURE 3

TB and T2DM immunological dysregulation. Effects of T2DM on the various innate (DC, neutrophil, macrophage, ILC) and adaptive (CTL, Th1, Th2, Th17
and Tregs) immune cells.
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been reported to regulate LPS levels, which may promote diabetes

development (104). Compared to normal glucose tolerance individuals,

T2DM patients have an elevated abundance of four Lactobacillus species

and a decreased abundance of five Clostridium species. In addition,

Lactobacillus species positively correlated with fasting glucose and

HbA1c, while Clostridium species are negatively correlated with

HbA1c, fasting glucose and plasma triglycerides (105), linking the

Lactobacillus taxa to the development of T2DM. Several studies have

reported changes in the gut microbiota of TB patients compared to

healthy controls. Infection with Mtb decreased a diversity, specifically

with changes in Bacteroides relative abundance (106). SCFA-producing

bacteria were decreased in TB patients compared to controls (107), while

Firmicutes and Actinobacteria were increased in TB patients (108). Using

a diabetic rat model, Sathkumara et al. reported altered gut microbiota in

diabetic mice, and the microbial diversity was further decreased in

diabetic mice that were Mtb aerosolized (109). Butyrate, an SCFA

modulates mucosal immune responses suppressing the activation,

differentiation and recruitment of neutrophils, macrophages and DCs

(110). Mtb aerosolized diabetic mice show an abundance of butyrate‐

producing Firmicutes (109). Butyrate treatment has been associated with

decreased production of Mtb‐induced pro‐inflammatory cytokines such

as IL‐1b, TNF‐a and IL‐17A, and increased IL‐10 production (111). In

addition, butyrate inhibits the activation of antigen-specific CD8+ T cells

and reduced the secretion of IL-12p70 and expression of costimulatory

molecules including CD80/CD83/CD40 and MHC-I/II by DCs (112).

This demonstrates that altered microbiota influences TB immune

responses including markers of antigen recognition and presentation,

making T2DM patients susceptible to TB. Table 1 summarizes the

influence of gut microbiota in the context of TB and T2DM.

An alternate method that can dissect the pathophysiology of ATB-

T2DM comorbidity is metabolomics, giving way to full-scale analysis for

the study of biomarkers and how they are important in the prediction of
Frontiers in Immunology 07
disease. Biomarkers may include cytokines, mycobacterial antigens,

metabolic activity markers and volatile organic compounds (113).

Andrade et al. reported that patients with ATB-T2DM had elevated

plasma levels of haem oxygenase-1 (HO-1) than those with ATB, and the

levels positively correlated with random plasma glucose, LDL levels and

HbA1c (114). ATB-T2DM comorbidity is characterized by elevated

circulating levels of inflammatory cytokines and vascular endothelial

growth factors (VEGFs), and the levels are positively correlated with

HbA1c levels (115). Taken together, plasma levels of HO-1 and VEGF

could be potential biomarkers of pathogenesis in TB with T2DM. More

studies have further reported specific plasma metabolites in ATB-T2DM

using high-throughput metabolomics techniques. A study by Vrieling

et al. used targeted tandem liquid chromatography-mass spectrometry

(LC-MS/MS) to compare amine levels in plasma samples of patients with

ATB or ATB-T2DM, and reported that amine levels (citrulline, histidine,

ornithine, tryptophan, serine, homoserine, glycine and threonine) were

strongly decreased in ATB-T2DM group compared ATB to healthy

control groups (116). The diverging amine metabolites were restored to

healthy levels following antibiotic treatment. In addition, Choline, serine

and putrescine biomarkers showed the highest potential for

discriminating ATB-DM from TB patients (116). Moreover, in

addition to altered metabolites, it is reported that Phenylalanine/

Histidine metabolite ratio had a high predictive capacity as a

biomarker for TB regardless of DM status (116, 117). Similarly, an

increased Kynurenine/Tryptophan metabolite ratio is reported and

correlates with enhanced activity of Indoleamine 2,3-dioxygenase

(IDO), an immunoregulatory enzyme (116). The Kynurenine/

Tryptophan metabolite ratio benefits Mtb infection and showed

potential as a biomarker for TB diagnosis (118). These findings

demonstrate the value of better blood metabolite and lipid control in

the treatment of ATB-T2DM. These studies, taken together, significantly

improve our understanding of metabolic changes in coincident ATB-
FIGURE 4

Metabolic pathways related to hyperglycemia. Polyol and Hexosamine and PKC pathways cause increased ROS production and uptake resulting in
increased mitochondrial stress. AGEs and RAGE production inhibits complement activation and macrophage phagocytosis, as well as promote
macrophage apoptosis and increased ROS production. This increases oxidative stress, resulting in increased OxLDL. OxLDL causes lysosomal dysfunction
and phagocytosis, which promote bacterial spread.
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T2DM and identify novel biomarkers for the diagnosis and prognosis of

TB, shown in Figure 5.
4.2 Effects of T2DM on the gene-
transcriptional mechanisms of
TB susceptibility

The blood transcriptome provides insight into immunological events

in the lungs as well as a gene expression signature for ATB and T2DM.

Using host blood transcriptomic biomarkers, rapid point-of-care

screening, diagnostic, and predictive tests for ATB could be developed.

Several studies have been done to understand the gene transcriptional

mechanisms of ATB susceptibility in people with T2DM. A study by

Prada et al. reported considerable heterogeneity in differentially expressed

genes (DEGs) with more DEGs identified in the ATB-T2DM or ATB

groups than in the T2DM and healthy groups (61). These were linked to

elevated circulating plasma cytokines and growth factors, reporting that

the immune response to Mtb infection is the primary driver of ATB-

T2DMpatients’ blood transcriptomic changes (61). Interestingly, another
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study reported an increase in genes associated with innate inflammatory

responses and neutrophils and a decrease in adaptive immune responses

(119). Diagnostic signatures that distinguish ATB from LTBI and other

disease states have been found using systems biology techniques in the

past. In this regard, a 393-gene ATB signature was identified and

validated by Berry et al. allowing ATB and LTBI to be distinguished

(60). In addition, a TB-specific 86-whole blood signature was identified

that discriminated TB from other bacterial and inflammatory diseases,

with a pooled specificity of 83% (60). Anderson et al. identified and

validated a 51-gene profile that differentiated ATB from other diseases in

African children with and without HIV infection, with a sensitivity of

82.9% and a specificity of 83.6% (120). Other studies have identified RNA

blood signatures that predict the risk of progression to ATB. A

prospective blood RNA signature for predicting TB risk (121)

identified and validated a 16-gene signature of risk that predicted

tuberculosis progression in the 12 months preceding tuberculosis

diagnosis. The signature predicted tuberculosis progression with a

sensitivity of 66·1% and a specificity of 80·6% (121). The signature was

reduced to 11 genes by Scriba et al. (122). The RISK11 signature

distinguished between patients with prevalent tuberculosis or
FIGURE 5

Gut microbiome, metabolic and genetic dysregulation in T2DM and TB. T2DM upregulates Lactobacillus and Firmicutes taxa of the gut microbiota.
Lactobacillus promotes further T2DM development, while Firmicutes upregulate butyrate production. Butyrate inhibits Mtb-induced cytokine production,
activation, and antigen presentation by DCs and CTLs. In addition, T2DM lowers specific amino acids and gene transcripts. Collectively, these
mechanisms increase TB susceptibility.
TABLE 1 Influence of gut microbiota in the TB and T2DM context.

Study Microbiota differences Importance

T2DM (105) ↑Lactobacillus gasseri JV-V03, Lactobacillus gasseri SJ-9E-US, Lactobacillus gasseri 202-4, Lactobacillus salivarius ACS-116-V-
Col5a
↓Clostridium beijerinckii NCIMB 8052, Clostridium sp. 7_2_43FAA, Clostridium botulinum B str. Eklund 17B, Clostridium
botulinum E3 str. Alaska E43, Clostridium thermocellum DSM 1313

Development of
T2DM

LTBI and ATB
(106–108)

↑Firmicutes and Actinobacteria
↓Alpha diversity and SCFA-producing bacteria

Promotion of TB
susceptibility

ATB and T2DM
(109)

↑Firmicutes, Lactobacillaceae, Erysipelotrichaceae
↓Bacteroidetes, Muribaculaceae, Akkermansiaceae, Ruminococcaceae, Lachnospiraceae

Promotion of TB
susceptibility
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progression to incident tuberculosis, patients who remained healthy, and

patients with at least one symptom consistent with TB had RISK11 scores

of more than 80% (122). In addition, the provision of a once-weekly

isoniazid-rifapentine for 12 weeks (3HP) regimen to signature-positive

individuals after the exclusion of baseline disease did not reduce the

progression to tuberculosis over 15 months (122). Adam et al. identified

and validated a 6-gene transcriptomic signature profile for identifying

persons at risk of incident TB, for subclinical TB triage and TB treatment

monitoring (123). Moreover, the ROC curve exceeded 85% for

subclinical and clinical disease diagnosis, and a sensitivity of 90% met

the benchmarks set out in World Health Organisation target product

profiles (TPP) for non-sputum/blood-based tests (123). In the TB-T2DM

context, a recent study has reported two blood transcriptional signatures

(8 and 22 signatures) that distinguished patients with poor and good TB

treatment outcomes irrespective of T2DM condition (124). Interestingly,

an overlap of TB risk signature genes (GBP1, GBP2, GBP5, FCGR1A,

STAT1, TAP1) that predicted TB development from healthy controls

from previous studies was reported (124). Though extensive host-blood

transcriptomic biomarker research has been done in TB/HIV, little to no

studies have assessed the risk and the performance of these biomarkers in

the case of TB-T2DM comorbidity. Taken together, the diverse platforms

used for blood-based transcriptomic biomarker signatures highlight the

robustness of the methods used and the resulting data, as well as the

potential for TB prediction and diagnosis. They also provide insights into

further research on the risk of ATB in patients with T2DM. Table 2

summarizes the list of genes associated with TB disease risk, and in the

context of T2DM.
5 Current challenges and
future perspectives

5.1 The TB-DM pathogenesis
remains unclear

Several studies have reported that T2DM has profound effects on

TB treatment outcomes, and impairs the immune, metabolic and gene
Frontiers in Immunology 09
transcriptional mechanisms in response to Mtb infection, which may

promote the development of ATB. These studies report highly

heterogenous results making it impossible to point to one

mechanism as the main cause of TB susceptibility in T2DM. In

addition, TB has several stages including LTBI, incipient TB,

subclinical TB, and ATB, making the gap in knowledge of these

stages in the context of T2DM even wider. Correspondingly, the

clinical presentation and prognosis of T2DM show considerable

heterogeneity, with the clustering of 32 phenotypes identifying 4

archetypes with different dysfunctional patterns across T2DM

etiological processes (125). Moreover, in the context of Africa, there

is a relative scarcity of epidemiological data compared to Asia, with a

2.77 TB disease risk previously reported (126). The influence of HIV

and COVID-19, major risk factors in the TB-T2DM comorbidity

need to be assessed. Therefore, the lack of enough knowledge about

the pathogenic mechanisms of TB in the context of T2DM accounts

for the lack of unified standards in experimental design that would

elucidate the exact mechanisms, which consequently leads to the

design of better predictive prognostic markers and tests and

treatment options.
5.2 The emergence of new technologies
and platforms will help dissect the
mechanisms of TB-T2DM pathogenesis, and
the prediction and prognosis of TB

Advances in scientific research have led to a shift from

technologies that assess dysregulation or impairment using the

genome or proteome to platforms that provide a comprehensive

analysis of metabolites and genes that could be dysregulated. This

provides further insights into the mechanisms of impairment that

could decipher the TB-T2DM pathogenesis. Omics which includes

proteomics, transcriptomics, and metabolomics provide an enhanced

understanding of molecular and metabolite dysregulation. This

further enhances studies that research blood-based biomarkers of

metabolism, immunity and transcriptome that predict and diagnose
TABLE 2 Genes associated with TB disease risk, and in the context of T2DM.

Signature Genes differentially expressed Sensitivity Specificity Reference

Berry393 ↑ OAS1, IFI6, IFI44, IFI44L, OAS3, IRF7, IFIH1, IFI16, IFIT3, IFIT2, OAS2, IFITM3, IFITM1, GBP1,
GBP5, STAT1, GBP2, TAP1, STAT1, STAT2, IFI35, TAP2, CD274, SOCS1, CXCL10, IFIT5
↓ All other genes

90% 83% (60)

Anderson51 ↑ACTA2, APOL6, CARD16, CLIP1, DEFA1, DEFA1B, DEFA3, GBP5, GBP6, LOC400759, RAP1A
↓ALKBH7, C11ORF2, C20ORF201, C21ORF57, C8ORF55, CRIP2, DGCR6, DNAJC30, E4F1, FBLN5,
GNG3, HS.538100, IMPDH2, KLHL28, LCMT1, LGTN, LOC389816, LRRN3, MFGE8, NDRG2, NME3,
NOG, PAQR7, PASK, PHF17, SIVA, SNHG7, TGIF1, U2AF1L4, UBA52

82.9% 83.6% (120)

Zak16 ↑ANKRD22, APOL1, BATF2, ETV7, FCGR1A, FCGR1B, GBP1, GBP2, GBP4, GBP5, SCARF1, SEPT4,
SERPING1, STAT1, TAP1, TRAFD1

66.1% 80.6% (121)

RISK11 ↑STAT1, GBP2, GBP1, SERPING1, SCARF1, ETV7, TAP1, BATF2, GBP5, TRAFD1, FCGR1C 35% 91% (122)

RISK6 ↑GBP2, FCGR1B, SERPING1
↓TUBGCP6, TRMT2A, SDR39U1

90% 55.7% (123)

Cassandra8&22 ↑GNLY, PRF1, CD3E, PTPRCv1, NLRP1, BCL2, CCR7, TAGAP, IFIT5, CXCL19
↓GBP1, GBP2, GBP5, IFITM3, STAT2, MMP9, IRF7, IFI6, IFIT2, IFIT3, TAP2

Not reported Not reported (124)
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patients at high risk of developing ATB. This relieves the pressure on

the healthcare systems.
6 Conclusion

T2DM has a considerable negative impact on public health by

increasing the risk and severity of ATB by a 3-fold and worsening TB

treatment outcomes, though a lower risk ratio has been reported in

sub-Saharan Africa. Given the complex array of mechanisms and

pathways involved in T2DM and TB pathology, the actual

mechanisms that underpin TB susceptibility under T2DM are not

well elucidated. A better understanding of the immunologic,

metabolic, and genetic mechanisms for TB susceptibility in T2DM

would contribute to rationally devising practical treatment methods

to reduce the dual burden of both diseases. Because these T2DM

complex mechanisms will likely affect TB immune responses,

critically assessing perturbation of metabolic and genetic pathways

caused by T2DM will undercover alterations in rather protective

immune responses against TB.
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