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Most human genes code for more than one transcript. Different ratios of

transcripts of the same gene can be found in different cell types or states,

indicating differential use of transcription start sites or differential splicing. Such

differential transcript use (DTUs) events provide an additional layer of regulation

and protein diversity. With the exceptions of PTPRC and CIITA, there are very few

reported cases of DTU events in the immune system. To rigorously map DTUs

between different human immune cell types, we leveraged four publicly available

RNA sequencing datasets. We identified 282 DTU events between five human

healthy immune cell types that appear in at least two datasets. The patterns of the

DTU events were mostly cell-type-specific or lineage-specific, in the context of

the five cell types tested. DTUs correlated with the expression pattern of

potential regulators, namely, splicing factors and transcription factors. Of the

several immune related conditions studied, only sepsis affected the splicing of

more than a few genes and only in innate immune cells. Taken together, we map

the DTUs landscape in human peripheral blood immune cell types, and present

hundreds of genes whose transcript use changes between cell types or

upon activation.

KEYWORDS

alternative splicing, differential splicing, alternative promoters, immune system,
immune related diseases, sepsis
Introduction

Transcript diversity is created by several mechanisms, including alternative

transcription start sites (TSS), alternative splicing, and alternative polyadenylation sites.

Multiple TSSs are found in at least 58% of human genes (1), and these TSSs transcribe

different pre-mRNAs and are potentially regulated by different transcription factors (TFs).

Alternative splicing results in multiple transcripts from the same pre-mRNA, which are

potentially regulated by different splicing factors (SFs). Multiple polyadenylation sites,

which exist in most eukaryotic genes, create 3’ untranslated regions of different lengths (2,

3). As a result of one or more of the above mechanisms, more than 95% of human genes
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express more than one transcript (4, 5). These transcripts differ in

their RNA sequences, which may affect protein sequence, RNA

stability, RNA localization and RNA regulation. Indeed, aberrant

transcripts play important roles in various diseases, including

cancers and autoimmune and infectious diseases (6–8). Genome-

wide studies of known transcript diversity have been facilitated by

the development of exon microarrays, and the subsequent

development of RNA sequencing (RNA-seq) has enabled those

studies to be extended to transcripts that had not previously been

annotated. These studies notwithstanding, the abundance and

importance of transcript diversity during immune differentiation

and activation is only just beginning to be uncovered (9–12). A new

study identified 55 genes with transcript-level differential

expression between seven human immune cell types from twelve

healthy donors, and 27 genes with transcript-level differential

expression between monocytes, macrophages, and LPS activated

macrophages (13).

Conditions that change splicing may affect multiple genes

simultaneously. In each cell type or condition, the change to each

alternative splicing type may be different; for example, neutrophils

are characterized by higher levels of intron retention than other

immune cell types (14, 15). The response of human innate immune

cells to pathogens is accompanied by enhanced transcription of

minor and non-coding isoforms, noisy splicing, enhanced inclusion

of skipped exons, and the use of more upstream polyadenylation

sites (16–18). Additionally, infection may induce alternative

splicing (19). For example, following inflammation, the dominant

class of alternative isoform usage in human and murine

macrophages is alternative first exon usage (20). Differentiation

may also induce splicing changes; for example, a comparison of 11

murine immune cell types revealed that many differential splicing

events were linked to lineage differentiation (21). Despite these

genome-wide reports, only a few cases of differential transcript use

(DTUs) events of specific genes in the immune system have been

thoroughly studied, namely, those in immunoglobulins (22), CIITA

(23), and PTPRC/Cd45 (24). In addition, SMPD1 is known to be

differentially spliced in human sepsis (25). However, the functional

extent of transcript diversity in immune cells and the changes in the

use ratio of the different transcripts in different human immune cell

types in health and immune-related conditions remain to

be elucidated.

A better understanding of DTU events and their regulation in

the human immune system requires a transcriptome-level

comparison of the different immune cell types, which is yet to be

done. In this genome-wide study, we set out to identify DTU

events in healthy immune cell types in health and immune

related conditions. We found 282 genes with DTUs between

different human immune cell types in four datasets (Figure S1A).

The correlation between the pattern of DTU events and the

expression of SFs and TFs suggests a regulatory model for DTU

in the immune system. When comparing cells related to immune

conditions to healthy cells of the same type, we found 67 DTUs. We

also found four genes with DTU events between cells before and

after treatment for multiple sclerosis (MS). Among different

immune-related conditions, namely amyotrophic lateral sclerosis
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(ALS), MS (pre and post treatment), type 1 diabetes, and sepsis, the

effect of sepsis on splicing was the most marked. A deeper

understanding of DTU regulation in each cell type and for

different immune-related conditions could contribute to better

control of the immune response and hence to improved

treatment of patients in whom the immune system damages

tissues, as in sepsis.
Materials and methods

Datasets

To identify differential splicing in the human immune system, a

search was done in GEO site (https://www.ncbi.nlm.nih.gov/geo/)

to find all the publicly available RNA-seq datasets that profiled at

least five healthy human immune cell types: B cells, T cells, natural

killer (NK) cells, monocytes and neutrophils, and include at least

s e v en s amp l e s . Sp e c ifi c a l l y t h e s e a r ch que r y : “b -

lymphocytes”[MeSH Terms] AND “t-lymphocytes”[MeSH

Terms] AND “killer cells, natural”[MeSH Terms] AND

“monocytes”[MeSH Terms] AND “neutrophils”[MeSH Terms]

AND “Homo sapiens”[porgn] AND (“7”[n_samples] :

“100000”[n_samples]) AND “Expression profiling by high

throughput sequencing”[Filter] was used. That query on 23/4/

2023 returned 12 results, out of which four include all the cell

types and at least two repeats per cell type and are not single cell

RNA-seq. The datasets are: GSE107011 (26), GSE115736 (27),

GSE64655 (28) and GSE60424 (29). As CD4 and CD8 T cells are

not profiled in GSE64655, which profiles T cells, they were grouped

together for the purpose of comparing between datasets (Table 1).

In dataset GSE60424 cells were also profiled from immune-

related conditions. The immune related conditions are ALS, type 1

diabetes, MS and sepsis (29) (Table 2). All the donors, with the

exception of one, were < 60 years old (Table S1).

In the current study, comparisons were conducted for each of

the cell types for which there were at least two repeats (except NK in

MS pre treatment, Table 2). We note that the GSE64655 dataset also

profiles control and trivalent inactivated influenza (TIV) vaccine

receivers, but we did not compare healthy and TIV cells for that

dataset, as differential splicing analysis between those states in each

cell type was already reported in the original publication (28), with

very few results.

Reads from each dataset were mapped to the Homo sapiens

genome (hg38) using hisat2 (30) (version 2.0.5). Bam files were

sorted and indexed by SAMtools (31) (version 1.9). To evaluate the

quality of the data, the flagstat option of SAMtools was used. In all

datasets, there were no samples with less than one million properly

mapped reads.
Differential splicing analysis

LeafCutter version 0.2.8 (32) was used according to the

workflow described in https://davidaknowles.github.io/leafcutter/
frontiersin.o
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articles/Usage.html. The H. sapiens genome annotation file

(GCF_000001405.39_GRCh38.p13_genomic.gff) was downloaded

from NCBI https://www.ncbi.nlm.nih.gov/genome/51 and parsed

to fit the LeafCutter input format. Only annotation of genes located

on chromosomes 1-22, X, and Y was used. LeafCutter assigns

junctions to LeafCutter clusters (LCs). Any two junctions in a

cluster share a start or an end position. Poorly covered junctions

[more than 10 junction spanning reads (JSR) in less than two

samples] were removed from the count table. After the removal of

the poorly covered junctions, junctions with a JSR count of <10% of

the average JSR count in their LCs in all samples were also removed

from the count table to minimize false positive results. If this

filtering produced LCs that include junctions without a shared

position, those LCs were split to two or more LCs that each includes

only junctions that share a start position or an end position (Figures

S1B, C). The LCs that then remained with less than two junctions

were removed from the count table.

In the healthy cells analysis, we implemented hierarchical

statistical testing and applied a suitable multiple testing

adjustment (33) to control the false discovery rate (FDR). First,

we tested each LC for differential splicing between multiple

conditions. Then, for each significant LC (FDR-adjusted p-value

≤0.05), we compared all pairs of conditions. Due to the hierarchical

scheme, the total number of comparisons decreased considerably,

thereby shrinking the problem of multiple testing and optimizing

the statistical power (34). For the comparison of the results between

datasets, a comparison with either CD4 or CD8 T cells that was

significant was considered significant with T cells.
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The fraction of JSRs of a junction in each LC in each sample is

termed the percent spliced in (PSI). Differential splicing is measured

in terms of the change in PSI between conditions, DPSI. Differential
splicing analysis was performed on three sets: (1) between all the

different healthy cell types in each dataset separately; (2) for each

cell type in the GSE60424 dataset, between healthy cells and cells

from each immune-related condition separately; and (3) for each

cell type in the GSE60424 dataset, between MS pre-treatment and

MS post-treatment. Each comparison produced a DPSI value. Max

(DPSI) was defined as the maximal abs(DPSI) value in all

comparisons from the same set that gave significant results.

An LC was considered to be differentially spliced (DS-LC) if all

the following conditions were satisfied:
1. Only for the healthy cells analysis, differential splicing in the

LC was significant, in LeafCutter multiple analysis, with

LeafCutter’s p.adjust ≤ 0.05. Default parameters were used,

except for –i 2 (min samples per junction), and -g 0 (min

samples per group).

2. Differential splicing in the LC was significant, in LeafCutter

paired analysis, with LeafCutter’s p.adjust ≤ 0.05. Default

parameters were used, except for -M 10 (minimum reads

for a junction), -i 2 (min samples per junction), and -g 2

(min samples per group).

3. The LC contained at least two junctions with max(DPSI) ≥
0.1.

4. The LC contained at least one junction with max(DPSI) ≥ 0.2.
TABLE 2 Immune related conditions in GSE60424 and number of repeats.

Cell type Healthy ALS Sepsis Diabetes MS-pre treatment MS-post treatment

B 4 3 3 4 3 3

CD4 T 4 3 3 4 3 3

CD8 T 4 3 3 4 3 3

NK 4 3 2 2 1 2

Neutrophils 4 3 3 4 3 3

Monocytes 4 3 3 4 3 3
TABLE 1 Structure of the datasets and number of repeats.

Cell type GSE64655 GSE60424 GSE107011 GSE115736

B 2 4 4 5

CD4 T 4 4 5

CD8 T 4 4 5

T 2

NK 2 4 4 5

Neutrophils 2 4 4 3

Monocytes 2 4 4 5
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Clustering and SF/TF correlation was done only on junctions

that are shared between at least two datasets. Clustering of SF/

TFs and junct ions was performed using the Python

scipy.cluster.hierarchy.linkage function. Junctions clustering was

done with the seuclidean metric and complete method. SF/TF

clustering was done with the correlation metric and average

method. The number of clusters was set to 10.

LCs that are significantly differentially spliced between one cell

type and all other cell types are defined as cell-type-specific in the

context of the five cell types tested. LCs that are differentially spliced

between the three lymphocytes (B, T and NK cells) and the two

myeloid cell types (monocytes and neutrophils) tested are defined as

lineage-specific in the context of the five cell types tested.

Sashimi plots were drawn using the ggsashimi program (35). The

H. sapiens genome annotation file (Homo_sapiens.GRCh38.104.gtf.gz)

was downloaded from Ensmbl http://ftp.ensembl.org/pub/release-89/

gtf/homo_sapiens/ and parsed to fit the ggsashimi input format.
Classification of alternative splicing type

Determination of the alternative splicing type was based on the

t r an s c r i p tome anno t a t i on fi l e GCF_000001405 . 39_

GRCh38.p13_genomic .g ff , downloaded from https : / /

www.ncbi.nlm.nih.gov/genome/51. Each LC could be classified into

several alternative splicing types, or none at all. An LC was classified

as a skipped exon (SE; Figure S2A) if there was a junction that

skipped a specific exon, a junction that ended in the start point of that

exon and a junction that started at the end point of that exon, and at

least two of those junctions had DPSI ≥ 0.1. For the remaining

alternative splicing types, only junctions with DPSI ≥ 0.1 were used.

LCs were classified as mutually exclusive exons (MXE; Figure S2B) in

genes that were mapped to two LCs, where two junctions started at

the same point in the upstream LC and two junctions ended at the

same point in the downstream LC. LCs were classified as alternative

5’ splice sites (A5SS; Figure S2C) if at least two junctions in the LC

exited a specific exon at different points and entered the consecutive

exon at the same point. LCs were classified as alternative 3’ splice sites

(A3SS; Figure S2D) if at least two junctions exited a specific exon at

the same point and entered the consecutive exon at different points.

LCs were classified as alternative first exons (AFE; Figure S2E) or

alternative last exons (ALE; Figure S2F) if at least one junction in the

LC connected to the first or last exon, respectively.
Cell preparation

Peripheral blood cells were isolated from a healthy donor in

EDTA tubes . Mononuclear cel l s enriched over ficol l

(Lymphoprep#7851, StemCell™), and washed with FACS media

(PBS, 2mM EDTA, 2% serum). Staining used Biologend antibodies:

CD14-PrcCy5.5, CD4-Fitc, CD56-Pe, CD8-PeCy7, CD19-

Alexa700, CD3e-PacBlue. Sort by AriaII (BD). RNA extracted by

Trizol, and Reverse transcription used SuperScript IV (both

Invitrogene™, standard manufacturer protocol).
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PCR

The cDNA was diluted to represent 500 cells/µl, 2 µl taken per

PCR reaction representing 10^3 cells. Primers used: FYB1ex14for-

tgatgaaacagggaaatcagagg; FYB1ex11rev-ATTCCCTCCACCACC

Agatg (yielding 283bp product with exon 12, or 145bp product

when exon 12 is sk ipped) ; CD47ex11for-CGTCTTA

CTACTCTCCAAATCGG; CD47ex7rev-atgcatggccctcttctgat

(yielding 220bp product with exons 9 + 10, or 162bp product

when both exons are skipped). The PCR amplification program

used was 95°C 3min, 33 cycles: 95°C 7sec, 58°C 30sec, 72°C 30sec;

and finished with 72°C 1 min. PCR products were resolved on 2%

agarose gel and visualized with Ethidium Bromide.
Inferring splicing regulation

Potential SFs were defined as all genes with a GO annotation of

‘GO:0008380, RNA splicing’ in https://www.ebi.ac.uk/QuickGO/.

Only SFs that were expressed (at least 10 reads in at least one sample

in at least two datasets) and were differentially expressed between

immune cell types (one-way ANOVA p value ≤ 0.05, implemented

by Python scipy.stats.f_oneway function) were used. The Pearson

correlation coefficient between SF expression patterns and the PSI

patterns of junctions from LCs with significant differential slicing in

at least one comparison that was not classified as an alternative first

exon and DPSI ≥ 0.2 was calculated, using python corr function.

Python seaborn.clustermap was used to plot clustered heatmaps.

Correlation between the SF-junctions correlation matrix in each

two datasets was calculated by the python pearsonr function.

For the calculation of the Pearson correlation coefficient

between SF expression patterns in a pair of datasets, the average

expression values per cell type were used, where all T cells were

averaged together.
Inferring transcriptional regulation

Potential TFs were defined as all genes with a GO annotation of

‘GO:0009299, mRNA transcription’ in https://www.ebi.ac.uk/

QuickGO/. Only TFs that were expressed (at least 10 reads in at

least one sample in at least two datasets) and were differentially

expressed between immune cell types (one-way ANOVA p value ≤

0.05, implemented by Python scipy.stats.f_oneway function) were

used. The Pearson correlation coefficient between TF expression

patterns and the PSI patterns of junctions from LCs with significant

differential slicing in at least one comparison that was classified as an

alternative first exon and DPSI ≥ 0.2 was calculated, using python

corr function. Python seaborn.clustermap was used to plot clustered

heatmaps. Correlation between the TF-junctions correlation matrix

in each two datasets was calculated by the python pearsonr function.

For the calculation of the Pearson correlation coefficient

between TF expression patterns in a pair of datasets, the average

expression values per cell type were used, where all T cells were

averaged together.
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Results

Differential splicing between healthy
immune cell types

We identified DTU events between healthy B cells, T cells, NK

cells, monocytes and neutrophils in four human datasets,

GSE107011 (26), GSE115736 (27), GSE64655 (28) and GSE60424

(29) (Tables 1; S2, Figure S1A). There are 458 DS-LCs in the

GSE60424 dataset (Table S3), 224 DS-LCs in the GSE64655 dataset

(Table S4), 196 DS-LCs in the GSE107011 dataset (Table S5), and

744 DS-LCs in the GSE115736 dataset (Table S6). When comparing

the four datasets, we discuss genes or junctions, as the LeafCutter

clusters are defined separately for each dataset. There are 725 genes

that contain a DTU in only one dataset, 180 genes that contain

DTUs in two datasets, 72 genes that contain a DTU in three

datasets, and 30 genes that contain a DTU in all four datasets.

Thus, there are 282 genes that are significantly differentially spliced
Frontiers in Immunology 05
in at least two out of the four datasets (Table S2). In accordance, the

number of junctions in a DTU that are shared between one, two,

three or four datasets is 2902, 1104, 642, and 308, respectively

(Tables S3–S6).

The analysis of different cell types enabled the identification of cell-

type-specific and lineage-specific (in the context of the five cell types

tested) use of splicing events. Several cases of AFE in which each exon

was almost exclusive to the lymphoid lineage (B, T and NK cells) or the

myeloid lineage (neutrophils and monocytes) were identified, for

example, DOCK8, DGKZ and CARS2 (Figures 1A, B, S3). Another

example of a lineage-specific (in the context of the five cell types tested)

differentially spliced gene was ESYT2, which had an exon that was

skipped in the myeloid lineage but not in the lymphoid lineage

(Figures 1C, D).

In all datasets, there were more differential splicing events

between the lymphocyte and myeloid immune lineages than

within each lineage, and the myeloid cells, i.e., neutrophils and

monocytes, had more events between them compared to the
A B

DC

FIGURE 1

Examples of differentially spliced genes in the human immune system, GSE60424 dataset (A) An alternative first exon (AFE) in DOCK8. The Sashimi
plots of CD4 T cells (top) and neutrophils (NEU; bottom) display the number of mapped reads; the splice junctions are shown as arcs. Samples from
the same cell type are overlaid on one another. The numbers on each arc are the junction spanning read (JSR) counts of each sample. The order of
the samples is the same for all junctions. (B) Bar plots of the fraction (top) and counts (bottom) of JSRs in DOCK8 AFE differentially spliced
LeafCutter clusters (DS-LC) in all samples of all cell types. The JSRs of each junction are colored in the color of the arc of that junction in subfigure
(A). (C) Sashimi plots of the skipped exon in ESYT2 [B cells and monocytes (MO)]. (D) Bar plots of the fraction (top) and counts (bottom) of JSRs of
ESYT2 skipped exon DS-LC.
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lymphocytes, i.e., B, T, and NK cells (Table 3). Thus, splicing

patterns reflect the hematopoietic lineage structure.

The DTUs also included known differential splicing cases, such

as differential splicing of PTPRC between B and T cells (36) and the

AFE of CIITA between monocytes and B cells (37). For the PTPRC

gene, we found that it had a very complex differential splicing

pattern, as its LC included eight junctions (Figure S4), and that

different cell types expressed different transcripts of the gene.
Experimental validation of
differential splicing

As differential splicing events in the human immune system are

understudied, and we present a map of differential splicing between

five immune cell types based solely on RNA-seq, we sought to

validate findings by an independent method. We focused on two

genes, FYB1 and CD47, in which the DTUs were within the coding

region and thus likely to affect the protein, have reasonable

expression level, and are well studied in immune cells.

Differential splicing of a skipped exon in FYB1 was identified in

all four datasets (Figures 2A–E). FYB1 expression is low in B cells,

but higher in the other cell types. In T cells and NKs, ~50% of the

reads skip the exon (orange arc and bars in Figures 2A–E).

However, in monocytes and neutrophiles, most reads go through

the exons (blue and green arcs and bars in Figures 2A–E). Using

primers that span that region, in T cells most of the product is the

lighter one which skips the exon (145bp), whereas in NKs the levels

of the two products are similar, and in monocytes the heavier

product which includes the exon (283bp) is the more highly

expressed, thus fully confirming the RNA-seq based alternative

splicing events ratio estimations (Figure 2F left).

The second gene, CD47, contains a complex alternative splicing

event, in which two exons can be skipped (green arc, Figure 2G), or

one or two of those exons can be included in the transcript. In two

datasets, this alternative splicing event is differentially spliced

between the lineages. However, it can be seen in all four datasets

that the frequency of the green arc, which skips two exons, is higher
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in the myeloid lineage (monocytes and neutrophiles), and the

frequency of the red arc, indicating that both exons are included,

is higher in the lymphocytes lineage (B, T and NK, Figures 2H–K).

The PCR products of the two primers spanning this region indeed

show only the light product (skipping both exons, 162bp) in

monocytes, where lymphocytes have both the light product and

the heavy product (both exons are included, 220bp, Figure 2F right).
Splicing patterns in the human immune
system

The identification of an LC as differentially spliced in two datasets

does not necessarily imply that the splicing difference of the LC is

between the same two cell types and in the same direction in the two

datasets. However, for 84-94% of DS-LCs that were identified in more

than one dataset, significant differences in splicing were identified in

at least one shared pair of cell types in the same direction (Table 4,

row ‘Junctions with shared comparisons’).

For each dataset, clustering of the PSI values of junctions with

max(DPSI)>=0.2 was done separately (Figures 3A–D). The order of
the clusters is different as they were done independently, but similar

PSI patterns can be seen in all datasets. As PSI values are very noisy

if the number of reads is small, we did not directly compare the PSI

patterns of the shared junctions, as was done for the regulatory

factors below. Instead, we compared the results of all ten

comparisons between the five cell types for each of the shared

junctions. About third of the comparisons are not significant in

both datasets (29-36%, Table 4, row ‘Non significant comparisons’).

About third of the comparisons are significant in only one of the

datasets (33-38%, Table 4 row ‘Significant in one dataset’), which is

not surprising considering our strict filtering criteria. The last third

of comparisons are significant in both datasets in the same direction

(24-30%) or in different directions (3-6%). As differential splicing in

different directions is most likely due to noise, it is reassuring that

most findings that are identified in two datasets are in the same

direction. As false positive findings are as likely to be in different

directions as they are to be in the same direction, this suggests that
TABLE 3 Number of differential splicing events between healthy immune cell types.

Comparison type Cell types GSE64655 GSE60424 GSE107011 GSE115736

Within lymphocytes B T 28 84 32 69

Within lymphocytes B NK 44 69 37 75

Within lymphocytes T NK 37 88 61 93

Between lineages B Monocytes 88 157 73 111

Between lineages T Monocytes 78 164 83 132

Between lineages NK Monocytes 83 124 69 103

Between lineages B Neutrophils 86 159 70 95

Between lineages T Neutrophils 78 166 72 106

Between lineages NK Neutrophils 85 133 60 100

Within myeloids Monocytes Neutrophils 72 107 55 72
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most of the findings that are found in two datasets in the same

direction are true. Additionally, the magnitude of change in splicing

was also similar between the four datasets, as was evident from the

high correlation of the max(DPSI) values of the junctions that are
shared between each two datasets [0.51-0.76, Table 4, Correlation of

max(DPSI) row].
The transcriptome annotation was used to assign the alternative

splicing type for each of the DS-LCs in each dataset separately

(Figure 3E; Tables S7). Some DS-LCs were assigned to more than

one type of alternative splicing. Of note, cases of alternative splicing

that involve exons or junctions that are not in the transcriptome

may result in an inaccurate assignment of alternative splicing type

or no assignment of alternative splicing type at all. For example, no

alternative splicing type was assigned to the LC of CARS2 that is

found in three datasets, as one of its junctions (chr13:110663518-
Frontiers in Immunology 07
110665528) is not in the NCBI annotation file used for the

differential splicing analysis, although this junction is present in

the Ensmbl annotation file used for Figure S3.
Inference of splicing regulation
in healthy cells

Alternative splicing events (other than AFE) are regulated by

SFs (38). We sought to associate the patterns of splicing observed

across the human immune cell types with the expression patterns of

known SFs. Only DS-LCs that are not classified as AFE were studied

as potentially regulated by SFs. To increase robustness and for ease

of interpretation, in each dataset we focused on the junctions in DS-

LCs that appear in at least one more dataset and have max(DPSI) ≥
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FIGURE 2

Experimentally validated examples of novel differentially spliced genes in the human immune system. (A) LeafCutter cluster representing a skipped
exon in FYB1. (B–E) Bar plots of the fraction of JSRs in all samples of all cell types in datasets (B) GSE64655, (C) GSE60424 (D) GSE107011 and (E)
GSE115736 are shown. The JSRs of each junction are colored in the color of the arc of that junction in (A). (F) PCR of an independent human sample
(G) LeafCutter cluster representing a complex alternative splicing event containing two potentially skipped exons in CD47. (H–K) Bar plots of the
fraction of JSRs in all samples of all cell types in datasets (H) GSE64655, (I) GSE60424 (J) GSE107011 and (K) GSE115736 are shown. The JSRs of
each junction are colored in the color of the arc of that junction in (A). (F) PCR of an independent human sample with the primers marked in (G).
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0.2 in that dataset (Table S8). Only SFs that were expressed in at

least one additional dataset and were differentially expressed

between the immune cells of the dataset were considered (Table

S9). Clustering was done on the expression patterns of the SFs. The

SFs clusters of dataset GSE60424 display several expression patterns

(Figure 4A). SF cluster Ca contains SFs that are highly expressed in

neutrophils, whereas in SF cluster Cc there are SFs with the opposite

expression pattern. SF cluster Cb includes SFs that are not expressed

in monocytes. Clustering was done also on the splicing patterns of

differentially spliced junctions in each dataset. The junction clusters

of the GSE60424 dataset (JCs; Figure 4B) display similar patterns to

the SF clusters – JCa, JCd and JCe have lower PSI values in

myeloids, and JCb and JCc have higher PSI values in myeloids.

Different JCs can contain differentially spliced junctions of the same

gene, as they display different splicing patterns. Opposing patterns

of junctions that are part of the same DS-LC are expected in simple

alternative splicing events.

The SF–junction correlation matrix displayed highly correlated

SF–junction blocks, corresponding to SFs that were upregulated in

neutrophils and junctions that had higher PSI values in myeloid

cells (Ca-JCb, Ca-JCc, Figure 4C) or to SFs that were downregulated

in neutrophils and junctions that had higher PSI values in

lymphocytes (Cc-JCa, Cc-JCd and Cc-JCe) (Table S10).

The patterns of SFs and junctions and the SF-junction

correlation structure in the other three datasets were qualitatively
Frontiers in Immunology 08
similar (Figures S5–S7; Tables S11–S19). As 62-90% of the SF

shared between each pair of datasets display a highly correlated

pattern of expression [see row ‘Shared splicing factors with

correlation > 0.7 (%)’, Table 4], and 84-94% of the junctions are

differentially spliced in at least one comparison between the same

cell types in the same direction in each dataset pairs (see row

‘Junctions with shared comparisons’, Table 4), it is not surprising

that the Pearson correlation coefficients between the SF–PSI

correlation coefficients of each pair of datasets are in the range of

0.52-0.83 (see row ‘Correlation of SF-PSI’, Table 4), indicating that

the SF-PSI correlation structure is robust across the four datasets.

Both positive and negative correlation coefficients between junction

PSI values and SF expression patterns suggest that a splicing

junction is potentially regulated by a SF.

An example of the predictions proposed by the SF–differentially

spliced gene correlation matrix is the skipped exon of the ESYT2 gene.

The junction that skips an exon in ESYT2 (chr7:158749723:158759486)

is regulated by ESRP2, QKI and RBFOX1 (39–41). ESRP2 and

RBFOX1 are not expressed in the GSE604242 dataset. Thus, QKI is

the only known regulator of ESYT2 splicing that is expressed in

GSE60424 dataset, and the splicing pattern of the ESYT2 skipped

exon junction was positively correlated with QKI expression

(correlation = 0.55, Table S10). QKI expression was also correlated

with the differential slicing pattern of the two junctions in QKI gene

itself (correlation = 0.63 and -0.63, Table S10).
TABLE 4 Comparison of differential splicing between datasets.

Datasets
GSE64655
GSE60424

GSE64655
GSE107011

GSE64655
GSE115736

GSE60424
GSE107011

GSE60424
GSE115736

GSE107011
GSE115736

Shared DS junctions 233 111 121 178 244 96

Correlation of max(DPSI) 0.76 0.69 0.69 0.73 0.65 0.51

Junctions with shared comparisons (%
of junctions) 89 84 84 87 94 90

Non-significant comparisons (% of
comparisons) 35 36 35 34 29 29

Significant in one dataset (% of
comparisons) 33 33 37 35 37 38

Significant in both datasets in the
same direction (% of comparisons) 27 27 24 28 30 28

Significant in both datasets in opposite
directions (% of comparisons) 6 4 5 3 4 5

Shared splicing factors 298 283 298 305 325 316

Shared splicing factors with correlation
> 0.7 (%) 90 66 64 62 64 80

Correlation of SF-PSI 0.83 0.59 0.52 0.55 0.52 0.71

Shared transcription factors 640 591 562 563 572 507

Shared transcription factors with
correlation > 0.7 (%) 95 84 74 78 77 86

Correlation of TF-PSI 0.91 0.82 0.71 0.78 0.75 0.81
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Inference of transcriptional
regulation of alternative
promoters in healthy immune cells

The correlation between the expression patterns of TFs and the

expression patterns of genes is often used for inference of potential

transcriptional regulation (42). As the use of AFEs is regulated by TFs

and not SFs, we sought to associate the patterns of PSI of AFEs across
Frontiers in Immunology 09
human immune cell types with the expression pattern of known TFs.

For each dataset, we focused on the junctions in DS-LCs shared with

at least one more dataset that are AFE junctions and have max(DPSI)
≥ 0.2 and the TFs that are expressed in at least one more dataset and

are differentially expressed between different immune cell types

(Figures 5A, B; S8–S10, Tables S20–S31). In GSE60424, TF cluster

Ca included TFs that were highly expressed in neutrophils. TF cluster

Cb included TFs that were downregulated in monocytes. Cc
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FIGURE 3

Splicing patterns in the human immune system. (A–D) Heatmap of the percent spliced in (PSI values) of the junctions with DPSI>=0.2 in differentially
spliced LeafCutter clusters (DS-LC) that were identified in at least two human datasets. Each row represents a junction. Junctions in each dataset are
sorted according to the clustering of the splicing patterns in that dataset. (A) GSE64655, (B) GSE60424, (C) GSE107011 and (D) GSE115736. (E) Bar
plot of the counts of each alternative splicing (AS) type identified as differentially spliced in each dataset and in more than one dataset. DS-LCs that
were not assigned alternative splicing type are labeled as an unknown type.
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contained TFs that are upregulated in lymphocytes. Clustering the

PSI patterns of the AFE differentially spliced junctions identified

interesting clusters of junctions (JC). JCa and JCc included junctions

that had lower PSI values in lymphocytes. JCb and JCe included

junctions that had lower PSI values in myeloid cells. The correlation

matrix between the expression patterns of TFs in all samples and the

PSI patterns of the DS junctions that were annotated as AFEs also

displays a block structure, corresponding to modules of TF and

junctions with similar patterns across cell types (Figure 5C). In the

same DS-LCs, different junctions can display different, sometimes

opposing, splicing patterns (Figure 5C).

The correlation structure of AFE PSI patterns and TF

expression patterns is robust in all four datasets. Of the TFs

shared between each pair of datasets, 74-95% display a highly

correlated pattern of expression (see row ‘Shared transcription

factors with correlation > 0.7’, Table 4), and the Pearson

correlation coefficients between the TF–PSI correlation

coefficients of each pair of datasets are in the range of 0.71-0.91

(see row ‘Correlation of TF-PSI’, Table 4). Similarly to the splicing

regulation above, both positive and negative correlation coefficients

between junction PSI values and TF expression patterns may

suggest that a promotor is potentially regulated by a TF.
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Differential splicing analysis in
immune-related conditions

To test whether changes in splicing occur in immune-related

conditions, we used the GSE60424 dataset, which includes six cell

types (B, CD4, CD8, NK, neutrophils, and monocytes) from healthy

donors and donors with different pathological conditions, namely,

ALS, type 1 diabetes, MS or sepsis. We searched for differential

splicing in each cell type between healthy donors and each of the

immune-related conditions. In total, in all comparisons, we

identified 74 DS-LCs that mapped to 67 genes (Tables S32, S33).

Only 16/74 (22%) of those DS-LCs were AFE, compared to 45% of

LCs that were AFE between healthy immune cell types. Four LCs

included only novel junctions, and in 21 other LCs the type was not

classified (Table S34). ALS, MS and diabetes had almost no effect on

the splicing patterns in any of the cell types. However, sepsis

affected the splicing of 67 LCs that mapped to 61 genes compared

to healthy controls. Of these 67 LCs, 3, 13, and 57 were differentially

spliced in B cells, monocytes, and neutrophils, respectively (Table 5;

Figures 6–8). Six genes were differentially spliced in more than one

cell type (OAS1, MYO15B, WARS1, SHISA5, AGTRAP, and

EIF4H; Table S33). SBNO2 was also differentially spliced in more
A

B C

FIGURE 4

Splicing regulation inference for dataset GSE60424. (A) Heatmap of the expression patterns of the splicing factors (SFs) that are expressed in this
dataset and at least one other dataset and are differentially expressed between immune cell types from this dataset. SFs (columns) are ordered by
clustering. Clusters separation is shown on the bar at the top, and clusters discussed in text are marked by letters. (B) Heatmap of the splicing
patterns [percent spliced in (PSI)] of the junctions that have abs(DPSI) ≥ 0.2 in this dataset, are identified in at least one other dataset, and are
assigned an alternative splicing type that is not an alternative first exon (AFE). Junctions (rows) are ordered by clustering. Cluster separation is shown
on the bar at the left, and clusters discussed in text are marked by letters. (C) Heatmap of the SF-junction Pearson correlation coefficients matrix.
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than one cell type (monocytes and neutrophils), but in each cell type

the differential splicing was in different part of the gene

(Figure S11).
MS treatment affects splicing

The GSE60424 dataset includes data for MS patients before and

24 h after the first treatment with interferon-beta. Our search for

differential splicing between MS pre and post treatment in each of

the cell types revealed four DS-LCs (Tables 5; S35). One DS-LC was

identified in B cells but was not mapped to a gene. All three genes

(TNK2, RABGAP1L and WARS1) were differentially spliced in

neutrophils. WARS1 was also differentially spliced in monocytes.

The AS type assigned to all three genes was AFE, and RABGAP1L

was also assigned to ALE (Figure S12).
Discussion

The immune system is a complex system in which information

is processed differently depending on cell type, time and context. In
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such a system, accurate regulation of transcription and splicing is

particularly important, as discussed in (4, 43, 44). In the first part of

this study, we performed an in-depth analysis of DTU events in

blood cells from healthy human donors collected in four

independent datasets. We identified 282 cases of DTU events

between the healthy immune cell types in at least two datasets,

including the known differentially spliced skipped exons of PTPRC

and the cell type specific promoter of CIITA. Other cases of DTU

events were identified in genes with known immune functions, but

without a reported role of differential splicing in immune cells e.g.,

DOCK8. This gene plays a critical role in the survival and function

of several types of immune cells (45). DOCK8 immunodeficiency

syndrome is characterized by recurrent severe infections that can be

life threatening (46). Mutations in exons 32 or 36 lead to the

expression of different transcripts that contribute to DOCK8-

related disease (47, 48). We identified a change in the use of an

AFE of DOCK8 between lymphoid cells (B, T cells, and NK) and

myeloid cells (monocytes and neutrophils), which has not been

reported previously.

We chose two DTUs that affect the coding region of immune

related genes, FYB1 and CD47, for experimental validation. FYB1

(also known as ADAP) is an adaptor signaling protein, primarily
A
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FIGURE 5

Transcription regulation inference for dataset GSE60424. (A) Heatmap of the expression patterns of the transcription factors (TFs) that are expressed
in this dataset and at least one other dataset and are differentially expressed between immune cell types from this dataset. TFs (columns) are ordered
by clustering. Cluster separation is shown on the bar at the top, and clusters discussed in text are marked by letters. (B) Heatmap of the splicing
patterns (PSI) of the junctions that have abs(DPSI) ≥ 0.2 in this dataset, are identified in at least one other dataset, and were annotated as AFE.
Junctions (rows) are ordered by clustering. Clusters names are shown on the bar at the left. (C) Heatmap of the TFs-junction Pearson correlation
matrix.
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studied in T cells. FYB1 canonical transcript excludes exon 12. The

inclusion of that exon adds 46 amino acids between an EVH1-

binding site and a putative nuclear localization signal (49). The

longer variant of FYB1 is preferentially expressed in mature T cells

and was reported to better induce target genes such as IL-2 (50).

CD47 (also known as IAP) gained much attention as a “don’t eat

me” signal for macrophages. The skipping of exons 9 and 10 of

CD47 deletes 20 amino acids of the cytoplasmic carboxyl terminus.

The CD47-202 isoform, that includes exons 9 and 10, was recently

reported to be upregulated in pediatric Acute Myeloid Leukemia

compared to normal cells (51). The differential splicing of both

genes was validated.
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A complementary approach to differential splicing analysis is

transcript-level differential expression. When this approach was

applied to seven primary human immune cell types, it identified 55

genes whose transcripts display different expression levels between

different cell types (13). There are 20 genes identified by both the

differential splicing analysis here and by the transcript-level

differential expression analysis. Those genes include the well-

known case of PTPRC, FYB1 which we experimentally validated,

NCOA4, and SH3BP2, which were identified in all four datasets,

ESYT2, FGR, RPS6KA1, SEPTIN9, ST6GAL1 and SYK, which were

identified in three of the four datasets. There are multiple reasons

for the discrepancies between the lists, and the results of these
TABLE 5 Differential splicing events between immune cell types in health and in immune-related conditions.

Conditions B CD4 CD8 NK Monocytes Neutrophiles

MS pre treatment 0 1 2 N.T. 3 1

MS post treatment 1 2 0 2 2 5

Diabetes 1 0 0 0 1 0

ALS 0 0 0 0 3 0

Sepsis 3 0 0 0 13 57

MS pre vs. post treatment 1 0 0 N.T. 1 3
N.T. – not tested, less than three replicates per condition.
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FIGURE 6

Splicing patterns in sepsis. Heatmaps of the percent spliced in (PSI values) patterns of differentially spliced junctions with DPSI ≥ 0.2 in sepsis
compared to healthy immune cells in (A) neutrophils, (B) monocytes, and (C) B cells. Selected DS are annotated with gene symbol. (D) Distribution
of differentially spliced LeafCutter clusters (DS-LCs) into alternative splicing (AS) types. DS-LCs that were not assigned alternative splicing type are
labeled as an unknown type.
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approaches. First, splicing changes which affect a relatively short

part of the transcript are less likely to be identified when comparing

transcript-level expression estimates, whereas differential splicing

analysis is independent of the length of the change in the transcript.

This may explain, for example, why CD47, whose longest transcript

is 5292bp long and is changed by 60bp was identified as

differentially spliced, but not as transcript-level differential

expression gene, whereas FYB1 which is changed by 139bp (out

of 4789) was identified by both approaches. Second, differential

splicing analysis is unable to identify transcripts whose difference

does not involve alternative splicing, which is the reason GPI, whose

transcripts GPI-201 and GPI-202 were identified as differentially

expressed, was not identified as differentially spliced. Third, the

differential splicing method used here, LeafCutter, is unable to

identify changes in inclusion of retained introns. Those reasons,

as well as the difference in datasets, biological noise and technical

noise probably explain the discrepancies between the 55 transcript-
Frontiers in Immunology 13
level differential expression genes (13) and the 282 differentially

spliced genes identified in at least two datasets here.

As most of the DTUs that we identified have not been reported

before, their regulation is unknown. Thus, we sought to use the

correlation between PSI patterns and regulator expression patterns

to infer potential regulators, namely, SFs for differential splicing,

and TFs for differential promoter use. We identified SFs that were

correlated with the PSI pattern of the differentially spliced junctions

and TFs that were correlated with the PSI pattern of junctions

indicating differential promoter use (AFE). The number of potential

regulators of each DTU was large, but it can be reduced by using

more samples or datasets. A curated database of SF and TF targets

would increase the reliability of the results. Notably, in addition to

the expression of the regulator, there are multiple factors that

influence differential splicing, including the rate of transcription,

the presence of strong or weak splice sites, and the accessibility of

the splice sites (19). Similarly, there are multiple additional factors
A B

FIGURE 7

EIF4H is differentially spliced in sepsis. (A) Skipped exon in EIF4H. The Sashimi plots of neutrophils (NEU; healthy and sepsis, top) and monocytes
(MO; healthy and sepsis, bottom) display the number of mapped reads; the splice junctions are shown as arcs. Samples from healthy or sepsis are
overlaid on one another. The numbers on each arc are the junction spanning read (JSR) counts of each sample. The order of the samples is the
same for all junctions. (B) Bar plots of EIF4H skipped exon differentially spliced LeafCutter cluster (DS-LC) from neutrophils (NEU; fraction and
counts of JSR in all samples, top) and monocytes (MO; fraction and counts of JSR in all samples, bottom) from all samples. The JSRs of each
junction are colored in the colors of the arcs of that junction in (A).
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that influence promoter choice, including DNA methylation and

histone modifications, e.g., in the case of CIITA (52). Despite the

above limitations, the regulatory model of alternative transcript use

in the human immune system we present here, though not

experimentally validated, provides testable transcript specific

regulation hypotheses.

To date, the role of differential splicing between healthy

immune cell types is not fully understood, and likewise

knowledge on the effect of immune-related conditions on splicing

is also lacking. When comparing healthy immune cells to immune-

related conditions cells (ALS, diabetes, MS and sepsis), we identified

74 cases of DTU events (67 in sepsis). Although the expression level

of SMPD1, the only gene previously reported to change splicing in

sepsis (25), was too low to be identified as exhibiting differential

splicing in the tested dataset, 61 other genes were identified as

exhibiting differential splicing in sepsis, including seven genes that

were differentially spliced in more than one cell type: AGTRAP,

EIF4H, SHISA5, WARS1 and SBNO2 were differentially spliced in

both monocytes and neutrophils, and MYO15B and OAS1 were
Frontiers in Immunology 14
differentially spliced in B cells and monocytes. For SBNO2, the

differential splicing was in different part of the gene in monocytes

and neutrophils. Most of the above genes are known to be

associated with sepsis or viral infection: AGTRAP is a key gene in

sepsis (53); EIF4H protein interacts with NSP9 coronavirus protein

(54); and WARS1 modulates innate immune responses and is thus

considered an attractive target for the treatment of sepsis (55).

AGTRAP, EIF4H and SBNO2 have been reported to be

differentially spliced but not in immune cells (56), and SHISA5,

WARS1 and OAS1 have been reported to be differentially spliced

across immune system lineages (21). Another interesting DS-LC

that was found is the long non coding RNA LINC00937, which is

involved in the host response to viral infection (57). As very little is

known about alternative splicing in MS (58), we searched for

splicing changes between immune cells from MS patients before

and after treatment. We found four DS-LCs in MS between pre and

post treatment, and three of those DS-LCs mapped to known genes.

The three differentially spliced genes (TNK2, WARS1, RABGAP1L)

are known to be related to MS (59) and are differentially spliced in
A B

FIGURE 8

MYO15B is differentially spliced in sepsis. (A) Sashimi plots of the alternative 3’ splice site and skipped exon in MYO15B in healthy and sepsis B cells
and monocytes (MO). (B) Bar plots of the fraction and counts of junction spanning reads (JSRs) of MYO15B alternative 3’ splice site and skipped exon
in B cells and MO from all the samples.
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neutrophils. It is also known that neutrophils play a role in the

pathogenesis of MS (60). An example of how the treatment changes

the promoter choice is shown for RABGAP1L in neutrophils in

Figure S12, where RABGAP1L is one of the miR-223 targets in

MS (61).

Two technical issues should be addressed regarding our

analysis. First, the comparison of four independently produced

RNA-seq datasets is subject to many technical confounders,

including the human population sampled, the sorting markers

and procedure, the sequencing protocol used and the

normalization method. To minimize the effect of such

confounders, we performed the analysis on each dataset

independently and then compared the results. In addition, we

only considered DTUs that appeared in more than one dataset,

and are thus more likely to be of biological significance. Second,

here we only used one method to identify differential splicing,

LeafCutter (32), though there are several commonly used methods,

for example rMATS (62) and MAJIQ (63). There are three reasons

for that: (1) LeafCutter was easily extendable to multiple conditions

comparison, crucial for our analysis; (2) LeafCutter identifies

complex splicing events, and alternative first and last exons and

(3) comparing between five cell types in four datasets using more

than one method would make this analysis hard to interpret.

In the current study, we mapped differential splicing between

five immune cell types, from four datasets, in health and immune-

related conditions. In the healthy cell types analysis, we identified

245 cases of differential splicing and 89 cases of AFE that are found

in at least two datasets, and suggested potential regulators for many

of those cases. Our mapping adds an additional layer of complexity

to the regulation of the healthy and diseased immune system and

suggests that transcript diversity plays a critical role in controlling

immune differentiation and response. As detecting DTUs requires a

higher expression level compared to detecting differential

expression, the extent of the contribution of DTUs to cell

function in the immune system is probably an under-estimation.
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SUPPLEMENTARY FIGURE 1

Overall analysis. (A) A graphical description of the workflow. Differential

splicing analysis was applied to four RNA-seq datasets which profiled five
human immune cell types - B, T, natural killer cells (NK), monocytes (MO) and

neutrophiles (NEU). The splicing patterns of the 282 events of differential

transcript use that were identified in more than one dataset were studied.
Differential splicing of two genes was experimentally validated. Finally,

regulatory modeling of splicing and promotor choice were suggested for
differential splicing events and alternative first exon use events (AFE),
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respectively. (B) Differential splicing analysis was performed by LeafCutter,
which defines LeafCutter clusters (LCs) of junction spanning reads (JSRs). The

Sashimi plot displays a LC which has two junctions with less than 10 JSRs. (C)
The two disconnected LCs redefined after the removal of the poorly
covered JSRs.

SUPPLEMENTARY FIGURE 2

The different types of alternative splicing events. (A) Skipped exon (SE). (B)
Mutually exclusive exons (MXE). (C) Alternative 5’ splice sites (A5SS). (D)
Alternative 3’ splice sites (A3SS). (E) Alternative first exons (AFE). (F)
Alternative last exons (ALE).

SUPPLEMENTARY FIGURE 3

Lineage-specific (in the context of the five cell types tested) use of splicing

events. (A) An AFE in DGKZ. Sashimi plots of CD8 T cells (top) and monocytes

(bottom) are shown. Bars represent the number of reads mapped to each
genomic position, and arcs represent splice junctions. Samples from the

same cell type are overlaid on one another. The numbers on each arc are the
JSR count of each sample. The order of the samples is the same for all

junctions. (B) Bar plots of the fraction (top) and counts (bottom) of JSRs in
DGKZ AFE DS-LC in all healthy samples of all cell types in the GSE60424

dataset. The JSRs of each junction are colored in the color of the arc of that

junction in A. (C) Sashimi plots of the AFE in CARS2 in B cells (top) and
neutrophils (bottom). (D) Bar plots of the fraction (top) and counts (bottom) of

JSRs in CARS2 AFE DS-LC in all healthy samples of all cell types in the
GSE60424 dataset.

SUPPLEMENTARY FIGURE 4

Example of the known differentially spliced gene, PTPRC, in the human

immune system. (A) The Sashimi plots of B, CD4 T, CD8 T and monocytes

display the number of mapped reads; the splice junctions are shown as arcs.
Samples from the same cell type are overlaid on one another. The numbers

on each arc are the JSR counts for each sample. The order of the samples is
the same for all junctions. (B) Bar plots of the fraction (top) and counts

(bottom) of JSRs in PTPRC DS-LC in all samples of all cell types in the
GSE60424 dataset. The JSRs of each junction are colored in the color of the

arc of that junction in A.

SUPPLEMENTARY FIGURE 5

Splicing regulation inference in the GSE64655 dataset. (A) Heatmap of the
expression patterns of the splicing factors (SFs) that are expressed in at least

two datasets and are differentially expressed in the immune system. SFs
(columns) are ordered by clustering. (B)Heatmap of the splicing patterns (PSI)

of the junctions that have abs(DPSI) ≥ 0.2 and are assigned an alternative

splicing type other than AFE. Junctions (rows) are ordered by clustering. (C)
Heatmap of the SF-junction Pearson correlation coefficients matrix.

SUPPLEMENTARY FIGURE 6

Splicing regulation inference in the GSE107011 dataset. (A) Heatmap of the
expression patterns of the SFs that are expressed in at least two datasets and

are differentially expressed in the immune system. SFs (columns) are ordered

by clustering. (B) Heatmap of the splicing patterns (PSI) of the junctions that
have abs(DPSI) ≥ 0.2 and are assigned an alternative splicing type other than
Frontiers in Immunology 16
AFE. Junctions (rows) are ordered by clustering. (C) Heatmap of the SF-
junction Pearson correlation coefficients matrix.

SUPPLEMENTARY FIGURE 7

Splicing regulation inference in the GSE115736 dataset. (A) Heatmap of the

expression patterns of the SFs that are expressed in at least two datasets and
are differentially expressed in the immune system. SFs (columns) are ordered

by clustering. (B) Heatmap of the splicing patterns (PSI) of the junctions that
have abs(DPSI) ≥ 0.2 and are assigned an alternative splicing type other than

AFE. Junctions (rows) are ordered by clustering. (C) Heatmap of the SF-

junction Pearson correlation coefficients matrix.

SUPPLEMENTARY FIGURE 8

Transcription regulation inference in the GSE64655 dataset. (A) Heatmap of

the expression patterns of the transcription factors (TFs) that are expressed in
at least two datasets and are differentially expressed in the immune system.

TFs (columns) are ordered by clustering. (B) Heatmap of the splicing patterns

(PSI) of the junctions that have abs(DPSI) ≥ 0.2 and were annotated as AFE.
Junctions (rows) are ordered by clustering. (C) Heatmap of the TF-junction

Pearson correlation coefficients matrix.

SUPPLEMENTARY FIGURE 9

Transcription regulation inference in the GSE107011 dataset. (A) Heatmap of

the expression patterns of the TFs that are expressed in at least two datasets

and are differentially expressed in the immune system. TFs (columns) are
ordered by clustering. (B) Heatmap of the splicing patterns (PSI) of the

junctions that have abs(DPSI) ≥ 0.2 and were annotated as AFE. Junctions
(rows) are ordered by clustering. (C) Heatmap of the TF-junction Pearson

correlation coefficients matrix.

SUPPLEMENTARY FIGURE 10

Transcription regulation inference in the GSE115736 dataset. (A) Heatmap of
the expression patterns of the TFs that are expressed in at least two datasets

and are differentially expressed in the immune system. TFs (columns) are
ordered by clustering. (B) Heatmap of the splicing patterns (PSI) of the

junctions that have abs(DPSI) ≥ 0.2 and were annotated as AFE. Junctions
(rows) are ordered by clustering. (C) Heatmap of the TF-junction Pearson

correlation coefficients matrix.

SUPPLEMENTARY FIGURE 11

Differential splicing of SBNO2 DS-LCs in sepsis. (A) Sashimi plots of control
and sepsis monocytes from SBNO2 chr19:1127765-1147309. (B) Sashimi plots

of control and sepsis neutrophils from SBNO2 chr19:1154402-1174172.
Sashimi plots display the mapped reads number; the splice junctions are

shown as arcs. Samples from the control or sepsis donors are overlaid on one

another. The numbers on each arc are the JSR counts of each sample. The
order of the samples is the same for all junctions.

SUPPLEMENTARY FIGURE 12

Differential transcript use of RABGAP1L in MS. The Sashimi plots of healthy,
pre-treatment MS and post-treatment MS neutrophiles display the number of

mapped reads; the splice junctions are shown as arcs. The numbers on each

arc are the JSR counts of each sample. The transcript structure at the bottom
displays both alternative first exon and alternative last exon.
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