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The autoimmune diseases of the central nervous system (CNS) represent

individual heterogeneity with different disease entities. Although clinical and

imaging features make it possible to characterize larger patient cohorts, they

may not provide sufficient evidence to detect disease activity and response to

disease modifying drugs. Biomarkers are becoming a powerful tool due to their

objectivity and easy access. Biomarkers may indicate various aspects of

biological processes in healthy and/or pathological states, or as a response to

drug therapy. According to the clinical features described, biomarkers are usually

classified into predictive, diagnostic, monitoring and safety biomarkers. Some

nerve injury markers, humoral markers, cytokines and immune cells in serum or

cerebrospinal fluid have potential roles in disease severity and prognosis in

autoimmune diseases occurring in the CNS, which provides a promising

approach for clinicians to early intervention and prevention of future disability.

Therefore, this review mainly summarizes the potential biomarkers indicated in

autoimmune disorders of the CNS.

KEYWORDS
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Introduction

With the deep investigation on the pathogenic mechanisms of the CNS, the study of

biomarkers has become a particularly active research field because of its potential

application in clinical practice in disease diagnosis and prognosis evaluation. They are

easy to quantify and can well characterize the autoimmune diseases. Molecular biomarkers

combined with imaging tools largely contribute to the diagnosis, evaluation of the efficacy

of disease modifying drugs (DMDs), and prediction of disability in clinical practice. At

present, Biomarkers with clinical significance and prospects from blood and cerebrospinal

fluid (CSF) have been proposed one after another. Therefore, this review collates the

biomarkers related to CNS autoimmune diseases and potential clinical significance.
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Neurofilament light chain (NfL)

Neurofilament is the cytoskeleton component of neurons, which

is especially rich in axons and plays a structural role in maintaining

axon morphology. Neurofilament consists of three subunits, namely,

neurofilament light chain (NfL), neurofilament medium chain and

neurofilament heavy chain. NfL refers to the neurofilament chain

with molecular weight less than 68 kDa, which is the most widely

studied component of neurofilament. When axonal or neuronal

damage occurs, NfL could be released and can be detected in the

CSF and blood (1). Previous studies have found that CSF NfL is

associated with disease disability, disease activity, and the time since

the last relapse in patients with relapsing and remitting multiple

sclerosis (RRMS) (1–7). However, the previous study could only

accurately quantify NfL in CSF samples, because the sensitivity of the
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detection technique is not accurate enough to quantify the level of

serum NfL (sNfL) (1). Because lumbar puncture is an invasive

operation, it is more suitable for clinical diagnosis and treatment

for the study of sNfL. At present, single molecular array (SIMOA) is

generally used to determine NfL. Current studies have shown that

there is a close correlation between sNfL levels and multiple sclerosis

(MS). SNfL is related to disease activity, treatment response, disease

and disability progression, and can be combined with magnetic

resonance imaging (MRI) to assist in disease diagnosis and

treatment (Table 1). However, NfL can be increased in any status

that leads to axonal damage, including normal aging. Therefore,

despite its high sensitivity, it is not an ideal biomarker for a single

diagnostic test (8).

As a biomarker of disease activity, NfL can be used to provide a

quick overview of disease activity. A large nested case-control study
TABLE 1 Overview of the biomarkers described in this review.

Biomarkers Common Related Diseases Function

CNS Injury Markers

NfL MS, NMOSD To monitor disease activity,
To monitor drug treatment response,
To predict disability progression,
To aid imaging diagnosis

GFAP NMOSD To monitor disease activity and disability progression,
To monitor drug treatment response,
To aid differential diagnosis

CNTN-1 MS To monitor disease activity,
To monitor drug treatment response

CHI3L1 MS To predict disability progression

Humoral Markers

KFLC MS Diagnostic and prognostic markers,
To monitor disease changes and efficacy

KFLC Index MS To aid diagnosis and differential diagnosis
Prognostic markers

AQP4-IgG NMOSD Diagnostic markers

MOG-IgG MOGAD Prognostic markers

Autoimmune encephalitis associated antibody AE Diagnostic markers

Cytokines

IL-6 NMOSD, MS Prognostic markers

IL-17A AE To evaluate short-term severity

CXCL13 MS, NMDAR encephalitis Diagnostic and prognostic markers,
To monitor drug treatment response,

OPN MS To monitor disease activity and progression,
Diagnostic and prognostic markers

Cell Markers

Memory B cells and plasma cells NMOSD, MS To monitor drug treatment response

Eomes+ Th cells MS To monitor disease progression,
Prognostic markers
CNS, central nervous system; NfL, neurofilament light chain; GFAP, glial fibrillary acid protein; CNTN-1, Contactin-1; CHI3L1, chitinase3-like protein1; KFLC, kappa free light chain; AQP4-
IgG, aquaporin-4-IgG; MOG-IgG, myelin oligodendrocyte glycoprotein-IgG; IL-6, interleukin-6; IL-17A, Interleukin-17A; CXCL13, chemokine (C-X-C motif) ligand 13; OPN, osteopontin; MS,
multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorders; MOGAD, myelin oligodendrocyte glycoprotein-IgG associated disease; AE, autoimmune encephalitis; NMDAR, N-methyl
D-aspartate receptor.
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on patients with MS found that the elevation of sNfL was usually

several years earlier than the clinical onset of MS. The level of sNfL

increased close to the clinical attack and the onset itself was related

to the significant increase of sNfL. The inherent increase of sNfL

level before symptoms was related to the high risk of MS, suggesting

that MS may have a prodromal period lasting for several years,

during which axonal damage has occurred (9). Another study

showed that patients with higher sNfL levels had a higher risk of

relapse than patients with lower levels (10). In addition, sNfL also

has a prognostic value in patients with clinical isolation syndrome

(CIS) in the conversion to clinically defined MS (10).

As a marker of subsequent attacks, sNfL can also be used as an

index to monitor treatment response. It was found that DMD

treatment was an independent factor related to sNfL levels. The

sNfL level of patients treated with DMD was lower compared with

untreated patients, and sNfL level decreased significantly during

follow-ups (11, 12). Compared with other treatments, high-

efficiency therapies may lead to a greater decline in sNfL levels

over time (10). After excluding the influence of confounding factors

such as age and body mass index on sNfL measurement, Benkert

and his colleagues established a reference database by using the

statistical methods of percentile and Z score (13). The results

showed that sNfL can be used as a biomarker to predict the

individual therapeutic effect and course of MS. In addition, sNfL

could be used as an additional measure of disease activity and sNfL

concentration could also be used to quantitatively compare the

long-term effectiveness of disease modification therapy (DMT) (13).

This study showed that in all patients with MS and patients with no

evidence of disease activity, a sNfL Z score greater than 1.5 was

associated with an increased risk of future clinical or MRI disease

activity. And Z score was more accurate compared to the absolute

value of sNfL (13).

In addition, the level of sNfL was independently correlated with

the score of Expanded Disability Status Score (EDSS) (14, 15), and

could be used as a predictor of the long-term course of disability in

MS. Several studies found that baseline sNfL levels were

significantly correlated with EDSS scores, MS clinical phenotype

and treatment response (10). Another study also indicated that as

baseline sNfL levels increased (equal to or higher 7.3 pg/ml), the risk

of disability progression as measured by relapse-free EDSS-

progression also increased, and patients with lower sNfL levels

than 7.3 pg/ml were significantly less likely to experience disability

progression (16). Patients with secondary progressive MS (SPMS)

transition were more likely to show higher sNfL levels during

follow-up compared to baseline. The results showed that sNfL

measurement could predict disability progress and could

distinguish SPMS patients, thus promoting the early diagnosis of

patients at risk (16). In addition, some studies have also found that

sNfL was related to the EDSS score and seizure severity of myelin

oligodendrocyte glycoprotein-IgG associated disease (MOGAD),

and may predict the long-term prognosis of MOGAD (17). In a

prospective study, the relationship between sNfL levels and disease

severity and prognostic indicators of neuromyelitis optica spectrum

disorders (NMOSD) was evaluated. The results also showed that

sNfL level was positively correlated with EDSS score. Therefore,
Frontiers in Immunology 03
sNfL may be a biomarker of disease activity and disability in MS,

MOGAD and NMOSD (18).

The increase of sNfL level is also related to the loss of brain and

cervical spinal cord volume in MS patients (15), and the baseline

sNfL level is a predictor of brain atrophy (19). A large observation

cohort with a 12-year follow-up in a single center showed that sNfL

level was correlated with brain atrophy (10). In a recent study,

baseline sNfL predicted brain atrophy in the following 12 and 24

months, with the latter baring the stronger correlation (19). In a

group of newly diagnosed CIS and RRMS patients, it was found that

the sNfL level at the diagnosis time point was significantly

correlated with the baseline T2 lesion volume (20). Besides, a

higher baseline sNfL level can predict brain atrophy in the next 2

years (20). After 2 years, the brain volume of patients with higher

baseline sNfL decreased faster, and the volume of T2 lesions

increased faster (20). Furthermore, higher CSF and sNfL levels in

MS patients are associated with more severe gray matter atrophy

(21, 22), and CSF NfL concentration is an independent predictor of

gray matter volume in CIS (22).

High NfL concentration in serum and CSF is related to Gd

enhancement and the number of new/enlarged lesions on MRI,

which is not limited to RRMS, but also in patients with progressive

MS (8, 15). sNfL level was positively correlated with the existence

and number of Gd+ lesions which indicating acute inflammatory

neuron injury (20). Within 3 months after Gd+ injury, sNfL level

increased (23). In addition, sNfL seems to have the potential to

distinguish clinical recurrence with Gd+ lesions from clinical

recurrence without Gd+ lesions (23). Therefore, sNfL

measurement can be used as a tool in clinical practice to decide

when a patient needs MRI enhancement evaluation (20).
Glial fibrillary acid protein (GFAP)

GFAP is the main intermediate filament that makes up the

cytoskeleton of astrocytes, which maintains the integrity of cell

structure. It also plays a role in cell mitosis, astrocyte-neuron

communication and glial scar formation. The detection of GFAP

in CSF or serum reflects the damage of astrocytes (24, 25). There is a

close correlation between CSF and serum GFAP (sGFAP) levels in

patients with demyelinating diseases (26, 27).

Recently, a large number of studies have investigated the

potential of GFAP as an indicator of disability progression,

diagnosis and early disease activity in MS (24). One study

established a positive correlation between sGFAP and EDSS score

or recent attacks, but no therapeutic effect was detected in RRMS. In

RRMS, sGFAP levels were associated with the maximum EDSS

score indicating disease progression during the most recent attack,

but not with the remission between recent attack. In addition, the

study analyzed sera samples from 32 RRMS patients in remission

and found that the GFAP levels were not higher compared to

previous studies. The value of sGFAP to predict subsequent attack

in MS warrants further study (26). In addition, CSF GFAP is more

likely to be related to progressive MS compared to RRMS (28).

Therefore, GFAP may be not sufficient to be an appropriate
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biomarker for MS diagnosis and disease activity assessment alone,

and more biomarkers and imaging evidence are needed to

distinguish MS from other neurological diseases.

It was found that in patients with aquaporin-4 (AQP4)-IgG+

NMOSD, sGFAP was also significantly correlated with clinical

disability parameters. sGFAP has a potential role as a biomarker

of disease severity and future disease activity in patients with AQP4-

IgG+NMOSD in clinical remission (29). In addition, sGFAP is not

only correlated with disease activity, but also with inebilizumab-

treatment response in NMOSD (30). In contrast, no association

between sGFAP and clinical disability parameters was observed in

patients with MOGAD (29). However, the correlation between sNfL

and clinical disability parameters and future disease activity in

AQP4-IgG+ patients is to be determined. The potential

correlation between sGFAP as a biomarker of disease severity and

prognosis of AQP4-IgG+NMOSD deserves further study in an

independent cohort of AQP4-IgG+NMOSD patients (29).

Another study found a strong correlation between sGFAP levels

and EDSS scores and recent attack rates, suggesting that sGFAP

levels are biomarkers of disability and disease activity in NMOSD,

regardless of age or sex (26). The level of sNfL in NMOSD was

higher in patients with higher EDSS score and older patients.

sGFAP is associated with recent myelitis attack, but not with

clinical disease activity from other anatomical attacks. The results

showed that sGFAP and sNfL may be good biomarkers of disease

activity and disability, while sGFAP/sNfL quotient at attacks may be

a potential diagnostic marker for NMOSD. Higher sGFAP/SNfL

quotient at attacks has a sensitivity of 73.0% and specificity of 75.8%

to distinguish NMOSD from MS (26). When the disease relapsed,

the level of sNfL in NMOSD and MS groups decreased with time,

but the decline rate in NMOSD group was slower compared with

MS patients. It seems that not sNfL but the combination of sGFAP

and sNfL helps distinguish NMOSD from MS (25).

SNfL and sGFAP can also be used as biomarkers of therapeutic

effect in NMOSD (31). A recent study showed, tocilizumab and

rituximab (RTX) significantly decreased the levels of sNfL and

sGFAP at the end of follow-up compared to corticosteroids (32).
Contactin-1 (CNTN-1)

Contact proteins are a group of cell adhesion molecules, which

are mainly expressed in the brain and are indispensable in axon

domain organization, axon orientation, neurogenesis, neuron

development, synaptic formation and plasticity, axon-glial cell

interaction and nerve regeneration. At present, enzyme-linked

immunosorbent assays (ELISAs) is generally used to detect the

concentration of CNTN-1 in CSF. A previous study showed that the

decrease of CSF CNTN-1 level in patients with MS was associated

with disease progression, suggesting that CNTN-1 can be used as a

new marker of axonal injury (33). Compared with healthy controls,

the levels of CNTN-1 and CNTN-2 in RRMS and SPMS decreased

at most by 1.4 times, while in patients with CIS, CNTN-1 tended to

increase compared with controls. Baseline CNTN-2 levels also play

a vital role in predicting longitudinal decline in cortical volume. CSF

CNTN-1 levels in SPMS patients were positively correlated with
Frontiers in Immunology 04
MRI standardized brain volume, but negatively correlated with T2

lesion load. As for RRMS and primary progressive multiple sclerosis

(PPMS), there was no correlation betweenCNTN-1 andCNTN-2 and

standardized brain volume or T2 lesion load (34). A recent study has

shown that serumCNTN-1 (sCNTN-1) can be used as a biomarker of

long-term disease progression in MS. According to a 3-year

prospective study, median sCNTN-1 levels were significantly lower

in RRMS patients with natalizumab-treated compared with healthy

controls. It also found that sCNTN-1 levels in RRMS patients with

disability progression decreased significantly before and 12 months

after treatment compared with non-progressive patients (35).

Therefore, CNTN-1 can be used as a sensitive biomarker of disease

activityandalso as abiomarkerof therapeutic response (Table1). It can

complement MRI and clinical evaluation in the process of diagnosis,

butmore studies are needed to verify the pathogenesis of CNTN-1 and

its role in MS pathology.
Chitinase-3-like protein 1 (CHI3L1)

Chitinase3-like protein1 (CHI3L1), a secretory glycoprotein, is one

of the newly discoveredmarkers of inflammation in recent years, which

can mediate inflammation, macrophage polarization, apoptosis and

carcinogenesis. But its physiological and pathophysiological role in the

development of cancer andneurodegenerative diseases is still unclear. In

human, CHI3L1 is also called chitin protein-40 (chitinaseprotein-40,

YKL-40), based on its threeN-terminal amino acids, tyrosine (Y), lysine

(K)and leucine (L) (36).The relativemolecularweight is about 40kDa. It

is a chitin-binding lectin and belongs to the glycosyl hydrolase family 18

(36). InCNSdisorders,CHI3L1 is expressed in astrocytes andmicroglia/

macrophages,mainly in active demyelinating areas. Levels of CHI3L1 in

the CSF were reported to be increased during acute inflammation of

demyelinating disease (37). Patients with SPMS and PPMS had

significantly higher levels of CHI3L1 compared to RRMS and CIS in

CSF and blood samples. Patients with RRMS were more likely to show

high NfL with low CHI3L1 levels (38, 39). However, the expression of

CHI3L1 in peripheral blood was affected by many factors, and the

specificity for CNS disorders was lower compared to CHI3L1 in CSF. A

number of studies have shown that CHI3L1 in CSF is helpful to

distinguish the progressive MS and RRMS (38–40). The elevated level

of CHI3L1 is a characteristic of progressive disease. In patients with

RRMS, high level of CHI3L1 in CSF is an independent predictor of the

deterioration of neurological dysfunction and the progression of the

disease to SPMS.Therefore,CHI3L1 inCSFmaypredict the progression

of RRMS (37–40). In addition, CHI3L1 has a good prognostic effect in

the earlyMS and has the potential to become a therapeutic target inMS

(38, 41).
Kappa free light chain (KFLC)

Kappa chain (k chain) is a kind of Ig molecular light chain (L

chain), which is mainly produced in the sheath in the CNS. The

light chain of Ig includes Kappa chain (k chain) and Lambda chain

(l chain) (42). FLC in serum is mainly cleared by kidney, but this

process does not exist in CSF. Thus quantitative detection of FLC
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combined with blood-brain barrier function can reflect the

synthesis of intrathecal Ig, which can be used in the diagnosis and

prognosis of CSF inflammatory and infectious diseases (43).

Electrophoresis is generally used to detect KLFC in CSF.

Compared with oligoclonal band (OCB), CSF KFLC has higher

sensitivity in the diagnosis of MS/CIS, and there is no significant

loss of specificity. Studies have shown that the determination of CSF

KFLC is a valuable quantitative substitute or supplement for the

qualitative evaluation of OCB (43, 44). The total amount of

intrathecal KFLC synthesis can distinguish MS myelitis from

NMOSD myelitis. KFLC IF (intrathecal fraction) > 78% can

distinguish myelitis caused by MS and NMOSD, with a sensitivity

of 88.5% and a specificity of 88.9% (45). In addition, KFLC has high

stability and has additional advantages over OCB, such as

objectivity, easier standardization, faster speed, lower cost and so

on (43, 44). However, steroids have a significant effect on KFLC

levels (46), and further studies are needed to determine how much

steroid treatment affects KFLC levels.
KFLC index

KFLC index is a method for measuring the production of KFLC

in the sheath. The index is obtained by linear modeling to calculate

the concentration of KFLC in serum and CSF. The formula of KFLC

index is: FLC index = Q FLC/Q alb with Q FLC = CSF FLC/serum FLC

and Q alb = CSF albumin/serum albumin (47). Similar to CSF KFLC,

KFLC index is better than OCB in the diagnosis of MS and

differentiation of MS and other inflammatory CNS disorders (44,

47, 48), so KFLC index may replace OCB as a first-line biomarker of

MS in clinical practice. The early initiation of DMDs in MS is

important to slow down progression in disability and cognitive

impairment. KFLC index predicted the second clinical attack in

patients with CIS in both space and time (47), and high KFLC index

was an independent risk factor for early further attacks. In a

prospective cohort study, a 10% increase in the KFLC index

indicates an increase in the risk of a second clinical attack of

about 13%. Patients with a high KFLC index (> 100) are twice as

likely to have a second clinical attack within 12 months as those

with a low KFLC index (49). Compared to OCB, KFLC index has

methodological advantages in the diagnosis of MS and is

independent of subjective interpretation (48). KFLC index may be

not affected by DMT, demographic factors, clinical demyelination

event types or MS phenotypes (47, 48). Young age, female sex and

evidence of disease activity are independent factors associated with

high KFLC index of MS (47). Current evidence suggests that the

KFLC index is a reliable prognostic biomarker that may replace the

OCB assay and bring us closer to the tailored drugs of MS.
Anti-AQP4-Antibody (AQP4-IgG)

AQP4 is a widely expressed water channel mainly expressed in

astrocytes of the CNS, especially in astrocytes involved in the

formation of the blood-brain barrier (50). AQP4-IgG positive
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NMOSD is marked by the destruction of astrocytes (51). Current

studies have shown that clinical, pathological and preclinical

evidence consistently support the pathogenic role of AQP4-IgG

in NMOSD. AQP4-IgG exists in up to 70% ~ 90% of NMOSD

patients and is highly specific for the disease (52, 53).The titer of

AQP4-IgG in serum is more than 500 times higher than that in

CSF, so only patients with negative serum should be considered

for CSF detection to improve sensitivity. The detection of AQP4-

IgG in serum is necessary in the diagnostic criteria of the

international expert group of NMOSD in 2015 (52). The

laboratory method with the highest sensitivity and specificity for

detecting AQP4-IgG is cell-based array (CBA) detection (54), with

a sensitivity and specificity of 76% and 99%, respectively.

However, limited evidence indicate that AQP4-IgG serum status

cannot be used as a biomarker to predict disease activity and

immunosuppressive drug response (52).
Anti-MOG-Antibody (MOG-IgG)

Myelin oligodendrocyte glycoprotein (MOG) is usually found

on the surface of mature oligodendrocyte and the myelin sheath of

the CNS, and its expression begins in the late stage of myelin

formation (53). It may play a structural role in microtubule stability,

myelin fiber adhesion and response to inflammation. MOG-IgG

usually belongs to IgG1 subclass. It can activate the complement

cascade and determine the disorder of the cytoskeleton of

oligodendrocytes, resulting in demyelination (52). At present, the

best method to detect MOG-IgG is CBA. In the past 40 years, the

pathogenicity of autoimmune response to MOG has been well

confirmed (55). Acute disseminated encephalomyelitis (ADEM) is

the most common clinical manifestation associated with anti-MOG

antibodies. Anti-MOG antibody was only briefly observed in

monophasic diseases such as ADEM, and its decrease was

associated with a good prognosis, but persisted in polyphasic

ADEM, NMOSD, relapsing optic neuritis or myelitis (56). The

titer of MOG-IgG fluctuates during the clinical course of the disease

and the level is higher in the acute attacks (57). However, the titer of

MOG-IgG was not related to the risk of relapses or the final clinical

outcome (58). In early studies, the lack of disease specificity was

revealed by testing MOG-IgG at low titers in MS patients or other

neurological diseases or even in healthy individuals (59). These

observations suggest that MOG-IgG in the serum may bind to

MOG and produce non-specific positive signals, or these antibodies

may belong to the natural antibody class that is relatively common

at low levels and will not be deleted by the B cell tolerance

mechanism, but do not cause disease (59). Some studies have

shown that MOG-IgG is associated with AQP4-IgG seronegative

NMOSD. Compared with AQP4-IgG seropositive patients, MOG-

IgG seropositive patients have a lower risk of further relapses and a

better visual field prognosis (54). MOG-IgG is associated with

clinical manifestations and younger age of onset of human

inflammatory demyelinating diseases, with the highest incidence

in pediatric patients (56, 59). The available evidence shows that

MOG-IgG can be used as a prognostic biomarker of MOGAD (54).
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Autoimmune encephalitis associated
antibody

Autoimmune encephalitis (AE) is characterized by the existence of

autoantibodies that directly attack the protein in or on the surface of

neurons, so the detection of protein-specific antibodies in CNS has

changed our understanding of AE and our ability tomake an accurate

diagnosis (60). At present, the bestmethod to detect these antibodies is

CBA. These antibodies target important brain proteins, including

neurotransmitter receptors, ion channels and related membrane

proteins (60). They are specific for a definite diagonis of AE. For

example, the only specific diagnostic test againstN-methylD-aspartate

receptor (NMDAR) encephalitis is to prove the IgG autoantibodies

targeting the GluN1 subunit of the NMDAR in CSF of patients (61).

The antibody of anti-LGI1 encephalitis is IgG antibody targeting

leucine-rich glioma-inactivated 1 (LGI1) protein (an extracellular

component of the voltage-gated Kv1 potassium channel-complex)

(62). This study has confirmed that IgG4 is themajor subclass of LGI1-

IgG, and a higher LGI1-IgG specific CSF index, that is, the index of

intrathecal antibody synthesis, is related to the poor prognosis of

patients with anti-LGI1 encephalitis (62). Autoimmune GFAP

astrocytopathy is a meningoencephalitis associated with GFAP-

specific IgG (63). GFAP-specific IgG can be used as a biomarker of

recurrent autoimmune meningoencephalitis that responds to

immunotherapy (64). Positive sGFAP specific IgG can distinguish

autoimmune GFAP meningoencephalitis from other diseases (64).

One of the types of AE that is difficult to diagnose is antibody-negative

AE, because there is no definite antibody or known AE syndrome to

explain this manifestation (65). In a cohort of children, antibody-

negative AE was associated with poor cognitive outcomes compared

withNMDARencephalitis (66). Thediagnosis ofAEwithout antibody

recognition is usually made without alternative diagnosis, such as

neuroimaging, CSF analysis and electroencephalogram (EEG) (65).

Recognition of the characteristic examinations in the limbic system of

AE is an important clue to guide the diagnosis (67). BrainMRImay be

normal, non-specific, or show multifocal T2/FLAIR high signal

changes (68). EEG has no specific pattern association with most AE

subtypes, except for the extremedelta brush pattern found inNMDAR

encephalitis (69). EEG may help to distinguish organic and mental

pathology (70).EEGmayalsoserve asabiomarkerofdisease severity to

guide treatment decisionmaking (70). CSF detection is very important

because classical CSF analysis providesmore timely information, such

as CSF leukocyte count, total protein and OCB of CSF, which may

support the diagnosis of AE (71). The presence of specific CSF and

serum autoantibodies is extremely important for the final diagnosis of

AE.CSF antibody detection ismore sensitive and specific, so it is better

than serum antibody detection (72).
Cytokines

Cytokines and chemokines have multiple effects on many

inflammatory cells, most of which have unique characteristics and

are elevated in many neuroimmune diseases of the CNS. Therefore,

cytokines and chemokines can be used as biomarkers for diagnosis
Frontiers in Immunology 06
of autoimmune disease and detection of intrathecal inflammation,

which can be used to evaluate disease activity and to predict disease

progression (73). Chemokine is a secretory protein that controls the

transport and localization of leukocytes to the target organ (74). At

present, ELISA is generally used to detect these biomarkers. Soluble

inflammatory mediators have long been studied as appropriate

biomarkers that can predict the process of MS (75). Some of

these soluble markers are not disease specific, and the challenge

of biomarker research is still lack of repeatability and sensitivity.

However, some candidate biomarkers have been studied and need

to be verified, and” omics “technology is developing rapidly,

providing a basis for future research (76).
IL-6

Interleukin-6 (IL-6) is considered to be an important cytokine

in inflammatory diseases of the CNS. It has multiple functions and

mediates many biological activities. It participates in acute

inflammation by inducing the synthesis of acute phase proteins,

so the increased concentration of IL-6 in CSF may represent a non-

specific marker of inflammation in the CNS (77). In addition, IL-6 is

also one of the B cell stimulating factors, which differentiate B cells

into plasma cells and lead to the production of immunoglobulin

(78). IL-6 is significantly increased in serum and CSF of NMOSD

patients, which may play a variety of roles in the pathophysiology of

NMOSD by promoting plasma cell survival, stimulating the

production of anti-AQP4 antibody, destroying the integrity and

function of blood-brain barrier and enhancing the differentiation

and activation of pro-inflammatory T lymphocytes (79). Blocking

IL-6 signal transduction with anti-IL-6 receptor monoclonal

antibody tocilizumab is very effective for refractory NMOSD

patients (80). The increased CSF IL-6 level at diagnosis is

associated with increased recurrence and disability in RRMS

patients during the 3-year follow-up (77). In addition, the ratio of

IL2:IL6 in CSF may be a prognostic biomarker of early MS and may

be helpful to predict the early relapsing activity of MS (81). CSF IL-

6 can also be used as a biomarker to distinguish NMO from MS

(82). Besides, the increase of serum IL-6 level in AE patients may

indicate the persistent proinflammatory state of AE and may lead to

poor prognosis (83). In anti-NMDAR encephalitis, with the

increase of cytokines including IL-6, the clinical symptoms are

aggravated (84). Therefore, IL-6 may be a new biomarker of anti-

NMDAR encephalitis.
IL-17A

Interleukin-17A (IL-17A) is an effective proinflammatory

cytokine produced by Th17 cells and IL-17-secreting CD8+T cells

(85). It promotes the pathophysiology of autoimmune diseases and

may mediate delayed inflammation by inducing neutrophils and

monocytes to recruit chemokines at inflammatory sites (85). A

recent study has shown that IL-17 impairs myelin regeneration and

promotes myelin damage through oligodendrocyte/myelin injury

mediated by increasing voltage-gated K+ channel 1 (86). Some
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researchers speculate that the level of IL-17A may increase in the

early stage of MS inflammation, and the level of IL-17A will

gradually decrease with the remission of inflammation, but this

speculation still needs further study (87). IL-17A may regulate

inflammatory immune response in NMOSD through PI3K-m

TOR signaling pathway, and promote disease progression (88).

The high expression of IL-17A in peripheral blood of patients with

relapsing NMOSD suggests that it may be related to relapse (88).

The concentration of pro-inflammatory IL-17A in CSF of AE

patients increased and correlated with the severity of the disease

at the time of onset (89). Therefore, IL-17A in CSF can be used to

evaluate the short-term severity of AE patients and can lead to early

immunosuppressive therapy (89).
CXCL13

Chemokine (C-X-C motif) ligand 13 (CXCL13) is an effective B

cell chemical attractor, which is essential for B cell migration and

the development of B cell follicles and secondary lymphoid

structures (73). CXCL13 is increased in patients with

autoimmune diseases and is related to the disease severity,

activity and prognosis (90). A meta-analysis shows that CSF

CXCL13 and blood IL-23 levels in patients with MS are always

different from those in healthy controls, and they may be used for

diagnostic purposes (91). Increased concentration of CXCL13 was

detected in blood, CSF and active demyelinating brain lesions in

patients with MS (90). Notably, in patients with RRMS, CSF

CXCL13 levels were associated with increased relapsing rates and

disease severity measured by the EDSS (90). The level of CSF

CXCL13 in MS patients decreased significantly after treatment

(91). Therefore, CSF CXCL13 may be used in the diagnosis of MS

in clinical practice, and may also become a biomarker of drug

treatment response and disease progression of MS (91). Further

research is needed to verify this. Besides, CXCL13 may also be a

promising biomarker for the course of AE (82). For example, it has

been shown that the increase of CSF CXCL13 in 70% of patients

with early anti-NMDAR encephalitis is associated with intrathecal

NMDAR antibody synthesis (82).
Osteopontin

Osteopontin (OPN), also known as secreted phosphoprotein-1

(SPP1), is mainly released by endothelial cells, microglia,

macrophages and dendritic cells in the brain (92). OPN mainly

reflects the activation of innate immune system and promotes

inflammation by increasing the production of IL-12, IL-17 and

interferon-g (IFN-g) and inhibiting the expression of IL-10 (93).

OPN tends to induce proinflammatory cytokines in NMOSD and

MS (94). Plasma OPN levels in patients with NMOSD were higher

than healthy controls, especially in the cases with attacks and severe

disability (95). High levels of OPN can be detected in CSF, serum or

plasma in patients with MS, indicating that the protein may be used

as a biomarker for monitoring disease activity and progression (95).

A meta-analysis showed that OPN levels in CSF and blood in
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patients with MS were significantly elevated, and OPN levels in CSF

in active MS patients were significantly compared to non-active

patients (93). OPN may play a harmful role in the development of

MS (92) and is closely related to disease activity (92, 96). The levels

of tumor necrosis factor and OPN in CSF of patients with early

RRMS after dimethyl fumarate treatment are related to disease

activity (96). Therefore, the combined detection with OPN and

other markers can help clinicians make personalized treatment

strategies. Moreover, OPN in CSF can predict the development of

lesions and microstructural abnormalities within 10 years (97). The

increase of OPN concentration in CSF indicates the enlargement of

lateral and inferior ventricles in progressive MS, accompanied by

changes in cortical and subcortical gray matter and white matter

volume (94). Higher OPN levels in CSF indicate poor prognosis and

long-term disease progression and are associated with the

deterioration of the disease (94, 98). More and more evidence

shows that OPN can be used as a biomarker for clinical diagnosis

or prediction and prognosis.
Combined detection of cytokines

The combined detection of these cytokines may be more helpful

to the prediction and evaluation of diseases. Moreover, CSF

CXCL13, CXCL8 and IL-12p40 can be used as biomarkers to

predict the progression from CIS to MS (74). Increased

concentrations of IL-6, IL-17 and CXCL13 are considered to be

key factors in inducing the formation of NMO lesions (82). These

molecules have been shown to be associated with the severity of

NMO disease and EDSS scores (82). IL6, IL-17A, CXCL10 and

CXCL13 in CSF can be used to detect inflammation in acute stage of

AE (99). The elevated levels of cytokines such as CXCL-13, CXCL-

10, IL-6 and IL-17A are related to the clinical severity of anti-

NMDAR encephalitis (100). The levels of IFN- g, IL-17, IL-12 and

IL-23 in the CSF of AE patients with positive autoantibodies to cell

surface protein are higher than those of AE patients with positive

autoantibodies to intracellular antigens (101).
Cell markers

Memory B cells and plasma cells

The antigen presentation process not only activates autoreactive

T cells, but also induces the proliferation of presenting B cells and

their subsequent differentiation into memory B cells and antibody-

producing plasma cells (102). At present, flow cytomety is generally

used to detect cell markers. Memory B cells (CD19+/CD27+), as

part of the secondary immune response, can rapidly produce

immunoglobulins. Many studies indicate that CD19+/CD27+

memory B cells can be used as biomarkers for RTX treatment

monitoring and retreatment in patients with NMOSD. Class-

switched memory B-cells (CD19+/CD27+/IgM-/IgD-, SMB), an

early regenerated memory B cell subset, may also be a sensitive

biomarker of disease recurrence risk (103). By monitoring the

memory B cells or SMB cells in peripheral blood mononuclear
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cells, individualized RTX administration regimens for NMOSD

patients can be made without losing the efficacy while reducing

the cumulative dose and medical expenses of RTX (103–105).

Plasma cells (PCs) represent the terminal differentiation from

mature B cells and play a key role in effective short- and long-

term humoral immunity by producing a large number of antigen-

specific antibodies (106). A recent study shows that CSF

plasmablasts can distinguish MS from other neurological

diseases (107).
Eomes+ Th cells

Recent studies found that cytotoxic CD4+T cells expressing

Eomes (Eomes+ Th cells) may play an important role in the

pathogenesis of SPMS and have the potential value of

distinguishing biomarkers between SPMS and RRMS patients

(Table 1) (108). Eomes+ Th cells from experimental autoimmune

encephalomyelitis lesions and the blood of SPMS patients can

release cytotoxic granzyme B and IFN- g and up-regulate CD107a

(also known as lysosomal associated membrane protein 1)

(109, 110). Granzyme B released by Eomes+ Th cells binds and

activates protease-activated receptor-1 on the surface of neurons

and leads to neurodegeneration (109). Compared with healthy

subjects and RRMS patients, Eomes+ Th cells in peripheral blood

and CSF were significantly increased in SPMS patients (109). The

detection of Eomes+ Th cells is of great value for SPMS diagnosis

and prognosis monitoring. The accuracy of Eomes+ Th cell level as

a biomarker to predict the risk of disease progression in SPMS

patients was more than 80% (108). In addition, Eomes+ Th cells

may also be a potential therapeutic target for SPMS patients (109).
Conclusion

We have systematically reviewed the potential biomarkers of

CNS autoimmune diseases. With the improvement of diagnostic

methods, neurologists can make faster and more accurate diagnosis

of CNS autoimmune diseases, so as to significantly improve the
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treatment response of patients and reduce the rate of disability.

However, at present, many biomarkers cannot be used as

independent markers in the clinical diagnosis and treatment of

diseases, so the joint detection of biomarkers can better achieve the

purpose of detection. Although the current research on biomarkers

of CNS autoimmune diseases is very extensive, it is still not perfect

and more in-depth research is needed.
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