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Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological

process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial

occlusion, and is one of the leading causes of death in the world population. The

progression of AS is closely associated with several inflammatory diseases, among

which periodontitis has been shown to increase the risk of AS. Porphyromonas

gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms,

is the “dominant flora” in periodontitis, and its multiple virulence factors are

important in stimulating host immunity. Therefore, it is significant to elucidate

the potential mechanism and association between P. gingivalis and AS to prevent

and treat AS. By summarizing the existing studies, we found that P. gingivalis

promotes the progression of AS through multiple immune pathways. P. gingivalis

can escape host immune clearance and, in various forms, circulate with blood and

lymph and colonize arterial vessel walls, directly inducing local inflammation in

blood vessels. It also induces the production of systemic inflammatory mediators

and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes

the progression of AS. In this paper, we summarize the recent evidence (including

clinical studies and animal studies) on the correlation between P. gingivalis and AS,

and describe the specific immunemechanisms by which P. gingivalis promotes AS

progression from three aspects (immune escape, blood circulation, and lymphatic

circulation), providing new insights into the prevention and treatment of AS by

suppressing periodontal pathogenic bacteria.

KEYWORDS

porphyromonas gingivalis, atherosclerosis, immune escape, blood circulation,
lymphatic circulation
1 Introduction

P. gingivalis, a Gram-negative anaerobic bacterium, is the “dominant flora” in

periodontitis (1, 2). P. gingivalis can stimulate the host immune response through

virulence factors, including its structural components (fimbriae, LPS, etc.) and secretory

components (gingipains and OMVs) (3). P. gingivalis fimbriae can enhance the
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inflammatory response and evade host immune clearance (4). P.

gingivalis LPS is an important virulence factor with lipid A as its

immune core, triggering a signaling pathway closely related to lipid

A variants (5). P. gingivalis gingipains are powerful protein

hydrolysers that assist P. gingivalis to evade host immunity (6). P.

gingivalis OMVs are outer membrane vesicles containing multiple

virulence factors that can circulate widely throughout the body and

access areas of tissue not accessible to whole bacteria, thereby

triggering an inflammatory response (7). P. gingivalis and its

virulence factors can promote the development of a variety of

systemic diseases such as cardiovascular disease, diabetes,

Alzheimer’s disease, etc (8).

AS is a chronic inflammatory pathological change occurring in the

walls of medium to large arteries, characterized by immune cell

infiltration and lipid deposition, and poses a serious threat to human

life and health. Recent single-cell sequencing studies have revealed

abundant heterogeneity of immune cells in the AS plaque

environment. For example, three macrophage subpopulations were

identified in human and mouse AS plaques, including inflammatory,

resident-like (TREM2hi), and TREM2hi macrophages. Among them,

TREM2hi macrophages are a foam-like, anti-inflammatory type of

macrophages and exhibit an osteoclast-like gene expression profile that

may be associated with plaque calcification (9, 10). Similar studies point

to the presence of a cluster in mouse AS plaques that matches the core

marker profile of B1 cells (CD43highB220negCD11bhigh) but shows

enriched TNF signaling and cell adhesion pathways that may be key

cell types for promoting AS (11). Previously unknown clusters of naive

T cells and ApoB+ T cells have also been found in plaques and are

closely associated with vascular inflammation, but the exact

mechanism is not yet clear (12). Another study found that vascular

smooth muscle cells (VSMCs) phenotype-switching mechanisms play

an important role in AS. During AS development, VSMCs can give rise

to a novel intermediate cell with multidirectional differentiation

potential, which can either differentiate into macrophage-like or

fibrocartilage-like cells or revert to VSMCs (13). VSMCs and

endothelial cells (ECs) in the core of human arterial AS lesions were

found to drive cellular transdifferentiation through multiple genes,

whereas VSMCs and ECs in the adjacent zone were involved in

immune cell recruitment through C3 and MHC II molecules,

respectively (14). More in-depth studies using single-cell sequencing

pointed out that DHRS9 in macrophages is a key factor in AS

formation (15), and CXCL3, GK, FPR1, and LST1 in monocytes are

closely associated with plaque instability (16). The application of single-

cell sequencing technology has deepened the understanding of cellular

heterogeneity in AS lesions, and provided an important theoretical

basis for further investigation of AS pathogenesis and the development

of targeted therapeutic drugs. In addition, single-cell sequencing studies

have the advantage of investigating the mechanisms of interaction

between two or more cells in tissues, such as between immune cells and

tissue cells, yet no relevant studies have been seen.

Existing researches show that P. gingivalis promotes AS

progression through immune responses (17, 18). On the one

hand, P. gingivalis evades host innate and adaptive immunity and,

in various forms, circulates with blood and lymph and colonizes the

arterial vessel wall, directly inducing local inflammation and lesions

in blood vessels. On the other hand, after evading host immunity, P.
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gingivalis persistently stimulates the host immune response, induces

systemic inflammatory mediators and autoimmune antibody

production, disorders of lipid levels, and promotes AS

progression. In this paper, we review the recent evidence on P.

gingivalis promoting AS and the related immune response

mechanisms to elucidate the potential mechanism of action and

association between P. gingivalis and AS, and provide theoretical

guidance for further in-depth studies.
2 Evidence of correlation between
P. gingivalis and AS

2.1 Clinical studies

The American Heart Association (AHA) supports an

independent association between periodontal disease (PD) and

atherosclerotic vascular disease, but not a causal relationship

between the two (19). Subsequent studies in the last decade also

lack evidence to date for a causal relationship between PD and AS.

Current clinical studies have mainly elaborated on the correlation

between PD and AS by detecting the colonization of periodontal

pathogens in AS plaques and serum levels of AS-associated

inflammatory markers.

Clinical studies have shown that abundant P. gingivalis

colonization can be detected in AS plaques of different artery

types. A Meat analysis based on 1791 patients showed that P.

gingivalis specifically localized to coronary AS plaques but not to

other organs (20). A study of 58 patients with moderate or severe

periodontitis with AS using a 16sRNA assay found P. gingivalis

detection rates of 26.7% in carotid arteries and 39.3% in coronary

arteries (21). Also using the detection method of 16sRNA assay,

some studies have pointed out that the detection rate of periodontal

pathogens including P. gingivalis in carotid AS lesions is only 21%

(22). Another study using metagenomics techniques noted that P.

gingivalis colonization was detected in the coronary or femoral

arteries of 42 patients with AS who participated in the study and

that P. gingivalis accounted for nearly 80% of all colonized bacterial

species, but the study was notably deficient in that it did not assess

the periodontal status of the participants (23). Some scholars believe

that the difference in the detection rate of P. gingivalis in AS plaques

may be due to demographic, geographical, and ethnic differences, as

well as different sampling methods and laboratory testing methods

of clinical samples, but there are no related statistical and

methodological differences (24). The colonization and invasion of

P. gingivalis into the arterial wall allows P. gingivalis to acquire a

“privileged niche”. This “privileged niche” not only helps P.

gingivalis to obtain proteins and iron substrates from the host but

also separates P. gingivalis from humoral and cellular immunity,

thus inducing endothelial dysfunction and promoting AS

progression (25) (Table 1).

In patients with periodontitis, the presence of P. gingivalis

colonization in the arterial vessel wall, as well as significantly

higher serum anti-P. gingivalis antibody titers (26, 33) and

inflammatory factor levels (27, 34) may lead to a concomitant

increase in AS risk (35, 36). In contrast, routine oral maintenance
frontiersin.org
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and periodontal treatment significantly reduced the levels of AS-

related inflammatory factors in the serum of the patient and

significantly improved the endothelial function of the patient’s

arterial vessels, leading to a consequent reduction in the risk of AS.

Several recent large population studies have evaluated the effect

of routine oral maintenance and periodontal treatment on the

progression of AS, and have reached similar conclusions. A

Korean follow-up study based on 247,696 healthy adults aged 40

years and older showed that brushing more than once a day and

regular professional dental cleanings reduced the risk of

cardiovascular events, including AS, by 9% and 14%, respectively

(30). A U.S. study of atherosclerosis risk in communities (ARIC)

based on 15,792 participants aged 45-64 years over 15 years showed

that regular dental care and attention significantly reduced the risk

of AS (31). Another U.S. study based on 8,999 participants aged 20-

85 years with 16.8 years of follow-up noted that the incidence of

cardiovascular disease, including AS, was 1.28 times higher in those

with a poor prognosis for periodontal treatment than in those with a

good prognosis for periodontal treatment (32). A study of 120

patients with severe periodontitis showed lower levels of

inflammatory factors in the blood after 24 hours of periodontal

treatment compared to usual oral care, and a significant
Frontiers in Immunology 03
improvement in endothelial function of the arteries at six months

(28). Plasma levels of AS-related risk molecules, including

inflammatory factors (CRP, IL-6, TNF-a), thrombotic molecules

(fibrinogen), and metabolic markers (triglycerides, TC, HDL-C,

HbA1c, A-FABP), were significantly reduced within six months

after periodontal treatment means to eliminate periodontal

inflammation (37–40). However, it has also been shown that

periodontal treatment, while maintaining relatively normal blood

concentrations of vascular inflammatory markers, did not improve

arterial vascular status in a short-term follow-up within three

months after periodontal treatment and did not indicate an AS

risk-reducing effect (29) (Table 1).

Based on the above clinical basis, we can speculate that P.

gingivalis may promote AS by colonizing the arterial wall and

causing abnormal serum inflammatory factor levels; however,

there is still insufficient evidence from clinical studies on P.

gingivalis and AS. Comparative studies on the colonization of P.

gingivalis in the arterial canal wall before and after periodontal

treatment are lacking. Current epidemiological data focus on

medium-sized arteries such as coronary, carotid, and femoral

arteries, however, the lack of studies on large arteries such as the

aorta may be significantly associated with the availability of
TABLE 1 Clinical Research Evidence of P. gingivalis and AS.

Research
Type Country Research Object Sample

Type Result References

Meta
analysis

/ 1791 AS patients
Coronary
artery,
carotid artery

P. gingivalis is one of the bacteria peculiar to AS plaque (20)

Clinical
research

America 42 AS patients

Coronary
artery,
femoral
artery

P. gingivalis accounts for nearly 80% of all bacterial species colonized in
AS plaque

(23)

Clinical
research

Serbia
58 AS patients with
periodontitis

Coronary
artery,
carotid artery

P. gingivalis was detected in 26.7% of carotid arteries and 39.3% of
coronary arteries

(21)

Clinical
research

France
45 AS patients with
periodontitis

Carotid
artery

The detection rate of periodontal pathogens including P. gingivalis in
AS lesions was only 21%

(22)

Clinical
research

Sweden
42 healthy people, 89
periodontitis patients

Serum
The IgG antibody titer of anti-P. gingivalis in the serum of patients with
periodontitis is at a long-term stable high level

(26)

Clinical
research

Columbia
22 patients with gingivitis,
22 patients with
periodontitis

Serum
Serum E-selectin, MPO, and ICAM-1 levels in patients with
periodontitis increased

(27)

Clinical
research

Britain
120 patients with severe
periodontitis

Serum
Periodontal treatment reduces the level of inflammatory factors in the
blood and improves the endothelial function of arteries

(28)

Clinical
research

Brazil
69 patients with coronary
heart disease severe and
periodontitis

Serum
Periodontal treatment maintained a relatively normal blood
concentration of markers of vascular inflammation but did not improve
arterial vascular conditions

(29)

Clinical
research

South
Korea

247696 healthy adults aged
40 and over

/ Daily brushing and regular dental maintenance reduce AS risk (30)

Clinical
research

America
15792 participants aged 45-
64

/ Regular dental care and care significantly reduce the risk of AS (31)

Clinical
research

America
8999 participants aged 20-
85

/
The incidence rate of cardiovascular diseases in patients with poor
periodontal treatment prognosis is 1.28 times higher than that in
patients with a good prognosis

(32)
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experimental samples. In addition, PD and AS each have multiple

complex and critical risk factors that are pervasive and powerful

contributors and difficult to fully exclude, including age, smoking,

and diabetes mellitus (41). Therefore, future studies should increase

the consideration of multiple confounding factors, including the

criteria for admission to PD, standardized treatment regimens for

PD, recurrence of PD and evolution of AS, and other important

risk factors.
2.2 Animal studies

Animal studies have shown that ApoE-/- mice with oral P.

gingivalis infection have elevated serum levels of cellular

inflammatory factors (42) and significantly increased vascular

reactivity (43), and P. gingivalis was detected to colonize the

aorta, damaging the arterial endothelium (44) and increasing AS

plaque (45). In addition, numerous studies have demonstrated that

serum inflammatory mediators and lipoprotein levels were

significantly abnormal in oral P. gingivalis-infected ApoE-/- mice,

such as NLRP3, IL-6, IL-1b, TNF-a, intercellular adhesion

molecule-1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1),

monocyte chemotactic protein(MCP), P-selectin, E-selectin, low-

density lipoprotein (LDL), HDL, etc (46, 47) (Table 2).

In addition to oral infection with P. gingivalis, some studies have

also infected mice by subcutaneous inoculation or intravenous P.

gingivalis injection. Animal studies have shown that subcutaneous

inoculation with P. gingivalis accelerates AS and leads to a significant

increase in mortality from cardiac rupture (49). Intravenous P.

gingivalis injection revealed significant intimal hyperplasia and

VSMCs proliferation in the aorta of mice (48). After intravenous P.

gingivalis injection, ApoE-/- mice showed increased expression of

oxidative stress markers and inflammatory factors in serum and aorta

(52), and abnormal lipid profiles were found in serum, heart, aorta,

and liver (51). Intravenous injection of recombinant P. gingivalis heat

shock protein GroEL into C57BL/6 mice on a high-fat diet resulted in

stronger expression of VCAM-1, ICAM-1, TLR4, and lectin-like ox-

LDL receptor (LOX-1) (50) (Table 2).

Some recent studies have also conducted experiments on the

relationship between P. gingivalis-related vaccines and AS. Heated

ultrasound P. gingivalis-prepared vaccine significantly reduced AS

plaque area in ApoE-/- mice on the background of high-fat diet and

oral P. gingivalis infection employing nasal immunization, with

effects comparable to those of statins (56). Similarly, sublingual

immunization with P. gingivalis GroEL (53) or nasal immunization

with its derivative peptide 14 (Pep14) (55) achieved inhibition of AS

plaque formation. In addition, subcutaneous immunization of

LDLR-/- mice with the A hemagglutinin domain (Rgp44) of P.

gingivalis promotes the production of protective IgM against ox-

LDL and reduces the risk of AS (54). There are few studies on the

relationship between P. gingivalis-related vaccines and AS, and the

mechanism of action is not fully understood and needs to be further

investigated (Table 2).

Oral infection with P. gingivalis can lead to dysregulated

intestinal flora (57), and dysregulated intestinal flora can also

promote AS progression through metabolism-dependent
Frontiers in Immunology 04
pathways (58). Among them, Trimethylamine-N-oxide (TAMO)

is one of the most important metabolites associated with

dysregulated intestinal flora (59, 60). TMAO promotes foam cell

production by upregulating macrophage CD36 and SR-A1

expression which impairs macrophage cholesterol reversal

transport function (61). TMAO promotes the release of pro-

inflammatory mediators through the activation of mitogen-

activated protein kinase, extracellular signal-associated kinase,

and NF-kB cascade pathways, which in turn induces an

inflammatory response in ECs and VSMCs (62–64). TMAO

exacerbates AS progression by promoting the release of

intracellular Ca2+, leading to platelet aggregation and

thrombosis (65).

However, there are still limitations in the establishment of

current animal models. Intravenous injection of planktonic state

P. gingivalis in an infectious manner not only hardly mimics the

characteristics of inflammation triggered by normal plaque biofilm

but also may lead to a sharp increase in the level of P. gingivalis in

the circulatory system and trigger a strong stress response. Thus, the

type and degree of the inflammatory response induced by

intravenous P. gingivalis may not match the chronic state of

infection in a real situation. Certainly, the intravenous approach

may apply to the study model of acute systemic bacterial infections.

It is noteworthy that both clinical and animal studies have used

16srRNA, metagenomics sequencing to detect P. gingivalis g gene

fragments in the arterial wall to determine colonization. But these

techniques are impossible to assess the activity status and

reproduction of P. gingivalis after colonization or to determine

whether the gene fragments are from intact bacteria or P. gingivalis

OMVs. These are limitations of the current assays. The activity of P.

gingivalis colonized in the arterial wall or the different virulence

factors released by dead bacteria may directly influence the degree

of local inflammatory response in the vessel wall. In vitro studies

have pointed out that live P. gingivalis induces monocyte adhesion

to the endothelium and promotes the vascular inflammatory

response by promoting the expression of adhesion molecules and

pro-inflammatory factors in ECs, whereas heat-killed P. gingivalis

does not trigger these effects (66, 67). Therefore, the conclusion that

P. gingivalis colonizes the arterial vessel wall cannot yet be directly

correlated with vascular inflammation using these techniques.

Further culture and characterization of strains of AS tissue are

needed to explore P. gingivalis activity after colonization. This is a

central part of the follow-up study.
3 Pathogenicity of P. gingivalis and
pathogenesis of AS

3.1 Pathogenicity of P. gingivalis

P. gingivalis is the “dominant flora” in periodontitis, which can

reshape the symbiotic colonization of periodontal tissues and

induce dysbiosis of periodontal microbial homeostasis (2). During

disease development, P. gingivalis interacts with the host immune

system through its unique virulence factors, resulting in a unique

and complex pathogenic mechanism, such as induction of
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inflammatory response, activation of the complement system,

promotion of apoptosis, and other biological processes (1). In

addition, the virulence factors of P. gingivalis can interact with

various host receptors to reshape the survival environment or

escape host immune killing, allowing them to persist in host

tissues (3).

3.1.1 P. gingivalis gingipains
P. gingivalis gingipains have potent proteolytic activity and play a

key role in disrupting the host immune response. P. gingivalis gingipains
Frontiers in Immunology 05
include arginine-specific gingipains (RgpA and RgpB), and lysine-

specific gingipains (Kgp). P. gingivalis gingipains cause host immune

dysregulation and inflammatory responses to occur by activating matrix

metalloproteinases, inactivating immunosuppressants, degrading

immunomodulatory factors, and cleaving immune cell receptors (6).

P. gingivalis gingipains degrade the junctional adhesion molecule

(JAM1) of gingival epithelial cells, disrupting epithelial barrier

function and increasing the ability of bacteria and their products such

as LPS and peptidoglycan (PGN) to locally invade and penetrate the

peripheral blood (68). P. gingivalis gingipains selectively degrade the
TABLE 2 Animal Research Evidence of P. gingivalis and AS.

Time Animal Type Modeling method Sample
Type Result References

2011
C57BL/6 ApoE-/-

mice
Oral infection with P. gingivalis

Serum,
spleen

Promote the release of systemic pro-inflammatory cytokines and
accelerate the progress of AS

(42)

2011
C57BL/6 wild-
type,
ApoE-/- mice

Oral infection with P. gingivalis
Serum,
aorta

Enhance arterial reactivity mediated by a-adrenoceptor (43)

2014

ApoEnull

B6.129P2-
Apoetm1Unc/J
mice

Oral infection with P. gingivalis
Serum,
aorta

Promote the colonization of viable aortic bacteria and increase
inflammation

(45)

2015

ApoE-/-

B6.129P2-
Apoetm1Unc/J
mice

Oral infection with complex (P.g,
T.d,T.f,F.n)

Serum,
aorta

Disturb the serum lipid profile and promote the progress of AS (46)

2015
C.KOR Apoeshl

mice
Oral infection with P. gingivalis

Serum,
aorta

Increase the area of aortic plaque significantly, NLRP3
inflammasome played an important role

(47)

2021
C57BL/6 ApoE-/-

mice
Oral infection with P. gingivalis

Serum,
aorta, liver

Promote vascular endothelial dysfunction (44)

2010 ICR mice
Intravenous injection with P.
gingivalis

Femoral
artery

Promote the hyperplasia of arterial intima, and is related to the
over-expression of S100A9 and SMemb on the surface of smooth
muscle cells

(48)

2016
C57BL/6J wild-
type mice

Subcutaneous inoculation with P.
gingivalis、ligation of coronary
artery

Heart Increase the risk of heart rupture significantly (49)

2016

B57BL/6 wild-
type,
B57BL/6-Tlr4lps-
del mice

Intravenous injection with P.
gingivalis GroEL

Serum,
aorta

Increase expression of VCAM-1, ICAM-1, TLR4, and LOX-1 in
the aorta

(50)

2017
C57BL/6 ApoE-/-

mice
Intravenous injection with P.
gingivalis

Serum,
aorta,
heart, liver

Abnormal lipid profiles were found in serum, heart, aorta, and
liver

(51)

2020
C57BL/6 ApoE-/-

mice
Intravenous injection with P.
gingivalis

Serum,
aorta

Increase expression of oxidative stress markers and inflammatory
factors in serum and aorta

(52)

2014
C.KOR-Apoeshl

mice
Sublingual immune with P.
gingivalis rGroEL

Serum,
aortic,
spleen

Reduce AS lesions in the aortic sinus significantly, and decrease
serum levels of CRP, MCP-1, and ox-LDL.

(53)

2018 LDLR-/- mice
subcutaneous injection with P.
gingivalis Rgp44

Serum,
aorta

Generate protective IgM for ox-LDL to reduce AS risk (54)

2020 ApoE-/- mice
Nasal Immune with P. gingivalis
GroEL Derived Pep14

Serum,
aorta,
liver

Reduce AS risk by promoting IFN- g secretion and/or inhibiting
Th17-mediated immune response

(55)

2021 ApoE-/- mice
Nasal immune with inactive P.
gingivalis

Aorta
Reduce plaque area of AS significantly, and the effect was similar
to that of statins

(56)
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macrophage surface innate immune receptor CD14, resulting in the

hyporesponsiveness to bacterial challenge (69). P. gingivalis gingipains

can degrade neutrophil-derived a-defensins and b-defensins, disrupting
the host’s innate immune function and facilitating bacterial escape (70).

In addition, P. gingivalis gingipains have a significant disruptive effect on

the complement system. On the one hand, P. gingivalis gingipains

inhibited the bactericidal effect of the complement system by degrading

C3, C4, and C5 to inhibit complement activation and the formation of

membrane attack complexes (71). On the other hand, P. gingivalis

gingipains release the allergenic toxin C5a by cleaving complement C5,

causing stronger inflammation (72). C5a induced by P. gingivalis

gingipains can also subtly evade immune clearance via the C5aR-

TLR2 crosstalk pathway (73).

3.1.2 P. gingivalis LPS
P. gingivalis LPS consists of lipid A, core oligosaccharide, and

O-specific polysaccharide (6). P. gingivalis LPS can trigger innate

immune responses by activating TLRs (74). The virulence

properties of P. gingivalis LPS are determined by lipid A

properties, thus different properties of lipid A can lead to

different innate immune responses and the production of

inflammatory factors. P. gingivalis LPS1690 with penta-acylated

lipid A mainly activates the NF-kB signaling pathway, while P.

gingivalis LPS1435/1449 with tetra-acylated lipid A mainly induces

p38/MAPK and ERK1/2 signaling pathways (74). P. gingivalis LPS

induces M1-type polarization in macrophages and promotes the

expression of several pro-inflammatory factors, such as TNF-a, IL-
1b, and IL-6 (75). P. gingivalis LPS promotes the progression of

periodontal inflammation by inducing pyroptosis in gingival

fibroblasts (76). P. gingivalis LPS triggers mitochondria-mediated

apoptosis by regulating XBP1 expression (77). P. gingivalis LPS

promotes platelet proliferation and thrombosis by activating

platelet Cdc42 (78).

3.1.3 P. gingivalis fimbriae
The fimbriae of P. gingivalis are divided into long fimbriae

(FimA) and short fimbriae (Mfa1), both of which have enhanced

inflammatory responses and evasion of host immune clearance,

although each has its mechanism of action with the host. FimA acts

through the characteristic P. gingivalis peptidilarginine deiminase

(PPAD)-dependent activation of TLR2, induction of NF-ĸB and

MAPK signaling pathways, and promotion of pro-inflammatory

factor production (79). FimA interacts with complement receptor 3

(CR3) in macrophages, leading to ERK1/2 phosphorylation and

inhibition of IL-12 production to promote the survival of P.

gingivalis (80). FimA induces cAMP-dependent protein kinase A

(PKA) activation via instigating macrophage CXCR4/TLR2 co-

association, which in turn inhibits TLR2-mediated antimicrobial

responses (81). The binding of FimA to CXCR4 induces CR3

activation via phosphatidylinositol-3 kinase (PI3K) and inhibits

the antibacterial response in macrophages (82). Similar to FimA,

Mfa1 induces the production of pro-inflammatory factors through

the activation of TLRs (83, 84). Mfa1 inhibits the autophagy of DCs

through the DC-SIGN-TLR2 crosstalk pathway, evading
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intracellular killing and leading to long-term survival within

DCs (85).
3.2 Pathogenesis of AS

AS is a chronic cardiovascular disease that threatens human

health and is characterized by lipid deposition in parts of the artery,

accompanied by VSMCs and fibrous matrix proliferation, which

gradually forms an AS plaque. AS is often considered a chronic

inflammatory disease because inflammation plays an important role

in all stages of AS development (86). The AS-associated

inflammation is mainly mediated by pro-inflammatory factors,

inflammatory signaling pathways, bioactive lipids, and adhesion

molecules (87).

The main triggers of AS are endothelial damage, abnormal lipid

metabolism, and hemodynamic impairment. In the early stages of AS,

these pathological factors activate ECs (88). When ECs are activated,

they express a variety of pro-inflammatory factors and adhesion

molecules, including MCP-1, IL-8, ICAM-1, VCAM-1, E-selectin,

and P-selectin, which attract lymphocytes andmonocytes that bind to

ECs and infiltrate the arterial wall, promoting the progression of the

inflammatory response (89). Among them, pro-inflammatory

monocytes expressing high levels of Ly6C or Gr-1 preferentially

accumulate at damaged endothelial sites (90). Immune cells residing

in the vessel wall participate in the inflammatory response process in

the vessel wall together with the attracted immune cells. Large

amounts of LDL are modified to ox-LDL and accumulate in the

vessel wall, while macrophages in the vessel wall take up ox-LDL and

convert it to foam cells, leading to the formation of AS plaques (91).

Other types of immune cells, such as dendritic cells (DCs), T cells, B

cells, and neutrophils are also involved in the progression of the

inflammatory response within the plaque (92). In the advanced stages

of AS, large numbers of macrophages and pro-inflammatory factors

infiltrate the vessel wall, secrete matrix metalloproteinases (MMPs),

and degrade collagen fibers in the extracellular matrix, leading to

plaque rupture, hemorrhage, and thrombosis (89).
3.3 Pathogen-associated molecular
patterns and damage-associated molecular
patterns play a “bridging” role between P.
gingivalis and AS

PAMPs are conserved pathogenic molecular structures shared by

pathogenic microorganisms, while DAMPs are substances released

into the intercellular space or blood circulation upon stimulation of

tissues or cells (93). These substances bridge the gap between

periodontitis and AS, allowing us to further understand the

relationship between oral and systemic diseases (94).

P. gingivalis contains multiple PAMPs, including LPS and PGN,

which initiate the inflammatory response of innate immunity by

relying on the recognition of host cell pattern-recognition receptors

(PRRs), such as NLRs and TLRs. P. gingivalis LPS induces the
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release of pro-inflammatory factors by activating NF-kB and

MAPK signaling pathways in macrophages (95). P. gingivalis LPS

promotes high expression of angiotensin II (Ang II) and IL-6 in ECs

and accelerates ECs dysfunction (67). P. gingivalis LPS promotes

monocyte chemotaxis and adhesion by increasing the expression of

chemotactic and adhesion molecules in ECs through Akt and NF-

kB signaling pathways (96). PGN promotes ICAM-1 production by

monocytes through the activation of TLR2 and NF-kB pathways

and induces monocyte migration and adhesion to the vascular

endothelium (97). PGN promotes the upregulation of VCAM-1

through the NOD1-RIP2-NF-kB axis, inducing myeloid cells to

recruit to the endothelium and leading to endothelial dysfunction

(98). PGN can also mediate the over-expression of adhesion

molecules in ECs through innate peptidoglycan recognition

protein 1 (99). PGN induces the production of pro-inflammatory

cytokines through TLR2 and CD14 and increases the susceptibility

of AS plaques (100).

Meanwhile, periodontal pathogens further promote the

progression of AS by activating inflammatory caspases that

induce cell death and release various DAMPs, such as HSP60,

cardiolipin, alarmins (S100 protein), and high mobility group box 1

(HMGB1) (101). HSP60 promotes immune cell migration and

adhesion to the endothelium by stimulating the expression of E-

selectin, VCAM-1, and ICAM-1 in ECs, and also induces

endothelial inflammatory responses by activating TLRs (mainly

TLR4) in innate immune cells (macrophages, DCs) (102). HSP60

induces DCs maturation and activates Th1 and Th17 cells in an

MHC-II-dependent manner, promoting the release of pro-

inflammatory mediators (103). HSP60 induces the activation of

specific CD4+CD25+CD45RO+ T cells, which bind to ECs

expressing HSP60 and adhesion molecules (VCAM-1 and E-

selectin), forming susceptible sites of AS lesions (104). HSP60

induces the proliferation of VSMCs via TLR2 and TLR4 (105).

The released cardiolipin may be oxidized by P. gingivalis to become

oxidized cardiolipin (106, 107). Oxidized cardiolipin increases the

expression levels of ICAM-1 and VCAM-1 in ECs and induces

migration and adhesion of immune cells. At the same time, oxidized

cardiolipin could also activate 5-lipoxygenase and induce

leukotriene B4 production by increasing intracellular calcium

concentration in macrophages and neutrophils, promoting

inflammatory responses and exacerbating AS progression (108).

P. gingivalis could promote VSMCs from contractile phenotype to

synthetic phenotype by upregulating the expression of S100A9 in

VSMCs (109). The circular RNA PPP1CC of P. gingivalis could

promote VSMCs pyroptosis through the HMGB1/TLR9/AIM2 axis,

which in turn increases AS plaque vulnerability (110).
4 Immune mechanism of P. gingivalis
to promote AS progression

Immunity is an important line of defense of the organism

against pathogenic invasion. P. gingivalis expresses a variety of

virulence factors that stimulate host immune responses and play an

important role in promoting AS progression. On the one hand, P.

gingivalis evades host innate and adaptive immunity, internalizes in
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host tissues, and, in various forms, circulates with blood and lymph

and colonizes arterial vessel walls, causing local inflammation and

lesions; on the other hand, P. gingivalis persistently stimulates host

immune responses in the process of host immune evasion and

systemic dissemination, inducing systemic inflammatory mediators

and disruption of lipid levels, and promoting AS progression. Based

on the possible key role of P. gingivalis-associated PAMPs and

DAMPs in promoting AS progression, the following literature will

be reviewed from three aspects involving immune response:

immune escape, blood circulation, and lymphatic circulation.
4.1 Immune escape

Immune escape is an important pathway for P. gingivalis to

invade and survive in the host for a long time. A recent paper has

reviewed P. gingivalis evasion of host immune killing through

various pathways but did not elucidate the possible potential

association and mechanism of P. gingivalis with AS during

immune evasion (111). In this section, we will review the

potential associations and mechanisms of P. gingivalis with AS

during immune evasion in terms of dysregulation of the

complement system and disruption of immune cell function.

4.1.1 P. gingivalis interferes with the function of
the complement system

The complement system is a major part of the innate immune

system and is activated by the hydrolytic cascade reaction of serine

proteases. In inflamed vessels, the complement system can be

activated by conjugates of CRP and modified LDL (112), inducing

apoptosis of ECs, promoting the proliferation of VSMCs, inducing

the release of procoagulant and adhesive factors, recruiting immune

cells, and accelerating AS progression (113).

Studies suggest that the virulence factors of P. gingivalis may

promote AS progression by interfering with the function of the

complement system and, in turn, by promoting AS progression. P.

gingivalis gingipains cleave complement C5 into biologically active

C5a and C5b fragments (114, 115) and induce M1-type polarization

of macrophages via the C5a pathway to promote inflammatory

factor secretion (116). C5a is present in AS plaques and acts as a

pro-AS molecule (117–119). In the early plaque formation stage,

C5a activates mast cells in the arterial wall, promotes secretion of

fibrinogen activator inhibitor (PAI-1), inhibits fibrinolysis and

extracellular protein hydrolysis, and accelerates thrombus and AS

plaque formation (120, 121). In the advanced stage of AS, C5a

induces apoptosis of ECs and VSMCs, and expression of MMP1

and MMP9 in plaques, leading to VSMCs-dependent collagen loss,

fibrous cap thinning, and plaque rupture (118, 122, 123). In

addition, C5a accumulation enhanced NLRP3 inflammatory

vesicle activation in AS plaques and decreased plaque stability

(124). In contrast, a significant reduction in AS plaque area was

observed after treatment of ApoE-/- mice with C5aR antagonists

(125, 126). Notably, P. gingivalis cleavage of C5 produced large

amounts of C5a, which activated C5aR, triggered cross-talk signal

between TLR2 and C5aR (127), suppressed macrophage immune

function, increased P. gingivalis survival, and led to ubiquitinated
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degradation of myeloid differentiation factor (Myd88) (127–129),

which is also a positive regulator of foam cell formation in AS (130).

Therefore, it is speculated that the crosstalk between TLR2-C5aR

may be closely related to the promotion of foam cell formation by P.

gingivalis. However, it has not been reported yet and needs further

in-depth study.

The above studies suggest that P. gingivalis gingipains may

promote AS plaque formation and rupture by interfering with

complement C5a function (Figure 1). However, the current

studies on the promotion of AS development by P. gingivalis

through interference with the complement system are very

limited, mainly focusing on the effects of P. gingivalis gingipains

with C5a. However, whether similar effects and mechanisms exist

for other virulence factors of P. gingivalis, whether other

components of the complement system are involved in AS

progression, and whether P. gingivalis-mediated TLR2-C5aR

crosstalk is associated with foam cell formation is not fully

understood and need to be further investigated in depth.

4.1.2 P. gingivalis inhibits the antimicrobial
function of immune cells

P. gingivalis inhibits the phagocytosis, surveillance, and

clearance functions of immune cells through various mechanisms,

evades host immune killing, survives in the host for a long time,
Frontiers in Immunology 08
repeatedly stimulates the body’s immune system, leads to a

persistent low-level inflammatory state in the host, and promotes

the progression of AS.

4.1.2.1 Neutrophils

Neutrophils are a class of innate immune cells that are the

first to reach the site of P. gingivalis infection and can constitute

an important barrier against P. gingivalis by producing

proteases, antimicrobial peptides, and extracellular traps (NETs)

(131, 132), as well as being important regulators of vascular

inflammation (133).

It was found that P. gingivalis can evade immune killing by

neutrophils. P. gingivalis activates the non-MyD88-dependent

TLR2-PI3K signaling pathway in neutrophils, which both reduces

the phagocytosis of P. gingivalis by neutrophils and blocks

intracellular phagosome-lysosome fusion, thereby increasing the

intracellular survival of P. gingivalis (129). It was also noted that P.

gingivalis stimulated neutrophils to form NETs in a gingipains-

dependent manner, but the antimicrobial components (histone

protease, LL-37, etc.) in the formed NETs were hydrolyzed by

gingipains, resulting in the lack of antimicrobial activity of NETs

and the inability to achieve P. gingivalis clearance (132). In addition,

the OMVs secreted by P. gingivalis can coat the neutrophils without

being internalized, while the gingipains carried can degrade LL-37
FIGURE 1

P. gingivalis induces immune escape and promotes AS progression (1). P. gingivalis degrades complement C5, promotes PAI-1 secretion by mast
cells, and induces apoptosis of ECs and VSMCs (2). P. gingivalis inhibits phagosome-lysosome fusion in neutrophils, induces the formation of NETs,
and increases secretion of MPO (3). P. gingivalis inhibits NO formation in macrophages and promotes M1-type polarization and activation of NLRP3
(4). P. gingivalis inhibits the antigen presentation process and induces Th17/Treg imbalance. (Created with BioRender.com).
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and myeloperoxidase (MPO), which have secreted antimicrobial

particle activity, and thus achieve the effect of avoiding neutrophil

killing from a distance (134). The above pathways provide an

opportunity for P. gingivalis to evade neutrophil immune killing,

however, the efficacy of the various pathways has not been

conclusively established.

However, it should not be overlooked that P. gingivalis still has a

continuous stimulatory effect on neutrophils after evading immune

killing, causing neutrophils to develop immune tolerance and

inhibiting phagocytosis of P. gingivalis, while possibly promoting the

progression of AS. P. gingivalis LPS-tolerant neutrophils have reduced

phagocytosis of P. gingivalis, but significantly increased NETs

formation and increased extracellular MPO levels, which may be

related to neutrophils’ immune reconstitution (135). However, as

already mentioned, P. gingivalis gingipains can degrade MPO (134).

The “antagonism” between the pathogenicity of evaded phagocytosed

P. gingivalis and the antimicrobial capacity of tolerant neutrophils

determines the final fate of P. gingivalis. Furthermore, it has been

shown that excess NETs promote plaque instability by directly

inducing the death of ECs (136, 137), and that plasma MPO levels

are positively correlated with the risk of AS (138). It is suggested that

P. gingivalis may accelerate the progression of AS by promoting the

production of NETs and MPO by tolerogenic neutrophils (Figure 1).

P. gingivalis gingipain R and some host-derived proteases inhibit the

nonphlogistical clearance of apoptotic cells by macrophages through

hydrolytic modification of apoptotic neutrophil surface protein

ligands, leading to local accumulation of apoptotic neutrophils and

secondary necrosis (139). The process of nonphlogistical clearance of

apoptotic cells by macrophages is called “efferocytosis” and defective

efferocytosis exacerbates AS progression (140).

4.1.2.2 Macrophages

Macrophages are a class of intrinsic immune cells with strong

phagocytic capacity and antigen-presenting function, which can

exert antimicrobial effects by phagocytosing P. gingivalis and P.

gingivalis-infected cells, secreting pro-inflammatory cytokines

(141), and are also major players in the formation of foam cells

and mediating AS plaque stability (142).

It was found that P. gingivalis can undergo repeated cycling

behavior in and out of cells in macrophages and successfully avoid

macrophage killing (143), which may be related to the following

mechanisms. First, the high heme concentration in the

inflammatory environment can convert P. gingivalis surface lipid

A to a tetraacylated form without TLR4 agonistic activity, limiting

macrophage activation (144–146). Second, various specific

virulence factors of P. gingivalis play an important role in

interfering with macrophage immune responses. P. gingivalis

gingipains degrade caspase-1, IL-1b, and CD14, inhibit the

activation of a TLR2/4 signaling pathway in macrophages (69,

147), and suppress the bactericidal effect of inflammasomes (148).

P. gingivalis FimA (long or major fimbriae) bind to CXCR4, both

through PI3K signaling activates CR3 on macrophages contributing

to P. gingivalis immune evasion (82, 149), and also induces cAMP-

dependent protein kinase A (PKA) signaling, inhibits TLR2/1-

mediated NF-kB activation and NO production, suppresses
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macrophage activation, and improves P. gingivalis survival and

virulence (81). P. gingivalis sialidase inhibits macrophage IL-12

expression (150), thereby suppressing NK cell activation and the

Th1 to Th2 phenotype switch, which in turn reduces the clearance

of P. gingivalis (151). In addition, besides inhibiting the endocytic

digestion of macrophages, P. gingivalis can also inhibit the

autophagy of macrophages to a certain extent, leading to the

immune escape of P. gingivalis. It has been shown that P.

gingivalis can induce autophagy in macrophages and promote the

clearance of P. gingivalis by macrophages (152). However, it has also

been shown that different P. gingivalis LPS variants (LPS1690,

LPS1435/1449) exert different promoting or inhibiting effects on

autophagy. Among them, the dominance of different P. gingivalis

LPS variants depend on factors such as temperature, growth cycle,

and heme chloride level (5, 153). LPS1690 induces macrophages to

produce giant LC3-positive vesicles and melanoregulin puncta

(cargo sorting protein), promoting lysosome maturation and

autophagic response, while the presence of LPS1435/1449
significantly inhibited the above effects (154). Therefore, it is

speculated that the different occupancy of LPS1690 and LPS1435/

1449 in P. gingivalismay regulate the autophagy of macrophages and

thus affect the survival of P. gingivalis. However, this has not been

reported and needs to be further investigated in depth.

P. gingivalis, which survives in macrophages, induces

inflammatory vesicle activation and M1-type polarization in

macrophages (155). Animal studies have shown that oral

inoculation of P. gingivalis can activate NLRP3 inflammasomes in

macrophages in AS plaques in a gingipains-independent manner,

promote the release of IL-1b and TNF-a, and accelerate AS

progression (47, 148). In vitro studies have revealed that P.

gingivalis LPS may induce M1-type polarization of macrophages

via pattern recognition receptor triggering receptors expressed on

myeloid cells-1(TREM-1) and its downstream signaling pathways

to promote the secretion of multiple inflammatory factors and

accelerate AS progression (75, 156, 157) (Figure 1). However, recent

studies have also indicated that P. gingivalis LPS-induced tolerant

macrophages represent an intermediate state between M1/M2

polarization and function as M2-like cells to limit the

inflammatory response (158), suggesting that P. gingivalis LPS

tolerant macrophages may be closely related to tissue repair. This

may be related to the different macrophage sources, stimulation

factors, and temporal phases, and needs to be analyzed in further

studies. In addition, the foam-like, anti-inflammatory TREM2hi

macrophage subpopulation identified by recent single-cell

sequencing studies may be associated with plaque calcification

(9). However, no studies related to P. gingivalis and TREM2hi

macrophage subsets have been reported. As a key cell type in host

immune response and AS plaque formation, macrophages may

have important intersections with multiple immune and metabolic

mechanisms, but there is no uniform conclusion yet, and further in-

depth studies are needed.

4.1.2.3 T cells

T cells are the main performers of adaptive immunity in the

body and are also important regulators of AS plaque formation,
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development, and late stability (159). Notably, the hypoxic and

ischemic environment of AS plaques may also have an impact on T

cell metabolic status and function, which in turn affects AS

progression (160, 161).

It is suggested that P. gingivalismay evade T cell immune killing

by inhibiting antigen presentation function and thus T cell

activation, proliferation, and antimicrobial function. In terms of

inhibiting antigen presentation, P. gingivalis promotes IL-10

secretion by macrophages, downregulates the expression of

MHC-II molecules (162), and promotes PD-L1 and PD-1 binding

on the surface of macrophages and CD4+ T cells, inhibiting antigen

presentation and T cell activation (162–164). In addition, P.

gingivalis interferes with DCs autophagy and apoptotic processes

by activating the Akt/mTOR axis, thereby promoting survival in

DCs and inhibiting P. gingivalis processing and presentation by

DCs (165, 166). In addition to inhibiting antigen presentation

function, P. gingivalis can also directly inhibit T cell activation

and proliferation. P. gingivalis and its Rgp-gingipains inhibit T cell

proliferation by suppressing protein kinase C (PKC) and p38

phosphorylation and inhibiting transcription factor activator

protein-1 (AP-1), thereby downregulating IL-2 gene expression

and accumulation (167). In addition, P. gingivalis may inhibit the

development and proliferation of Treg cells by decreasing the

secretion of TGF-b1, which may be mainly related to the type II

FimA of P. gingivalis (34). However, this study did not compare the

effects of other types of FimA at the same time, and the mechanism

has not been clarified, which needs further in-depth study. Based on

the above study, we found that P. gingivalis suppressed host

adaptive immunity from the process of inhibiting antigen

presentation, T cell proliferation, and activation, providing a

possibility for the long-term survival of P. gingivalis in the host.

AS is also regulated by T-lymphocyte subsets. Among them,

Th17 cells have pro-atherogenic effects and Treg cells have anti-

atherogenic effects (168), thus Th17/Treg balance is closely related

to AS progression. A clinical study with 1251 patients suggested that

P. gingivalis may regulate tryptophan and kynurenine metabolism

by inhibiting indoleamine 2,3 dioxygenase (IDO) activity in

antigen-presenting cells, thereby promoting Th17 and inhibiting

Treg proliferation, resulting in Th17/Treg imbalance and

accelerating AS progression (169), but this mechanism needs to

be further confirmed by in vitro experiments (Figure 1). Animal

studies suggest that oral infection with P. gingivalis may promote

Th17/Treg imbalance by increasing IL-6 expression in DCs,

resulting in increasing plaque size and decreasing stability in AS

(170). However, the role of P. gingivalis with other T cell subsets

(e.g. gd T cells, naive T cells, ApoB+ T cells) as well as Th cell subsets

(e.g. Th9 and Th22) is unknown and needs to be further

investigated in depth (12, 168).

In summary, P. gingivalis evades host immune cell killing

through various pathways, survives in the host for a long time,

induces a prolonged state of low inflammation (171), and provides

an opportunity to promote the progression of AS. Although the

molecular mechanism regarding the selective inhibition of immune

elimination by P. gingivalis without suppressing the inflammatory

response remains unclear, this phenomenon suggests a potentially

significant threat following P. gingivalis evasion of immune killing.
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Therefore, targeting the inhibition or enhancement of one of the key

links may provide a new strategy to enhance the body’s immunity

and combat AS.
4.2 Blood circulation

P. gingivalis may enter the blood circulation locally from the

oral cavity and then undergo systemic dissemination. Notably, P.

gingivalis circulating with the blood may colonize the arterial

endothelium, induce endothelial damage, recruit and activate

platelets, promote foam cell formation and vessel wall

calcification, and eventually lead to plaque rupture (172,

173) (Figure 2).

4.2.1 Pathways of P. gingivalis into the
blood circulation

The pathways of P. gingivalis into the blood circulation include

three main parts, which are oral physical injury, disruption of

interepithelial cell junctions by virulence factors, and immune escape.

Oral mucosal damage caused by physical stimuli such as daily

activities (brushing, flossing) and oral treatments (periodontal

therapy, tooth extraction) can lead to bacteremia (174).

Inflammatory periodontal tissue swelling and bleeding states may

also lead to the infiltration of oral bacteria into the bloodstream

(175). P. gingivalis’ various virulence factors play an important role

in disrupting gingival epithelial junctional structures. P. gingivalis

gingipains degrade E-cadherin, JAM1, and ocludin, which maintain

gingival epithelial integrity and barrier function (68, 176, 177). P.

gingivalis LPS reduces E-cadherin expression in the gingival

epithelium by inducing the production of TNF-a and ROS

production reduces E-cadherin expression in the gingival

epithelium (178). P. gingivalis and its LPS may lead to a dramatic

decrease in the expression of endogenous grainyhead-like 2

(GRHL2), an epithelial-specific transcription factor that regulates

the expression of connexins (179). The P. gingivalis that enters the

bloodstream also needs to evade the killing effect of various host

immune cells and immune responses before it can successfully

survive and multiply in the host, triggering a persistent host

inflammatory response.

Systemic dissemination can occur after P. gingivalis has

successfully entered the bloodstream and evaded host immune

killing. There are four ways for P. gingivalis to disseminate with

the blood circulation: first, it is planktonic; second, it binds to the

CR1 immune adhesion receptor on the erythrocyte membrane

(180); third, it binds to the SIGN receptor on DCs and enters the

DCs and survives intracellularly (181); fourth, it survives in

macrophages and can enter and exit the cells repeatedly (143). P.

gingivalis in the oral cavity can follow the above four ways to reach

the AS lesion site (Figure 2).

4.2.2 P. gingivalis induces vascular
endothelial dysfunction

P. gingivalis-induced dysfunction of vascular ECs is the first step

in promoting AS (182, 183). Activation and dysfunction of ECs

occur in AS-prone areas when stimulated by abnormal lipids, pro-
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inflammatory mediators, promoting secretion of pro-adhesive

cytokines (184), which in turn leads to AS. Endothelial

dysfunction includes changes in tissue function of contraction,

spreading, barrier (185) and phenotypic changes in ECs (184). P.

gingivalis and its virulence factors induce endothelial dysfunction in

three main ways (Figure 2).

4.2.2.1 P. gingivalis directly disrupts the connecting
proteins and barrier function between ECs

P. gingivalis gingipains directly damage the vascular

endothelium by degrading the endothelial adhesion molecules

PECAM-1 and VE-cadherin (186, 187). Because PECAM-1 and

VE-cadherin are essential for maintaining endothelial integrity and

continuity, degradation of these proteins would lead to loss of

endothelial integrity, increase permeability, and increase risk of

direct contact of irritant molecules with deeper tissues of the vessel

wall, triggering vascular inflammation (188, 189). P. gingivalis

gingipains also hydrolyze Plasminogen Activator Inhibitor-1(PAI-

1) produced by ECs, which in turn delays vascular endothelial

wound healing (190). In the AS study, PAI-1 promoted the

expression of Vitronectin (VN) in VSMCs by binding to LDL
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receptor-related protein 1(LRP1) (191), which in turn induced

ECs migration and regulated vascular remodeling and healing

(192, 193). Then, whether P. gingivalis inhibits vascular

endothelial self-healing through hydrolysis of PAI-1 remains to

be investigated.

4.2.2.2 P. gingivalis affects the biological function of ECs

P. gingivalis not only enters and survives in ECs mediated by

ICAM-1 but also releases from ECs and infects neighboring cells

(194, 195). Repeated stimulation with P. gingivalis increases the

expression of pro-inflammatory molecules (IL-6, MCP-1, GM-CSF)

and vasoconstrictor molecules (Ang II) in ECs, increases monocyte

adhesion to the endothelium and inhibits endothelial diastolic

function (67). Similarly, a systemic Th1-type immune response

occurred in mice immunized with P. gingivalis antigen, increasing

the sensitivity of ECs to AngII and exacerbating the inhibition of

endothelial diastolic function (196). However, the immunization

method using intraperitoneal injection of P. gingivalis in this study

failed to realistically mimic the natural infection state, and the

mechanism of action of the Th1-type immune response and

vascular endothelial sensitivity has not been fully clarified. P.
FIGURE 2

The process of P. gingivalis promoting AS with blood circulation. (1) P. gingivalis spreads to the vascular endothelium mainly in four forms with blood
circulation. (2) P. gingivalis spreads by secreting gingipains breaking intercellular junction protein, being captured and released by ECs. (3) P.
gingivalis stimulates ECs to produce chemokines and EMVpg, which recruit monocytes and induce senescence in adjacent ECs, respectively. (4) P.
gingivalis mediates monocyte adhesion to the vascular endothelium. (5) P. gingivalis promotes lipid uptake and inhibits lipid efflux from
subendothelial macrophages. (6) P. gingivalis activates platelets, promotes coagulation, and induces adhesion with leukocytes to form platelet-
leukocyte aggregates. (7) P. gingivalis induces proliferation and calcification of VSMCs. (8) P. gingivalis induces monocytes to secrete MMP-9,
promoting AS plaque rupture. (Created with BioRender.com).
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gingivalis reduces NO production and inhibits endothelial diastolic

function by inhibiting activation of the GSK-3b/BH4/eNOS/Nrf2

pathway in ECs (197). In addition, P. gingivalis-induced ERS

occurring in ECs could both promote apoptosis and also induce

an autophagic response to inhibit apoptosis (198, 199), and this

paradoxical phenomenon may be related to the potential

mechanism of P. gingivalis-promoting AS, but the further in-

depth study is still needed.

P. gingivalis regulates the cytosolic molecules and intracellular

pathways of ECs. In terms of cytosolic molecules, P. gingivalis

GroEL upregulates TLR-4 expression on the cytosolic membrane of

ECs, leading to hypersensitivity of ECs to P. gingivalis GroEL (50),

promoting the expression of adhesion molecules (ICAM-1, VCAM-

1), inducing monocyte adhesion and infiltration, and promoting AS

progression (200). However, it has also been shown that TLR4 plays

a protective role in AS progression (201), but the actual role of TLR4

still needs to be elucidated in the highly variable and dynamic

inflammatory environment induced by P. gingivalis. Deeper studies

revealed that P. gingivalis-induced inflammatory responses almost

disappeared when targeted to inhibit the adapter MAL or TRAM of

the Toll/IL-1 receptor (TIR) domain on ECs (202). In terms of

intracellular pathways, P. gingivalis inhibits ECs proliferation, and

promotes endothelial-mesenchymal transitions and apoptosis in a

TLR-NF-kB axis dependent manner, compromising endothelial

integrity and leading to the loss of ECs’ ability to repair

themselves (203). Endothelial-mesenchymal transition means that

activated ECs can be transformed into ectopic cell types, such as

ECs into fibroblasts and calcified cells, promoting AS progression

(204, 205). P. gingivalis LPS induces the secretion of multiple pro-

inflammatory factors by macrophages in the vessel wall. These pro-

inflammatory factors promote endothelial-mesenchymal transition

in ECs by activating the p38-Erk1/2-p65 signaling pathway in ECs

(206). In addition, P. gingivalis induces persistent oxidative stress

and inflammatory responses in ECs through the NF-kB-BMAL1-

NF-kB signaling loop with positive feedback (207). P. gingivalis LPS

promotes the angiogenic function of endothelial progenitor cells

through the Akt/FoxO1 signaling pathway (208). The enhanced

angiogenic function of endothelial progenitor cells promotes AS

plaque expansion and progression, as well as increases the incidence

of subsequent complications such as bleeding, rupture, and

thrombosis (209). Deeper studies have shown that P. gingivalis

promotes mitochondrial mtDNA damage, increased mtROS

production, and leads to endothelial dysfunction by inducing

phosphorylation and translocation of mitochondrial dynamin-

related protein (Drp1) in ECs (210).

The mortality and type of death of P. gingivalis-induced ECs

were influenced by the lipid load and inflammatory status of ECs.

mortality was higher in the P. gingivalis-induced ox-LDL

pretreatment group than in the TNF-a pretreatment group, and

apoptosis occurred mainly in the ox-LDL pretreatment group,

whereas necrosis occurred mainly in the TNF-a pretreatment

group. It suggests a synergistic relationship between P. gingivalis

infection and AS risk factors (dyslipidemia, systemic inflammation),

which together promote endothelial injury and accelerate AS

progression (211). In addition, P. gingivalis stimulated ECs to

produce microvesicular (EMVPg) shedding, while EMVPg may
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induce the conversion of adjacent endothelium to a senescent

phenotype through JNK/AKT and STAT signaling pathways,

promoting endothelial injury (212). It indicates that EMVPg has

significant autocrine pro-inflammatory properties. However,

current studies are very limited, and it is expected to be a new

indicator of vascular inflammation.

4.2.2.3 P. gingivalis induces migration and adhesion of
immune cells to the endothelium

P. gingivalis LPS promotes vascular inflammation and promotes

AS progression through the expression of the chemokine RANTES

in ECs (213, 214), which can induce leukocyte infiltration to sites of

inflammation and is positively correlated with plaque instability

(215, 216). P. gingivalis promotes the expression of lectin-like

oxidized low-density lipoprotein on the cytosol of ECs and

monocytes by promoting receptor-1 (LOX-1) expression, which

in turn regulates ligand expression of MCP-1, ICAM-1 and E-

selectin on ECs and receptor expression of CCR2 and integrin

aMb2 on monocytes, inducing monocyte migration and adhesion

to ECs (217). Similarly, P. gingivalis and its outer membrane vesicles

promote the expression of chemotactic proteins (CXCL1, CXCL2,

and CXCL8) and adhesion molecules (e.g. E-selectin) in ECs (218).

In addition, P. gingivalis promotes the secretion of macrophage

migration inhibitory factor (MIF) by ECs, while MIF binds to the

CD74/CXCR4 receptor complex on ECs, increases ICAM-1

expression, and promotes monocyte-ECs adhesion (219, 220).

Immune cells migrate and adhere to the endothelium and then

secrete multiple inflammatory factors, inducing endothelial

dysfunction and promoting AS progression.

4.2.3 P. gingivalis induces pro-coagulant effects
When vascular ECs are activated or endothelial dysfunction is

present, platelets adhere to the vessel wall and are activated,

releasing large amounts of chemokines that mediate the

recruitment of circulating leukocytes, platelets, and coagulation

factors to the vascular endothelium, promoting local

inflammation and coagulation and accelerating the progression of

AS (221, 222).

P. gingivalis activates and aggregates platelets by increasing the

intraplatelet Ca2+ concentration, accelerating blood clotting and

thrombosis. P. gingivalis gingipains also have a hydrolytic effect on

chemokines (RANTES, MIF) released after platelet activation,

inhibiting the recruitment of immune cells, preventing the

clearance of P. gingivalis by immune cells, and producing

persistent stimulation (223). Platelets activated by P. gingivalis

express P-selectin on their surface, which binds to the receptor P-

selectin glycoprotein-1 on leukocytes, forming platelet-leukocyte

aggregates that not only converge a variety of leukocytes

(neutrophils, monocytes) to the site of inflammation and clear

bacteria but also induce a coagulation-inflammatory series of

responses (224). Further studies have indicated that P. gingivalis

induces increased platelet-neutrophil aggregate formation,

enhances platelet-neutrophil interactions, and induces the release

of NETs, which in turn promotes late thrombosis in AS (225, 226).

However, no studies on the effects of P. gingivalis on other types of

leukocyte-platelet interactions have been seen.
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In addition, P. gingivalis virulence factors promote coagulation.

P. gingivalis LPS activates platelet GTPase Cdc42 and accelerates

actin assembly, which in turn induces platelet shape change and

proliferation and promotes coagulation (78). P. gingivalis LPS

promotes platelet secretion of platelet factor 4 (PF4), which is

known to recruit immune cells and promote AS (221, 227). P.

gingivalis gingipains promote P-selectin expression in platelets,

which in turn promotes the adhesion of leukocytes and platelets

to the endothelium, thereby promoting AS progression

(228) (Figure 2).

4.2.4 P. gingivalis induces foam cell formation
Macrophages are capable of uptake and clearance of modified

lipoproteins. P. gingivalis increases intracellular lipid accumulation

by interfering with lipid metabolic processes in macrophages and

promotes the conversion of macrophages into “foam cells” (229,

230). The formation and accumulation of subendothelial foam cells

is a key process in the formation of AS (142). The mechanism of P.

gingivalis-induced foam cell formation is divided into three main

parts (Figure 2):

4.2.4.1 P. gingivalis induces lipid modification
or peroxidation

P. gingivalis gingipains induce lipid modification and

peroxidation of LDL/VLDL through hydrolysis of ApoE and

ApoB-100 and enhancement of oxidative stress pathways (231,

232), while LDL receptors in the liver do not recognize modified

LDL/VLDL, resulting in circulating LDL/VLDL is not cleared and

continues to accumulate, promoting elevated lipids (233). Similarly,

Pep19, a peptide derived from P. gingivalis GroEL, can also induce

LDL peroxidation (234). P. gingivalis can also induce oxidation of

HDL, where the oxidized HDL not only loses its protective function

against AS but also promotes the release of TNF-a and MMP-9

from monocytes, triggering a pro-inflammatory response (235). An

increase in circulating modified or peroxidized lipids is an

important prerequisite for triggering foam cells, and macrophage

cells initiate repair mechanisms to increase the uptake of

lipids (142).

4.2.4.2 P. gingivalis promotes lipid uptake by
macrophages

Macrophage uptake of lipids is positively correlated with the

number and function of scavenger receptors (CD36/SR-B2) (236).

P. gingivalis promotes lipid uptake through the trans-activation of

the CD36 promoter via the ERK/NF-kB pathway, which in turn

upregulates CD36 expression in macrophages (237). In addition, P.

gingivalis released large amounts of IL-1b in the form of activated

CD36/SR-B2-TLR2, which in turn promoted lipid uptake by

macrophages (238). Interestingly, the study also showed that IL-

1b produced by P. gingivalis-activated CD36/SR-B2-TLR2

promoted cell pyroptosis, while ox-LDL inhibited IL-1b
production and prevented cell pyroptosis in a CD36/SR-B2-

dependent manner. Thus, macrophages in the vessel wall were

stimulated by multiple stimuli of P. gingivalis LPS, ox-LDL, and IL-

1b to increase lipid uptake and promote foam cell formation, but at

the same time foam cells in the vessel wall were allowed to persist
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because pyroptosis was inhibited (238). This study provides a

comprehensive analysis of the complex mechanisms underlying

foam cell formation and survival in the vessel wall, suggesting that

CD36/SR-B2 plays a diverse role in P. gingivalis-mediated AS and

may be one of the important targets for regulating AS.

It was also found that the cytosolic mechanosensitive channel

TRPV4 plays a key role in mediating P. gingivalis-promoted lipid

uptake by macrophages. Under the stimulation of P. gingivalis LPS,

the activity of the mechanosensitive channel TRPV4 in

macrophages was significantly increased, the Ca2+ internal

channel was activated, and the uptake of ox-LDL was increased.

And this process was independent of the CD36 expression level

(239). It is suggested that TRPV4 is another important uptake

pathway independent of the scavenger receptor.

In addition, P. gingivalis can also affect the expression and

function of fatty acid binding proteins in macrophages. It was

shown that P. gingivalis upregulates the expression of fatty acid

binding protein 4 (FABP4) through activation of the JNK pathway

and forms a positive feedback loop that promotes lipid uptake and

increases intracellular lipid accumulation by macrophages

(240, 241).

4.2.4.3 P. gingivalis inhibits lipid efflux from macrophages

P. gingivalis LPS promotes lipid accumulation in macrophages

by activating the JNK-c-Jun/AP-1 pathway to up-regulate CD36

(lipid uptake) expression, while down-regulating ATP-binding

cassette transporterA1 (lipid efflux) expression by enhancing

calpain activity (230). Secondly, P. gingivalis may inhibit

cholesterol efflux by activating NF-kB and JNK signaling

pathways, which in turn upregulates lysosomal integral

membrane protein 2 (LIMP2) expression levels in macrophages

(242). In addition, P. gingivalis inhibited the activity of cholesterol

efflux-related enzymes (ABCG1 and CYP46A1) and promoted lipid

accumulation in macrophages by enhancing Ca2+ signaling and

promoting ROS production (243). Current studies on the inhibition

of lipid efflux from macrophages by P. gingivalis are relatively

limited. It mainly involves the functions of membrane transport

proteins and receptors, and related enzymes, and its effects are

attributed to the triggering and persistence of inflammatory

signaling pathways.
4.2.5 P. gingivalis induces vascular calcification
Vascular calcification is the pathological deposition of

hydroxyapatite minerals in the vascular system in the vessel wall,

which in turn promotes AS progression. VSMCs are the key cell

type involved in vascular calcification and exhibit phenotypic

conversion. Various immune cells infiltrate the lesion in the early

stages of AS formation, producing pro-inflammatory factors and

regulatory molecules that induce the migration of contractile

phenotype VSMCs, originally located in the interstitial layer, to

the intimal layer and convert to a synthetic phenotype that

contributes to the deposition of hydroxyapatite minerals in the

vessel wall (244). VSMCs of the synthetic phenotype in the intimal

layer are the first cells to appear at the site of impending AS

lesions (245).
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P. gingivalis promotes calcium deposition in VSMCs and

promotes the transdifferentiation of VSMCs to osteoblast-like

cells (246). It is hypothesized that various inflammatory cytokines

(TNF-a, IL-b) induced by P. gingivalis promote vascular

calcification by upregulating the expression of osteogenic-related

genes (ALP, RUNX2) in VSMCs (247, 248), but further validation is

needed. In addition, different virulence factors of P. gingivalis also

play an important role in inducing vascular calcification. P.

gingivalis LPS stimulates VSMCs proliferation and calcification,

leading to vascular calcification (249). P. gingivalis gingipains

induce VSMCs proliferation and conversion to synthetic type,

increase bone bridge protein (OPN) expression, and promote

vascular calcification (250). P. gingivalis OMVs promote vascular

calcification by activating the ERK1/2- Runx2 signaling pathway to

promote calcification in VSMCs (251).

In recent years, some studies using complex cell models to simulate

the complex environment in vivo have also emerged. P. gingivalis LPS

promoted calcification in VSMCs co-cultured with human periodontal

ligament cells. This study indicates that the calcification effect is not

only derived from the stimulation of P. gingivalis LPS, but also the

secretion of various pro-inflammatory factors by P. gingivalis LPS-

stimulated human periodontal ligament cells (252). This study

somewhat mimics the in vivo environment in which periodontitis

and cardiovascular disease coexist. There is also one that simulates the

relationship between P. gingivalis and the calcification of VSMCs under

hyperglycemic conditions. Under hyperglycemic conditions, P.

gingivalis enhanced smad1/5/8-runx2 signaling by activating TLR-4

and ERK1/2-p38 signaling and promoting bone morphogenetic

protein 4 (BMP4) autocrine regulation, which in turn induced

calcification in VSMCs (253) (Figure 2).

4.2.6 P. gingivalis promotes plaque rupture
When AS is advanced, immune cells recruited by P. gingivalis

infiltrate the vessel wall and secrete MMPs, such as MMP-1 and

MMP-9, which degrade the collagen fibers of the plaque fibrous cap,

leading to plaque rupture and bleeding (254).

P. gingivalis Mfa-1(short or minor fimbriae) induces

differentiation of blood monocytes into DCs and promotes the

expression of MMP-9 which in turn increases the risk of plaque

rupture (255). Similarly, P. gingivalis LPS promoted MMP-9

expression and activity in monocytes (256). In addition, P.

gingivalis gingipains hydrolyze the complement component C5,

leading to local accumulation of C5a accumulation (114, 257). C5a

is the only biologically active fragment following the action of P.

gingivalis gingipains that induces increased expression of MMP1

and MMP9 in macrophages in plaques (114, 118), leading to

degradation of the extracellular matrix and rupture of plaques

(123). Studies on the promotion of AS plaque rupture by P.

gingivalis are scarce and remain to be investigated (Figure 2).
4.3 Lymphatic circulation

The initial lymphatic vessels, the beginning segment of the

lymphatic tract, lacking continuous basement membrane and

perivascular wall cells, may serve as an ideal pathway for
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pathogen transmission through the lymphatic circulation (258–

260). P. gingivalis may enter the submandibular and submental

lymph nodes through the initial lymphatic vessels, and they may

subsequently drain down the superficial/deep jugular lymph nodes

to the jugular venous trunk for further metastasis to more distant

organs, such as AS plaques, liver, etc (261). P. gingivalis that

circulates with lymph may accelerate AS progression by inhibiting

T cell and B cell activation and cholesterol reversal of transport

function and promoting Th17/Treg imbalance in the spleen.

4.3.1 P. gingivalis inhibits the immune function of
the lymphatic system

DCs, as the cells with the highest antigen-presenting capacity,

are important for the activation of T and B cells in the lymphatic

system. P. gingivalis gingipains hydrolyze the chemokine CCL21 in

periodontal tissue and inhibit the entry of DCs into the initial

lymphatic vessels (262, 263), which in turn reduces the activation of

T and B cells in the lymphatic system by DCs (264). At the same

time, P. gingivalis enters and survives in DCs by binding to SIGN

receptors on DCs through its fimbriae, which helps P. gingivalis

evade immune killing by the lymphatic system and promotes AS

progression (255). P. gingivalis that survives in DCs does not affect

CCR7 expression on the cytosol, but significantly upregulates

CXCR4 expression (265). CCR7 mediates the homing of DCs to

secondary lymphoid organs, whereas CXCR4 mediates the

migration of DCs to sites of active vascular remodeling, such as

AS (266). Thus, P. gingivalis may “hijack” DCs and enrich

intracellular P. gingivalis-containing DCs in inflammatory

vascular sites.

E. coli LPS can impair the recruitment of immune cells (DCs,

macrophages) associated with lymphatic vessels and reduce the

contractility of lymphatic vessels, affecting the function of the

lymphatic pump (267). However, whether P. gingivalis LPS has

similar functions has not been reported and needs to be

urgently investigated.

4.3.2 P. gingivalis attenuates the cholesterol
reversal function of lymphatic vessels

Lymphatic vessels can efficiently reverse cholesterol transport

from multiple tissues (268), including the arterial wall, a process

that is positively dependent on HDL uptake and transport by

scavenger receptor class B type I (SR-BI) on lymphatic ECs (269).

The density of capillary lymphatic vessels present in AS lesions

increase with plaque progression (270), and proliferating capillary

lymphatic vessels may inhibit AS progression by reversing

cholesterol transport (271). P. gingivalis may generate large

amounts of ROS by interfering with the function of the

mitochondrial respiratory chain, leading to endoplasmic

reticulum stress (ERS). Subsequently, it triggers an unfolded

protein response (UPR), which promotes CHOP gene expression

and suppresses SR-BI expression (272–274). This in turn inhibits

the process of cholesterol reversal in the arterial wall and accelerates

the progression of AS. However, there is a lack of direct studies on

the inhibition of SR-BI expression on lymphoid ECs by P. gingivalis.

SR-BI is present in the liver, macrophages, and ECs. In addition

to its function of uptake and transport of HDL, SR-BI also has an
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induced anti-inflammatory effect (275). For example, SR-BI binding

to HDL inhibits the NF-kB pathway, decreases the inflammatory

response of macrophages to LPS, and significantly reduces the

secretion of various pro-inflammatory factors (276). However, the

role of SR-BI in P. gingivalis promoting AS and its mechanism need

further study.

4.3.3 P. gingivalis induces Th17/Treg imbalance in
the spleen

The spleen is a peripheral lymphoid organ dominated by T cells

and B cells, and is the center of cellular and humoral immunity in

the body. (277). Among them, Th17 promotes AS progression,

while Treg inhibits AS progression. Therefore, Th17/Treg balance

can control inflammation and may play an important role in plaque

stability (278).

The DNA genome of P. gingivalis can be found in the spleen of

Apoeshl mice orally infected with P. gingivalis (47), and P. gingivalis

promotes Th17 proliferation and differentiation by upregulating the

expression of IL-6 in DCs in the spleen, leading to Th17/Treg

imbalance, increasing plaque area and decreasing plaque stability

(170). Intravenous administration of P. gingivalis to ApoE-/- mice

showed a significant increase in Th17 and Th17-related molecules

in the spleen and heart, as well as a significant increase in AS plaque

area (279). In addition, P. gingivalis LPS did not induce the

expression of NK cell CD69 in the spleen (280), which in turn

promoted Th17 differentiation and inhibited Treg differentiation,

leading to Th17/Treg imbalance (281), but the mechanism needs to

be further investigated.
5 Conclusion and outlook

In recent years, the relationship between P. gingivalis and AS

has received increasing attention. P. gingivalis can occur immune

escape, promote local inflammation and plaque formation in blood

vessels, inhibit immune defense and cholesterol transport function

of the lymphatic system, and promote the progression of AS. This

paper summarizes the recent research results related to the

promotion of AS by P. gingivalis through immune response and

provides new insights to further reveal the potential mechanisms

and associations between P. gingivalis and AS.

In addition, this paper shows the different cell subpopulations

associated with AS discovered by single-cell sequencing technology

in recent years, which updates the understanding of the nature and

function of cell subpopulations in AS. It provides the conditions to

precisely grasp the cellular level of AS pathogenesis. However,

unfortunately, single-cell sequencing studies on P. gingivalis and

AS have not been reported yet. It is believed that shortly, the use of
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single-cell sequencing technology will certainly provide important

theoretical support for the prevention and treatment of P. gingivalis

to accelerate the progression of AS.
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et al. Lipopolysaccharide from porphyromonas gingivalis, but not from
porphyromonas endodontalis, induces macrophage M1 profile. Int J Mol Sci (2022)
23(17):1. doi: 10.3390/ijms231710011

76. Li YY, Cai Q, Li BS, Qiao SW, Jiang JY, Wang D, et al. The effect of
porphyromonas gingivalis lipopolysaccharide on the pyroptosis of gingival
fibroblasts. Inflammation (2021) 44(3):846–58. doi: 10.1007/s10753-020-01379-7

77. Lv YT, Zeng JJ, Lu JY, Zhang XY, Xu PP, Su Y. Porphyromonas gingivalis
lipopolysaccharide (Pg-LPS) influences adipocytes injuries through triggering XBP1
and activating mitochondria-mediated apoptosis. Adipocyte (2021) 10(1):28–37. doi:
10.1080/21623945.2020.1856527

78. Senini V, Amara U, Paul M, Kim H. Porphyromonas gingivalis
lipopolysaccharide activates platelet Cdc42 and promotes platelet spreading and
thrombosis. J Periodontol (2019) 90(11):1336–45. doi: 10.1002/JPER.18-0596
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