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Understanding the factors which shape T-lymphocyte immunity is critical for the

development and application of future immunotherapeutic strategies in treating

hematological malignancies. The thymus, a specialized central lymphoid organ,

plays important roles in generating a diverse T lymphocyte repertoire during the

infantile and juvenile stages of humans. However, age-associated thymic involution

and diseases or treatment associated injury result in a decline in its continuous role in

the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid

leukemia (AML) is an aggressive hematologic malignancy that mainly affects older

adults, and the disease’s progression is known to consist of an impaired immune

surveillance including a reduction in naïve T cell output, a restriction in T cell

receptor repertoire, and an increase in frequencies of regulatory T cells. As one of

the most successful immunotherapies thus far developed for malignancy, T-cell-

based adoptive cell therapies could be essential for the development of a durable

effective treatment to eliminate residue leukemic cells (blasts) and prevent AML

relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus

functions within the context of the AML microenvironment will provide new insights

into both the immune-related pathogenesis and the regeneration of a functional

immune system against leukemia in AML patients. Herein, we review the available

evidence supporting the potential correlation between thymic dysfunction and T-

lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the

thymus could impact current and future therapeutic approaches in AML (VII). Finally,

we review various strategies to rejuvenate thymic function to improve the precision

and efficacy of cancer immunotherapy (VIII).
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1 Introduction

Cancer immunotherapy has revolutionized the treatment

landscape for different tumors and has demonstrated the feasibility

of leveraging the host’s immune system to control and eliminate

malignant cells (1). In hematological cancers, the discovery of the

graft-vs-leukemia (GVL) effect after allogeneic hematopoietic stem

cell transplantation (allo-HSCT) demonstrated that leukemia is

susceptible to immune-mediated eradication (2). More recently in

the last decade, the development of immune checkpoint inhibitors

(ICIs) and genetically engineered chimeric antigen receptor (CAR)-T

cell therapy has resulted in promising therapeutic responses in certain

hematological malignancies (3–7).

T lymphocytes are major contributors to the success of these

immunotherapies; however, optimal responses rely on the persistent

availability of a diverse and functional T lymphocyte repertoire

capable of recognizing tumor neo-antigens and eliciting cytotoxicity

(8). The thymus constitutes of a lymphoid organ dedicated to

generating new functional T lymphocytes and ‘educating’ them to

recognize a wide diversity of tumor and pathogenic antigens while

simultaneously avoiding self-reactivity (9). However, this process is

significantly impaired in the adult thymus as a result of age and/or

environmental insults, such as infections or cytoreductive therapies,

and it may have serious consequences on the clinical efficacy of

immune-based therapies (10).

Despite the success of allo-HSCT to treat younger patients, the

treatment of acute myeloid leukemia (AML) in older patients and

those with relapsed or refractory disease remains challenging in part

due to poor immune T-cell responses (11). An emerging body of

evidence has shown that AML patients have numerically and

functionally defective T cells and NK cells at the time of diagnosis

(12–14). The variable efficacy of T cell-based immunotherapeutic

strategies underscores the compelling need to decipher the factors

which shape the T-cell landscape in AML.
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To date, major efforts have been made to understand the immune

landscape within the context of the bone marrow microenvironment

in AML (15, 16). However, the role of the thymic microenvironment

in propagating AML progression is largely underrecognized, but a

potentially important aspect of AML biology. In this review, we 1)

provide an overview of our current knowledge of T cell development

in the thymus (II-VI), 2) link the potential association between T-

lymphocyte impairment caused by thymus dysfunction and the

ontogeny of AML (VII), and 3) hypothesize how thymic

regeneration may improve future immunotherapeutic strategies for

the treatment of AML (VIII).
2 The role of thymus in
T cell development

For centuries, the thymus was misconceived to be a vestigial organ

or at most a ‘graveyard’ for old and dying lymphocytes. The

observation that adult mice who underwent thymectomy had no

defects in immune response and that the thymus shrank after

infection and in adulthood initially suggested to many scientists

that its function was inconsequential to the immune system.

However an important paradigm shift occurred in the early 1960s,

when Jacques Miller discovered that the removal of the thymus

during neonatal development could cause marked lymphocyte

deficiency (17). This was the first demonstration that the thymus

played an essential role in immunological function and paved the way

for fundamental discoveries in our understanding of T cell

development, potentially transforming the way we practice modern

medicine (Figure 1).

Since the discoveries made by Miller, it is now accepted that the

thymus is the primary site of T cell development and is essential for

maintaining homeostatic cellular immunity, central tolerance, and

tumor immunity (9). The thymus coordinates the development of
FIGURE 1

Historical timeline of major discoveries on the thymus and the development of FDA approved cancer immunotherapies. Major breakthroughs in
understanding the functional role of the thymus began in the late 1950s to early 1960s. These landmark discoveries paved the way for breakthroughs in
T cell biology and eventually ushered in a new era for cancer immunotherapy. Elements of this figure were generated using Biorender.com.
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cell-mediated antitumor immunity through the generation of a

diverse T lymphocyte repertoire capable of recognizing tumor neo-

antigens (18–20). The acquisition of a tumor reactive T-cell

population is orchestrated via cross talk between the bone marrow

microenvironment and the stromal thymic microenvironment, which

is formed by a meshwork of medullary and cortical thymic epithelial

cells (mTECs/cTECs), macrophages, dendritic cells, fibroblasts and

matrix molecules (Figure 2) (21).

T cell lineage identity is determined by a complex regulatory network

of genetic interactions that are initially triggered by environmental signals

and metabolic crosstalk (22, 23). Hematopoietic precursors from the bone

marrow migrating to the thymus, termed thymocytes, receive a series of

complex but critical signals (e.g. Notch ligands, Interleukin (IL)-7, and

stem cell factor) from TECs to promote the survival and lineage

commitment to CD4 or CD8 single positive T cells (Figure 2) (24, 25).

The generation of unique T cell receptors (TCRs) able to recognize diverse

antigenic peptides is a crucial step for T-cell development in the thymus

and involves the somatic rearrangement of three complementary-

determining regions (CDRs) of the TCR (26). During each step of T-

cell receptor rearrangement, DNA fragments between rearranged gene

segments are deleted as circular signal joint T cell receptor excision circles

(sjTRECs), which are frequently evaluated using RT-PCR to quantify

thymic activity (27).

Finally, the survival and differentiation of T cells is determined by

positive and negative selection induced by interactions between TCR

and major histocompatibility complex (MHC)/self-antigens. Strong

TCR signals lead to clonal deletion of potentially dangerous, highly

self-reactive CD4+ T cells, whereas weak signals lead to generation of

conventional T cells (28). Prior to exiting the thymus, a proportion of

CD4+ T cells with intermediate TCR signals differentiate into

forkhead box P3 (FOXP3) expressing regulatory T cells (Tregs)

(29, 30).
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3 Age related thymic involution
and AML

Age-associated alterations to the immune system result in

progressive immunosenescence and is believed to potentially

contribute to the increasing incidence of cancer in older patients

(31, 32). Similarly, patients with advanced age constitute a large

subset of patients with AML and are more often found to have

unfavorable cytogenetics, multidrug resistance, and poor prognosis.

This may suggest that there are differences in AML biology that occur

with aging (33–35).

The physiological involution of the thymus after the first year of

life is perhaps the most pronounced change to the aging immune

system in humans (36). This is characterized by the profound

perturbation of the thymic stromal microenvironment, including

the loss of thymic epithelial cells and progressive replacement of

healthy tissue with adipose tissue (37, 38). While the atrophied

thymus is still capable of producing new T cells, age-related

involution is well known to severely compromise naïve T cell

output and perturb signal strength between thymocyte TCR and

mTEC MHC-II, resulting in impaired thymic negative selection and

enhanced thymic Treg generation (20). Thymic involution has

additionally been shown to result in the expansion of oligoclonal

peripheral memory T cells, thereby restricting TCR repertoire

diversity and skewing type 1/type 2 cytokine production profiles

(39, 40).

Reduced T cell-mediated tumor immune surveillance is a likely

consequence of these age-related changes and may at least partially

explain the clinical and biological differences of AML in older

patients. A recent survey of pre-treated AML BM using multiplex

immunohistochemical analysis demonstrated 2 major immunologic

AML clusters differing significantly in age (median 54.8 vs 64.6 years).
FIGURE 2

Schematic illustration of intrathymic T cell development and current approaches to thymus rejuvenation. T cell development begins with migration of
hematopoietic stem cells (HSC) from the bone marrow to the thymus. These thymic seeding progenitors (TSPs) undergo lineage commitment as they
transform from double negative (DN) to double positive (DP) to single positive T cells with the assistance from critical signals within the thymic epithelial
microenvironment. T cells are eventually exported out of the thymus as CD4+, CD8+ or regulatory T cells (Tregs) where they function within the
periphery. Various therapeutic approaches (in red) to rejuvenating thymic function are currently under investigation. This includes approaches to 1) target
hematopoietic progenitors and thymocytes, 2) target the thymic epithelial microenvironment, 3) modulate hormones and metabolism, and 4) develop
cellular therapies to replace thymic tissue. Elements of this figure were generated using Biorender.com.
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AML patients in the older cluster were observed to have higher TCR

clonality as well as higher proportions of OX40+ and memory

CD45RO+ T cells. Importantly, the higher TCR clonality in the

older cluster correlated with higher age and worse prognosis (41).

Thus, it’s possible that age-related thymic involution is one of the

causative mechanisms leading to the decline in T cell-mediated tumor

immune surveillance in the elderly who are developing AML (20, 36,

42–44).

Two primary mechanisms have been proposed to explain the

observed aged-related decrease in thymopoiesis (45). Firstly, it has

been proposed that diminished HSC output and increased rate of

apoptosis with age reduces the number of thymus seeding progenitors

(TSPs) entering the thymus from the BM. Aging TSPs have been shown

to have reduced expansion and differentiation potential through

increased Ink4a expression and diminished CD3 expression in DP

and SP thymocytes (46–49). Secondly, aged induced defects in the

thymic stromal niches also results in defects in thymopoiesis (50, 51).

Alterations in thymic architecture are observed as early as puberty,

when thymic atrophy is the greatest (52, 53). With increased age, the

thymus undergoes notable reduction in TECs, blurred demarcation of

thymic cortical and medullary compartments, downregulation of

various TEC markers, as well as increased fibrosis and adipose

deposition (54–56). Taken together, we hypothesize that these age-

related physiological changes including impairments in both

recruitment of TSPs and maintenance of thymic architecture might

increase the risk of the development of AML in elderly patients.
4 Effect of thymic function on the
tumor microenvironment

The dynamic interactions between AML cells and the tumor

microenvironment (TME) create a specialized niche to support

leukemogenesis and immune evasion (57). Compared to solid

tumors, the leukemic TME inherently involves the bone marrow,

which serves as a sanctuary for leukemic stem cells, extracellular

matrix, stromal cells, immune cells and the soluble factors they

secrete (58). Given its role in maintaining T cell repertoire and

central tolerance, the thymus is another primary lymphoid organ that

should be considered for its role in influencing the AML TME,

especially with respect to shaping the T cell milieu. Age-related

thymic involution has not been associated with any clinical

consequences in healthy individuals, perhaps because residual thymic

activity can still persist beyond the seventh decade of life and influence

T cell responses, especially after immunological injury (10, 59).
4.1 Thymus influences regulatory
T cell populations

Recently, CD4+ CD25+ FOXP3+ Tregs have gained attention for their

immunosuppressive capabilities in the AML tumor microenvironment.

Accumulating evidence has shown that proportions of Tregs are increased

in the peripheral blood and bone marrow of AML patients and are

associated with poorer prognosis (41, 60–63). In addition, current research

suggests that Tregs promote leukemia cell survival by suppressing both

expansion and effector functions of cytotoxic T lymphocytes, as well as
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directly promoting the stemness and survival of AML blasts through the

IL10/PI3K/AKT signaling pathway (64–66).

Tregs are a heterogenous population and can be both naturally

derived in the thymus (nTregs), which is believed to make up

approximately 80% of Treg repertoire, or induced by conversion of

conventional T cells existing in the periphery (iTregs). Whether Tregs

within the tumor microenvironment are natural vs induced remains a

subject of debate, as they are difficult to distinguish in vivo (67).

However, several biomarkers such as Helios, NRP1, and FOXP3

methylation status have been reliably used to identify Tregs of

thymic origin (68–70). In this regard, a previous study showed that

expanded Tregs from AML patients treated with histamine

dihydrochloride (HDC) and low dose IL-2 for relapse prevention

predominantly resembled nTregs, based on Helios expression and

TSDR methylation status in the FOXP3 gene locus (71). These

findings corroborate a previous study showing that a majority of

tumor-infiltrating Tregs are thymically derived and reactive to Aire-

dependent self-antigens associated with the organ of cancer origin

(72). Together, these studies have important clinical implications

because thymic involution from aging or chemotherapy has been

shown to enhance the generation of nTregs (73).
4.2 Thymus’ role in clonotype TCR diversity

As we have previously discussed, thymus involution has been known

to result in limited TCR diversity. Several groups have similarly reported

restricted TCR repertoire diversity and skewed oligoclonal ab+ and gd+

T- cell pools in AML (74–77). Notably, recent studies have shown

restricted expression and oligoclonal expansion of certain Vb subfamily T

cells, such as PD-1+ Vb T cells in patients with AML and CML (76, 77).

The oligoclonal expansion of certain TCR gd T cells from patients with

AML have likewise been reported (78). Although gd T cells are less

studied and constitute a smaller percentage of the human T cell

population, there is growing evidence to support its role in antitumor

immunity (79). In fact, Vg9Vd2 T cells have been shown to specifically

recognize and kill AML blasts in a TCR dependent manner (80). A study

comparing TCR repertoires between pediatric and adult AML showed

that the fraction of gd T cells increases with age, which is the inverse of

what is seen in healthy patients (74). Taken together, it is likely that

certain leukemic-specific T cell clones in the TME may be preferentially

expanded by AML-associated antigens in the periphery and/or are being

restricted during development in the thymus. In support of the latter, a

recent study found that effector functions of gd T cell subsets within the

TME was dictated by metabolic programing during early thymic

development (81).
4.3 Thymic involution promotes
inflammaging and the
immunosuppressive TME

Age-related thymic atrophy has been correlated to the development

of systemic inflammation with advanced age, termed inflammaging

(45). Recent studies also suggest that mTEC dysfunction with age

reduces the capacity to eliminate self-reactive thymocytes through

impaired negative selection (82, 83). This process has been proposed
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to potentiate the increasing self-reactivity and auto-inflammation

observed with aging (45). It is known that chronic inflammation can

aid in tumor progression, metastasis and drug resistance in tumor cells

(84), and pro-inflammatory mediators also promote the disease

progression and relapse of AML (16, 85). Accordingly, it is thus

possible that the disruption in T cell homeostasis derived from

thymic atrophy might play a role in AML pathogenesis.
4.4 Thymus’ role in sustained CD8 T cell
immunity during chronic antigen exposure

Previous studies have shown that CD8+ T cells are functionally

impaired in AML including expressing aberrant phenotypes, having

increased expression of exhaustion/senescence molecules (CD57,

TIGIT, TIM-3 and PD-1), and forming defective immune synapses

with blasts (11, 12, 86–90). While thymic function gradually decreases

with age, continued thymopoiesis in residual thymus tissue has been

shown to be essential for the generation of new CD8+ T cells to

replenish attrition from exhausted T cells during chronic antigen

exposure. This has been demonstrated in patients with chronic

polyomavirus infection who depend on the reactivation of thymic

function and de novo T cell generation to sustain antigen-specific

CD8+ T cell immunity (91).
5 AML interferes with intrathymic
T-cell development

AML has been shown to promote thymic atrophy, suggesting that

AML may somehow damage the thymus and its production of

functional T lymphocytes (92, 93). A dramatic reduction of sjTREC

was found in peripheral T cells of AML patients when compared to

age-matched healthy controls, raising the possibility that

immunodeficiency in AML could be derived from the diminished

thymic output of T cells (92). Furthermore, AML patients with high

sjTREC counts have better disease prognosis, and the sjTREC counts

were found to recover to normal values in those patients achieving

complete remission (92, 94). Consistent with these clinical findings,

another study observed that immune-competent mice challenged

with AML blasts also developed premature thymic atrophy, which

was characterized by reduced numbers of thymocyte subsets, most

notably the DP population (93). Thymic atrophy resulted in

significant loss of peripheral CD4+ and CD8+ T-cells with an

increased frequency of CD4+Foxp3+ regulatory and activated/

memory T ce l l subse t s . The express ion of monocyte

chemoattractant protein 1 (MCP-1/CCL2) was found to be

associated with thymic atrophy and the neutralization of CCL2 via

an anti-CCL2 pAb enhanced antileukemic T-cell response and

increased the survival of AML mice (93).
6 Can AML originate in the thymus?

AML is believed to originate from transformed myeloid restricted

progenitors residing within the bone marrow (95). However, the
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existence of acute leukemia expressing both myeloid and lymphoid

lineage-specific markers, known as mixed-lineage acute leukemia

(MPAL), suggests that at least some blast populations may originate

from leukemia stem cells possessing multilineage potential (96). By

the same token, thymus-seeding progenitors (TSPs) have largely been

regarded to have a restricted lineage towards T-lymphocytes. Yet

several recent studies have shown that double negative (DN) TSPs

may retain the potential to differentiate to alternative hematopoietic

fates, including NK, B-cell, and myeloid lineages (97–101).

Transformed DN2 murine T-cell progenitors overexpressing

oncogenes Myc/Bcl2 have been shown to have high intrinsic

potential to transdifferentiate into myeloid and biphenotypic

leukemia. Remarkably, the resulting murine DN-2 derived leukemia

was found to be genetically similar to a human AML cohort (102).

Moreover, murine DN2 with a known human NUP98-HOXD13

(NHD13) fusion transcript have a predisposition to transform into

a highly aggressive AML with similar gene expression profiles of

several human AML subsets, including those with NPM1 mutations,

MLL fusions and NUP98 fusions (103, 104). While rare, several case

reports have described AML with involvement of the thymus/

mediastinum without evidence of BM infiltration (105–108).

Together, these studies pose the possibility that the thymus can be

involved in the leukemogenesis of AML, and some subsets of AML

might originate from thymic precursors.
7 Implication of thymic function on
current therapies for AML

7.1 Cytoreductive therapies impair de novo
T Cell recovery

The thymus is exquisitely sensitive to cytoreductive therapies that

are traditionally used as the standard of care in AML, such as

chemotherapies or radiation therapies. While all hematopoietic cell

types are affected following chemotherapy, T cells appear to be most

profoundly impacted, likely in part due to depletion of thymocytes

and TECS within the thymic stromal compartment (109, 110). The

recovery of the depleted T cell pool after cytoreductive therapy may

take many years or be permanent (111, 112). Age-related thymic

involution has also been linked to impaired immune reconstitution

following chemotherapy, which may partially explain treatment

failure in the elderly (113–115). Considering the impact of

cytoreductive therapies on thymic function and de novo T cell

output, adoptive T-cell based immunotherapies utilizing

bioengineered allogenic or autologous T cells, such as CAR T cell

therapy or tumor-infiltrating lymphocytes (TILs) may be a promising

therapeutic approach, either as a supplement to first-line treatments

or as a treatment for refractory cases (14, 116).
7.2 Chemotherapy- induced thymic atrophy
creates a chemoprotective tumor reservoir

Relapsed and refractory disease presents a significant challenge

and is primarily responsible for the poor prognosis in AML. The
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emergence of remnant populations of leukemic cells after exposure to

chemotherapy, termed measurable residual disease (MRD), implies

that AML cells may develop drug-resistance or mechanisms to evade

exposure to therapy. Several premetastatic reservoirs, such as the bone

marrow and the perivascular space of blood vessels, have been

identified as potential reservoirs that permit primary tumor cells to

hide following adjuvant chemotherapy (117–119). When damaged by

chemotherapy, the atrophied and inflamed thymus has likewise been

found to create a chemoprotective microenvironment for both solid

and hematologic tumor cells (120–122). Notably, the release of the

proinflammatory cytokines TIMP1 and IL-6 from TECs in response

to cytotoxic chemotherapy has been shown to induce TEC senescence

and promote lymphoma cell survival (121). Exposure to

chemotherapy also induces thymic residing tumor cells to acquire

an antiapoptotic chemo-resistant phenotype within the inflammatory

thymic microenvironment (120). Finally, the presence of tumor cells

within the thymus may also interfere with de novo T cell

differentiation and lead to tumor-specific immune tolerance. This

hypothesis is supported by several studies that have shown that

infectious pathogens that invade the thymus lead to microbe-

specific T cell tolerance (123–127). Together, these findings suggest

that the atrophied thymic microenvironment may be

chemoprotective to AML blasts, harbor MRD following adjuvant

therapy, and result in tumor-specific T cell tolerance that leads to an

eventual tumor relapse.
7.3 FLT3 ligand and CXCR4/CXCL12
regulates thymic precursors

FMS-like tyrosine kinase 3 (FLT3) is widely expressed by

immature hematopoietic progenitors and over-expressed in a

majority of AML blasts, often in the presence of activating

mutations by tandem duplications (FLT3-ITD) and/or point

mutations involving the tyrosine kinase domain (TKD) (128). The

presence of FLT3-ITD is widely accepted to portend a poor prognosis

in AML due to chemoresistance and the high rate of relapse. Recent

data has suggested that FLT3 and its respective ligand (FLT3L) may

be an important point of regulation for thymic function. FLT3L

knockout mice were notably observed to have reduced immature

thymocytes and Lin-SCA1+KIT+ (LSK) lymphoid-primed

multipotent marrow progenitors (129, 130). More importantly,

administration of FLT3 ligand was found to enhance the export

and survival of LSK cells, early thymic progenitors after

transplantation, and androgens via the downregulation of CXCR4

(131). Potentially, these findings have important clinical implications

because the use of FLT3 inhibitors after HSCT may impair thymic

recovery in AML.
7.4 Allogeneic hematopoietic stem
cell transplantation

Allo-HSCT is currently the only curative treatment option for

AML; though, its success both in regards to its ability to fight

opportunistic pathogens and eliminate leukemia depends on

optimal recovery of adaptive immunity after cytoreductive
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conditioning (132). Thymic-independent proliferation of donor-

derived T-cells can initially restore peripheral T-cell numbers

within the first year following Allo-HSCT. However, because these

T-cells are derived from a limited number of donor precursors, their

TCR repertoire is of limited diversity (133–136). This has important

clinical implications, as lower TCR diversity has been associated with

increased risk for disease relapse (137). Therefore, complete T-cell

reconstitution with a diverse TCR repertoire may depend on the

recovery of de novo T-cell production in the recipient thymus (132,

136, 138). A recent study has importantly demonstrated that some

donor-derived CD8 T cells specific for hematopoietic cell-restricted

antigen can escape deletion in the thymus and contribute to GVL

effects in the periphery (139). Considering that thymic function is also

highly sensitive to pre-transplant conditioning regimens, the above

findings provide a rationale to developing strategies to boost thymic

recovery to improve the outcome of Allo-HSCT (140).
7.5 Graft- versus- host disease

GVHD is a common but significant complication of Allo-HSCT

and has additionally been shown to interfere with thymic-dependent

T cell development by reducing TSP as well as altering thymic

cellularity and architecture (138). This is in part mediated by a

glucocorticoid-independent mechanism of DP thymocyte apoptosis,

as well as the destruction of mTECs via donor alloreactive T cells by

expression IFN-gamma, and the cognate proteins FasL and TNF-

related apoptosis-inducing ligand (TRIAL) (138, 141–147). The

capacity to affect thymic output after HSCT has been demonstrated

by the observation that acute GVHD (aGvHD) is associated with a

significant reduction in sjTREC counts (148–150). In chronic GvHD

(cGvHD), research has demonstrated that sjTREC levels remain

reduced even after recovery and long-term follow-up. However, this

effect was transient in young patients <25 years old, highlighting the

age-dependent regenerative capacity of the thymus (150).
7.6 Therapeutic cancer vaccines

Therapeutic cancer vaccination to induce remission or prevent

relapse has been extensively explored in preclinical and clinical trials

over the last decade (151). However, the efficacy of tumor vaccination

strategies may be compromised by several tumor extrinsic factors

secondary to thymic atrophy, including Treg driven immune

suppression, T cell exhaustion, and reduced TCR repertoire.

Though the role of thymic atrophy on anti-tumor vaccines has yet

to be studied directly, age-related thymic involution has been cited as

one cause for the diminished response to traditional vaccination. This

has been suggested based on the observation that only an estimated

30-40% of elderly patients are able to mount an adequate immune

response to the influenza vaccine (152).
7.7 T-cell directed Immunotherapy

The success of immunotherapy in AML is contingent on the

presence of functional T cells capable of recognizing tumor specific
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antigens. Additionally, the degree of neoantigen heterogeneity, tumor

mutational burden, and TCR repertoire diversity has been

demonstrated to increase the likelihood of tumor antigen

recognition and improve overall survival (153–155). Considering

the role of the thymus in maintaining homeostatic T-cell immunity,

it is likely that a decline in its function could compromise the efficacy

of T-cell directed immunotherapies in AML.

The use of immune checkpoint inhibitors (ICIs) in AML, such as

anti-CTLA-4 antibody ipilimumab, and the anti-PD-1 antibody

nivolumab have demonstrated limited response compared to its

impressive efficacy in solid tumors (156–158). Several strategies

have been employed to predict response to ICI in solid tumors,

including TCR repertoire profiling by high-throughput sequencing

before and after ICI treatment (159). Previous studies in melanoma,

gastrointestinal cancers, and relapsed/refractory classical Hodgkin

lymphoma have overall shown that a broader TCR profile is

associated with superior outcomes in patients receiving ICIs (160–

164). Consistently, a recent paired analysis of single cell RNA and

TCR repertoire profiling in relapsed/refractory AML demonstrated

that TCR repertoires primarily from CD8+ cells expand in patients

who responded to PD-1 treatment, but contract in those who were

treatment resistant (165). Perhaps assessment of TCR repertoire and

even the functional status of the thymus can be used to risk stratify

and monitor patients receiving ICI therapy and thereby determine

optimal personalized treatment strategies for AML patients.

While the application of genetically engineered CAR-T-cell

therapies have been successful for lymphoid malignancies, its use

for the treatment of heterogeneous AML faces several unmet

challenges (166). This includes the lack of AML-specific cell-surface

antigen that minimizes off target toxicity and the suppression of T cell

activity and proliferation by AML blasts (167). As previously

discussed, the increased Treg frequency following thymic atrophy

creates a hostile tumor microenvironment for CAR T cells who are

already susceptible to exhaustion via chronic tumor antigen exposure.

There is some research to suggest that mature peripheral T cells can

re-enter the thymus, localize to the medulla, and alter the stromal

microenvironment (168, 169), which was attributed to the onset of

thymic involution (170). Remarkably, adoptively transferred

syngeneic antigen-specific T cells in lymphopenic mice has been

shown to enter the thymus and eliminate thymic dendritic cells (DCs)

and mTECs presenting cognate antigen (171). These findings have

important clinical implications, as CAR T cells may eradicate tumor

antigen expressing APCs that mediate negative selection, thereby

enhancing the patient’s endogenous antitumor repertoire. However,

given that most AML antigens may also be expressed by normal

HSPCs and healthy tissue, caution must be used, as this phenomenon

may also augment the risk for autoreactivity via on-target, off-tumor

toxicity (116).
8 Strategies to rejuvenate and boost
thymic function

As discussed above, the thymus is important for the development of

T cell mediated tumor immunity in AML, and boosting its function

may be a promising route for improving the efficacy of future therapies.

In this regard, several strategies are currently being investigated to
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rejuvenate thymic function, including approaches to target the TEC

microenvironment, thymic/hematopoetic progenitors, thymic growth/

metabolism, as well as approaches to generate or transplant new

thymus tissue. While few have been successfully translated for clinical

use, their use in combination with cancer immunotherapies may be a

potential avenue for future research (113, 172). Here, we review

promising approaches to improving thymic function within the AML

microenvironment landscape (Table 1).
8.1 FOXN1

As previously discussed, the thymic stromal compartment is

crucial for intrathymic T cell development. The expression of key

transcription factor, Forkhead box N1 (FOXN1) is important for TEC

differentiation, thymic organogenesis during embryonic

development, antigen processing, thymocyte selection, and has been

implicated in regulating age-related thymic involution (257–260).

While downregulation of foxn1 gene with age results in functional

decline in the TEC compartment, its overexpression has been shown

to delay thymic degeneration (257, 261). A study by Bredenkamp and

colleagues showed that increased FOXN1 expression is sufficient to

drive regeneration of the aged thymus both in regards to its

architecture, gene expression and functionality (192). More

recently, Oh et al . demonstrated embryonic fibroblasts

reprogrammed to overexpress FOXN1 could be engrafted to

rejuvenate thymic function in mice (193). While there are currently

no ongoing clinical trials, developing therapies which target FOXN1

expression may provide one strategy for regenerating an aged thymus

further adversely affected by chemotherapeutic regimens used to

treat AML.
8.2 Interleukin-7

Interleukin-7 has come into focus as an important non-redundant

regulator of lymphopoiesis and mature T cell homeostasis through

both thymic dependent and independent mechanisms (10, 262). In

the thymus, IL-7 promotes the survival of DN thymocytes, TCR

rearrangement, and lineage differentiation during positive selection

(263). Furthermore, IL-7 expression appears to decline with age,

correlate with thymic atrophy, and importantly appears to be down-

regulated in the peripheral blood of AML patients (264–266). The use

of exogenous IL-7 for immune reconstitution has been extensively

investigated in several preclinical and clinical studies (262).

Administration of IL-7 in mice after T-cell depleted allo-HSCT was

found to significantly expand donor-derived thymocytes and

peripheral T cells, but remarkably had no effect on alloreactive T

cells and the development of graft-versus-host disease (206, 207).

Several clinical trials have also evaluated the use of glycosylated

recombinant human IL-7 (CYT107) in HIV-1 infected patients and

found that IL-7 treatment was not only safe and well tolerated, but

could also enhance thymopoeisis as demonstrated by an increased

number of recent thymic emigrants (RTEs), increased TREC ratio,

and increased TCR repertoire diversity (208–210). Notably, these

findings were addressed in a phase 1 clinical trial in which CYT107

was used in recipients of T-cell depleted allo-HSCTs; unfortunately,
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changes in RTE or TREC levels were only appreciated in a small

subset of patients (211).
8.3 Keratinocyte growth factor

Keratinocyte growth factor (KGF) is a potent mitogen expressed

by thymic mesenchymal and stromal cells that mediates TEC

proliferation and survival through activation of the PI3k-AKT-

nuclear factor-kB and p53 pathways (176, 177). Several studies have

demonstrated that treatment with exogenous KGR could avert

GVHD-related injury, enhance thymopoiesis in HSCT recipients

and protect TECs during irradiation-induced injury (176, 267, 268).

Furthermore, the use of KGF could reverse age-related thymic
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involution and restore thymopoiesis in aged mice for up to 2

months after treatment (269). The use of recombinant KGF

(palifermin) has since been approved by the US Food and Drug

administration for the treatment of oral mucositis in patients

receiving intensive chemotherapy (270). Currently, there are

multiple clinical trials underway to further investigate the use of

palifermin for T cell reconstitution (NCT01233921, NCT03042585,

NT02356159 and NCT00593554).
8.4 Sex steroid inhibition

The observation that thymic function rapidly declines after

puberty and that castration rejuvenates thymic function has
TABLE 1 Current approaches to Thymic/T cell regeneration in AML and other hematologic malignancies.

Therapeutic
target

Clinical trials References

Targeting the Thymic Epithelial Microenvironment

IL-22 NCT02406651 (173–175)

KGF NCT01233921, NCT03042585, NT02356159, NCT00593554, NCT01712945, NCT00031148, NCT00056875, NCT00004132,
NCT00070616, NCT00004061, NCT00189488, NCT00041665, NCT00109031, NCT01746849 NCT00482846, NCT00376935

(176–188)

RANKL Not currently in clinical trial (189–191)

FOXN1 Not currently in clinical trial (192, 193)

GH and Ghrelin NCT00071240, NCT00119769, NCT00287677, NCT00050921, NCT04375657 (188, 194–
199)

BMP4 Not currently in clinical trial (200–203)

Notch Ligand (204, 205)

Targeting Thymocytes and Hematopoietic Progenitors

IL-7 NCT00477321, NCT01241643, NCT01190111, NCT00684008, NCT00839436, NCT02293161, NCT03941769 (206–216)

IL-12 NCT02483312, NCT00003210, NCT00003149, NCT00003107, NCT00004260, NCT00003575, NCT00003330 (217, 218)

IL-21 NCT04220684, NCT00347971, NCT02809092, NCT01787474 (205, 219–
221)

GH and Ghrelin As above

Thymosin-a1 NCT00580450 (187, 222)

SCF Not currently in clinical trial (184–186)

Modulating Hormones and metabolism

SSI NCT01746849, NCT01338987 (48, 109, 223–
235)

Antioxidant Not currently in clinical trial (236)

Cellular Therapies and Bioengineering

Artificial
thymus scaffold

Not currently in clinical trial (237–240)

Thymic
epithelial
progenitors

Not currently in clinical trial (241–246)

Precursor T
cells

Not currently in clinical trial (204, 247–
256)
Clinical trials obtained through advanced search of clinicaltrials.gov.
IL, interleukin; KGF, keratinocyte growth factor; RANKL, receptor activator of nuclear factor-kB ligand; FOXN1, forkhead box n1; GH, growth hormone, BMP4, bone morphogenic protein 4; SCF,
stem cell factor; SSI, sex steroid inhibition.
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suggested that sex hormones, particularly androgens, play a role in

thymic involution (48, 271–273). Consistent with these findings,

several studies have demonstrated that sex steroid inhibition (SSI)

promotes thymopoeisis by increasing TEC expression of CCL25, Dll4,

and Notch signaling pathways (223, 224). The regenerative impact of

SSI has further been found to enhance immune function in

immunocompromised patients or those undergoing auto-HSCT

(274, 275). To date, several drugs have been developed to

transiently inhibit sex steroids, such as luteinizing hormone-

releasing hormone (LHRH) antagonists, for use in precocious

puberty, prostate cancer, breast cancer, and endometriosis. More

recently, two clinical trials (NCT01746849 and NCT01338987) are

underway to evaluate the effects of SSI on immune reconstitution

following allo-HSCT. A pilot study using LHRH agonist (goserelin)

administration 3 weeks prior to HSCT has already demonstrated

significant increases in naive CD4+ T cells, TRECS, and recovery of

TCR repertoire diversity (225).
8.5 Growth hormone

The expression of growth hormone (GH) progressively declines

after the third decade of life and has been linked to both

hematopoietic and thymic function (194, 276, 277). Given its

immunomodulatory effect in humans, several preclinical and

clinical trials have investigated the use of exogenous GH to boost

immune function and demonstrated that it can reverse thymic

atrophy and improve TCR diversity (194–196). Notably, two

prospective randomized trials reported that daily recombinant GH

injections for 6-10 months could enhance thymic output and TREC

levels in HIV-1 infected patients (195, 278). Another trial also

remarkably showed that GH treatment reduced PD-1+ CD8 T cells,

suggesting that this could also be used to reverse CD8 T cell

exhaustion (197). While GH therapy has been approved for use in

pediatric patients who develop post-radiation growth disorders after

HSCT, GH therapy has yet to be implemented for immune

reconstitution (279, 280). Before it may be used for thymic

reconstitution, several concerns must be addressed. Firstly, it

appears the effect on thymic output appear to only be transient, as

discontinuation of GH results in recurrence of thymic atrophy (196).

Secondly, GH is associated with many undesirable side effects,

including increased risk for cardiovascular disease, stroke, and

diabetes. Importantly, GH and growth hormone-releasing hormone

(GHRH) have recently been implicated in AML proliferation (281,

282). These side effects reduce the enthusiasm for the use of GH or

GHRH in treating AML.
8.6 Notch ligands

The expression of Notch ligands Delta-like-1 and 4 (DLL4 and

DLL1) by cTECs is essential for supporting T-lineage commitment (283).

In the absence of notch signaling, thymopoiesis is arrested early in T cell

development during double negative thymocyte differentiation (284).

Conversely, its constitutive activation in HSPC simultaneously results in

inhibition of B cell development and promotion of T cell development

toward double positive status in the thymus (285). Furthermore, a recent
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study by Tikhonova et al. investigating the transcriptional changes of the

BM microenvironment in response to chemotherapy demonstrated that

DLL4 and DLL1 is notably downregulated by the vascular endothelium

in response to stress (286).

The potential for Notch signaling for T cell reconstitution has been

explored in several studies. For instance, the treatment of lin- Sca-1+

C-kit- (LSK) hematopoietic progenitors with DLL1 ex vivo has been

shown to accelerate thymus engraftment and T cell reconstitution

after HSCT (204). More recently, it has been shown that activation

of a BM-specific Notch/IL-21 signaling axis could lead to ex vivo

expansion of T cell progenitors (205). It is important to note that

Notch has also been cited as a tumor suppressor in myeloid

malignancies and that reduced Notch signaling may play a role in

skewing HSPC to premature myeloid lineages that could progress to

leukemic myeloid production (287–289). Together, these findings

provide a rationale to develop strategies to improve for T cell

regeneration that utilize Notch and its downstream signaling

pathways for use in treatment of AML.
8.7 Bone morphogenic protein-4

Bone morphogenic protein-4 (BMP4) is a member of the TGF-b
superfamily, known for its role in regulating embryonic development

(290). However, new research has highlighted its function in thymic

tissue regeneration after injury (200, 201). A recent study by

Wertheimer et al. showed that TECs increased expression of BMP4

after thymic injury, resulting in increased expression of Foxn1 and its

downstream target, Notch ligand Dll4 (200). More remarkably, they

found that inhibition of BMP4 resulted in impaired thymic

regeneration, and its exogenous administration could rescue its

ability to repair. While not yet in clinical trials, these studies

highlight BMP4 as a novel target for improving immunologic recovery.
8.8 Cell- based therapies
and bioengineering

Adoptive cell-based therapies and de novo thymus synthesis have

also been investigated for the purpose of enhancing thymic function.

Considering that T cell reconstitution is delayed after HSCT due to

the limited availability of hematopoetic progenitors, several groups

have investigated the potential of supplying donor precursor T cells to

boost thymogenesis at the time of transplant (247–249). By expanding

hematopoietic precursor cells ex vivo using Notch-1 stimulation,

researchers have demonstrated significant increases in both thymic

cellularity and peripheral T cell reconstitution (250–252).

Alternatively, others have attempted to generate new thymus

epithelial tissue through the isolation and expansion of thymic

epithelial progenitor cells (TEPC) from fetal thymi (241, 242).

Here, we have extensively reviewed the regenerative factors that

are currently being studied for repair of the dysregulated immune

system, some of which are now being investigated in clinical trials

(Table 1). We acknowledge the challenge in developing a successful

and durable effective immunotherapy for heterogeneous AML in

elderly patients, based on the rationale that their declined immune

function leads to further disease progression (291). Thus, novel
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approaches will also be crucial. It has long been recognized from

parabiotic mouse studies that there are circulating factors in young

mice, which have not yet been identified but which could improve the

metabolic and regenerative status of older mice (292). It will then be

important to determine if the immune system in the aging mouse also

improves with parabiosis. If so, parabiosis could be adapted to studies

on the dysregulated immune system in a humanized AML mouse. A

serial chronological study of the immune system utilizing the latest

genomic techniques, such as single-cell RNA-seq and epigenetic

approaches, could disclose key pathways involved in the

deterioration of immune regulation with aging and AML. Such

mechanistic studies and translational approaches could be applied

to both the bone marrow niche and the thymic microenvironment.

Searches for important molecular and genetic interactions could be

sought as well.
9 Concluding remarks

A growing body of research has demonstrated that hematological

malignancies are associated with profound dysregulated immune

responses in the host, and this may relate to a worse prognosis and a

suboptimal response to immunotherapy. Given the unique role of the

thymus in shaping the T cell repertoire, it is conceivable that the

crosstalk between the bone marrow and thymic microenvironments

contributes to AML’s high rate of therapy resistance and disease

relapse, and may have wide repercussions on the future of

immunotherapy. As we have briefly reviewed, the thymus is a
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dynamic primary lymphoid organ impacted by many factors in AML

patients, including age, availability of HSC progenitors, treatment with

chemotherapeutics or HSCT, and the immunosuppressive tumor

microenvironment (Figure 3). At the same time, the thymus

influences the composition of the cellular milieu in TME. It is thus

reasonable to postulate that perturbations to either the BM or the

thymic microenvironment may affect the other and be at least partly

responsible for the observed immunosenescence in patients with AML.

The intense interest and scrutiny of T-cell based immunotherapies in

hematological malignancies lends impetus to developing novel

strategies to overcome T cell immune dysfunction in vivo (293). The

clinical features of CAR-T cell exhaustion in vivo have been investigated

by studying cell proliferation, cytotoxicity, and the median persistence

of CAR-T cells in peripheral blood, which was found to be within a

range of 20 to 617 days (294). Adequate nutrient levels are essential for

restoring mitochondrial bioenergetic function, especially for the

survival of functional immune cells and recovery from critical illness

for cancer patients (295). Whether a rejuvenated thymus can provide

such support to host exhausted CAR-T cells and restore their durable

anti-leukemic function remains to be uncovered. Also, the success of T

cell therapies relies on a diverse T-cell repertoire shaped by the thymus

to be effective. Among the complex mechanisms underlying the

multifactorial molecular and cellular interactions between immune

senescence, cancer immunosurveillance, cancer immune-editing, and

cancer initiation and promotion, thymic atrophy represents one piece

of the puzzle (32, 296). Therefore, if immunotherapies are to eventually

prove successful, one of future pre-clinical and observational studies

should focus on improving our understanding of thymic involution
FIGURE 3

Schematic illustration summarizing the crosstalk between the bone marrow and thymic microenvironment, and its influence on the AML TME.
Hematopoietic stem cells derived from the leukemic bone marrow microenvironment can travel to the thymus where they differentiate into T cells. The
resulting T cells are then exported to the periphery, where they may then recirculate back into the bone marrow as tumor infiltrating lymphocytes.
Environmental insults such as aging, cytoreductive therapy, HSCT pre-conditioning, and FLT3 inhibition may impair thymopoiesis and subsequently promote
tumor immune evasion through immunosenscence. The immunosuppressive bone marrow microenvironment can also independently impair thymic
function through MCP-1/CCl2 expression and reduction in thymic seeding progenitors. Elements of this figure were generated using Biorender.com.
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with age, its dysfunction in hematological malignancies and novel

strategies that can revitalize thymic function and immunosurveillance.
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