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A semi high-throughput whole
blood-based flow cytometry
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Introduction: The characterization of B. pertussis (Bp) antigen-specific CD4+ T cell

cytokine responses should be included in the evaluation of immunogenicity of

pertussis vaccines but is often hindered by the lack of standardized robust assays.

Methods: To overcome this limitation, we developed a two-step assay comprising

a short-term stimulation of fresh whole blood with Bp antigens and

cryopreservation of the stimulated cells, followed later on by batch-wise

intracellular cytokine analysis by flow cytometry. Blood samples collected from

recently acellular (aP) vaccine boosted subjects with a whole-cell- or aP-primed

background was incubated for 24 hrs with Pertussis toxin, Filamentous

hemagglutinin or a Bp lysate (400µl per stimulation). Antigen-specific IFN-g-, IL-
4/IL-5/IL-13-, IL-17A/IL-17F- and/or IL-22-producing CD4+ T cells were quantified

by flow cytometry to reveal Th1, Th2, and Th17-type responses, respectively. The

frequencies of IFN-g-producing CD8+ T cells were also analyzed.

Results: We demonstrate high reproducibility of the Bp-specific whole blood

intracellular staining assay. The results obtained after cryopreservation of the

stimulated and fixed cells were very well correlated to those obtained without

cryopreservation, an approach used in our previously published assay.

Optimization resulted in high sensitivity thanks to very low non-specific

backgrounds, with reliable detection of Bp antigen-specific Th1, Th2 and Th17-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1101366/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1101366/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1101366/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1101366/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1101366/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1101366&domain=pdf&date_stamp=2023-02-06
mailto:veronique.corbiere@ulb.be
https://doi.org/10.3389/fimmu.2023.1101366
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1101366
https://www.frontiersin.org/journals/immunology


Corbière et al. 10.3389/fimmu.2023.1101366

Frontiers in Immunology
type CD4+ T cells, in the lowest range frequency of 0.01-0.03%. Bp antigen-

specific IFN-g+ CD8+ T lymphocytes were also detected. This test is easy to

perform, analyse and interpret with the establishment of strict criteria defining

Bp antigen responses.

Discussion: Thus, this assay appears as a promising test for evaluation of Bp

antigen-specific CD4+ T cells induced by current and next generation

pertussis vaccines.
KEYWORDS

Bordetella pertussis, vaccine, whole blood assay, Th1/Th2/Th17, intracellular cytokine
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Introduction

Pertussis, a bacterial respiratory disease caused by Bordetella

pertussis (Bp) (1), remains one of the most uncontrolled vaccine-

preventable disease despite high vaccine coverage (2). Therefore, new

vaccine strategies are urgently required. Whole-cell pertussis (wP)

vaccines, first implemented in the 1940s, were replaced in most

industrialized countries in the 1990s-2000s by less reactogenic,

acellular pertussis (aP) vaccines containing highly purified Bp

antigens adsorbed to aluminum hydroxide as adjuvant. Despite

clinical efficacy of aP vaccines against disease (3), pertussis

outbreaks have been reported in countries where aP vaccines were

implemented (4–6), with increases in pertussis cases in aP-primed

adolescents (7). Fast waning of immunity as well as a suboptimal

quality of immune responses induced by aP vaccines have been

suggested to contribute to pertussis resurgence (8). In addition,

while aP vaccines protect against symptomatic disease, baboon

studies have demonstrated that they do not prevent asymptomatic

carriage and transmission of pertussis (9). In contrast, wP-vaccinated

non-human primates cleared the infection more rapidly than control

animals (9), stressing the importance of the development of next

generation vaccines with detailed characterization of the immune

responses they induce in addition to demonstrating their

protective efficacy.

While serum antibodies are the most currently used biomarker

for new vaccine evaluation, the role of CD4+ T lymphocytes in

protection against pertussis is now largely accepted (10). First

described in mouse models (10, 11), the role of antigen-specific

IFN-g-producing CD4+ T lymphocytes (Th1) in protection was

further demonstrated in a non-human primate model (12).

Whereas Th1 responses are also induced in humans following

infection and immunization with wP vaccines, aP vaccines induce a

Th2-dominated CD4+ T cell response that is characterized by

production of IL-4, IL-5 and/or IL-13 (13–17). In addition, the

induction and protective role of IL-17-producing CD4+ T cells

(Th17) have been demonstrated in several animal models after wP

vaccination and pertussis infection (18–21). Consequently, not only

Th1 and Th2-type but also Th17-type CD4+ T cell responses need to

be evaluated during vaccine studies. Finally, in addition to Bp-specific
02
CD4+ T cells, CD8+ T lymphocytes were also reported to participate

in the IFN-g response to Bp antigens (15, 22–25). Even though the

significance of Bp-specific CD8+ T cell response is to our knowledge

still unknown, their characterization may merit attention.

Currently available T cell immunoassays comprise proliferation

assays, measurement of released cytokine concentrations by ELISA,

enumeration of the cytokine-secreting cells by ELISPOT or detection

of cytokine-containing T cells by multiparameter flow cytometry

(FC). These assays are most often performed on cryopreserved

peripheral blood mononuclear cells (PBMC) with inherent potential

artefacts induced by cell isolation and freezing/thawing procedures,

which may affect the proportion, phenotype and functions of cells,

especially of effector cells (26–29). Moreover, using frozen cells for

stimulation may compromise the optimal presentation of proteins by

antigen-presenting cells to CD4+ T lymphocytes (30). Additionally,

some of these techniques require long in vitro stimulation times with

the antigens (15, 16, 31), potentially inducing further artefacts, and,

except for FC, they do not allow a characterization of the cytokine-

producing cells at the cellular level.

To overcome these limitations, we recently developed a whole

blood assay (32), which includes a short in vitro stimulation step of

whole blood (WB) with Bp antigens, followed by intracellular

cytokine staining (ICS) to assess Th1, Th2 and Th17-type cytokine-

producing and activated T lymphocyte populations specific for Bp

antigens. This technique was successfully used for the

characterization of human antigen-specific CD4+ T cell responses

in a booster vaccination study (33). However, in a clinical study

setting, antigen stimulation of fresh blood samples followed by

antibody staining of cells and FC analysis is logistically challenging

and does not allow for simultaneous measurements of longitudinal

samples from the same individual.

To address these limitations, we introduced a cryopreservation

step after stimulation of whole blood with Bp antigens, based on an

approach that was successfully developed to characterize

mycobacteria-specific CD4+ T cell responses (34, 35). We further

optimized and validated this assay on fresh blood samples from

recently vaccinated subjects to demonstrate feasibility and accuracy

to detect and characterize low Bp antigen-specific Th1/Th2/Th17

CD4+ T cell responses.
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Material and methods

Ethical approval

This study was approved by the Ethics Committee ULB-Hôpital

Erasme (aggregation number OMO21, study protocol P2018/515),

and all the subjects gave their written informed consent.
Subjects and whole blood sampling

Blood samples were collected from 12 wP-primed adults and two

5-6-years-old aP-primed children after the administration of an aP

vaccine booster. Nine adults were recently boosted (between D13 and

D37) whereas the three others received the boost some years before

the blood sampling, with a maximum of 6 years (Boostrix®, GSK

Biologicals, Belgium). The two children were recently boosted

(between 1-2 months; Tetravac™ -Sanofi Pasteur, Lyon, France).

Mean age of the adults was 33 years (21-52 years in the range),

whereas the children were 5-6 years-old. Venous blood samples were

collected in sodium heparin tubes (BD Biosciences, Erembodegem,

Belgium) and transported directly to the laboratory.
Antigens for in vitro stimulation

Pertussis toxin (PT) and filamentous hemagglutinin (FHA), the

two Bp antigens present in all aP vaccines (36), were selected for in

vitro stimulation of blood cells in the Bp-specific whole blood

intracellular staining (BpWB-ICS) assay to expand vaccine-induced

Bp-specific precursor T lymphocytes. A Bp lysate (BPL) was also used

to detect cellular immune responses to Bp antigens that are not

included in aP vaccines. A genetically detoxified PT mutant, with an

inactivated S1 subunit (R9K, E129A), was chosen for the in vitro T cell

assay (LIST Biological laboratories Inc., Campbell, CA, USA, #184) to

avoid the toxic activity on target cells (37). PT was resuspended

following the manufacturer’s instructions and stored in aliquots at

500 µg/mL at 4°C. The endotoxin content determined by a kinetic

chromogenic LAL assay was 0.02 EU/µg. Prior to use, each aliquot of

PT was heat-inactivated at 80°C during 10 minutes using a

Polymerase Chain reaction block, as recommended to abolish in

vitro mitogenic activity of the B oligomer on T lymphocytes (16, 31,

37). Heat-inactivated aliquots were kept at 4°C until use. FHA was

kindly provided by Sanofi Pasteur (Marcy-l’Étoile, France) and stored

at 700 µg/mL at 4°C. The endotoxin content was below the detection

limit of 0.005 EU/µg FHA. The BPL of strain B1917 (38) was kindly

provided by Q Biologicals (Ghent, Belgium) and stored at 3.4 mg/mL

at -80°C. A Bp sonicate, initially used for assay optimization before

the availability of the BPL, was kindly provided by K. Mills (TCD,

Dublin, Ireland) and stored at 596 µg/mL at -80°C. BPL and BP

sonicate were heat-inactivated as described above for PT. All Bp

antigens were aliquoted in low-binding tubes (Maxymum recovery

from Axygen, VWR, Leuven, Belgium) for long-term storage. TT used

to assess the intra-assay reproducibility, was purchased from

Calbiochem (Sigma-Aldrich, Bornem, Belgium) and stored at 200

µg/mL at -20°C. As a positive control, Staphylococcus aureus
Frontiers in Immunology 03
enterotoxin B (SEB) was purchased from Sigma (Sigma-Aldrich)

and stored at 1 mg/mL at -20°C.
Short-term whole blood stimulation

Blood samples were processed within 3 hrs maximum of their

collection (median of 30 min, 25th percentile - 75th percentile (P25-

P75): 18-60 min, range: 15-180 min), consistent with other studies

that recommended a short delay between blood collection and

processing (34, 39). Freshly drawn whole blood samples were

diluted 1:1 with RPMI 1640 medium (Invitrogen/ThermoFisher,

Merelbeke, Belgium), supplemented with 40 µg/ml gentamycin

(Invitrogen/ThermoFisher). Costimulatory anti-CD28 and anti-

CD49d antibodies (clones L293 and L25.3, respectively, BD

Biosciences, Mountain View, CA) were added to the diluted blood,

each at a final concentration of 1 µg/mL to increase cytokine

expression in antigen-specific T cells (34). Two-fold diluted blood

was distributed in 15 ml round-bottom polypropylene tubes, each of

which containing 800 µl of diluted blood (corresponding to 400 µl

original blood volume) and incubated in the absence (negative

control) or presence of antigen, i.e. 5 µg/mL PT, 5 µg/mL FHA, 10

µg/mL BPL, 10 µg/mL TT, 10 µg/mL Bp sonicate or 1 µg/mL SEB. The

optimal antigen concentrations were either based on the literature

(BP sonicate, TT) or on preliminary experiments from the

PERISCOPE Consortium (PT, FHA, BPL). To assess intra-assay

variability, some stimulations were performed in duplicate. Tubes

were loosely covered by caps and incubated for 24 hrs at 37°C and 5%

CO2. During the last 4 to 5 hrs of incubation, 10 µg/ml Brefeldin-A

(Sigma-Aldrich) together with 1/1,000 Monensin (BD Biosciences,

Erembodegem, Belgium) was added to each tube to inhibit cellular

protein transport (26). Cells were subsequently pelleted at 500 x g for

10 min.
Blood cell processing for direct flow
cytometry analysis or cryopreservation

The protocol was adapted from the BD protocol (Alternative

Protocol, Activation and Intracellular Staining of Whole Blood, BD

Biosciences). Briefly, erythrocytes were lysed by adding 10 mL BD

PharmLyse (BD Biosciences) to the pelleted cells for 10 min at room

temperature (RT) in the dark. After washing with phosphate buffered

saline (PBS, Westburg – Lonza, The Netherlands), cells were

centrifuged at 500 x g for 10 min, the supernatants were discarded,

and the white blood cells were fixed by incubation with 1 mL of the

Fixation/Permeabilisation solution (from the BD Cytofix/Cytoperm

Fixation/Permeabilisation kit, BD biosciences) during 20 min at RT in

the dark. After centrifugation at 500 x g for 5 min, the white blood

cells were cryopreserved in 500 µl Recovery Cell Culture Freezing

medium (ThermoFisher), a formulation based on Dulbecco’s

Modified Eagle Medium (High Glucose) with optimized levels of

foetal bovine serum, bovine serum and 10% DMSO per condition.

Cells were transferred into cryovials transferred into cryovial, before

storage at -80°C for delayed analysis by batches. In case of direct

staining and flow cytometry acquisition, the white blood cells were

directly permeabilised by incubation with 2 mL of the Perm/Wash
frontiersin.org
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solution (from the BD Cytofix/Cytoperm Fixation/Permeabilisation

kit, BD biosciences) for 10 min at RT in the dark.
Thawing and permeabilization of the
stimulated and fixed cells after
cryopreservation

Cryovials containing the stimulated, fixed and frozen white blood

cells were retrieved from the -80°C freezer and thawed in a water bath

at 37°C for 2 min. Thawed cells were transferred from cryovials to 15

mL conical tubes containing 5 mL PBS. After centrifugation at 500 x g

for 5 min, the cells were permeabilized by adding 2 mL of the Perm/

Wash solution (BD Biosciences) and incubated at RT for 10 min.
Staining of the cells for flow cytometry and
acquisition of the data

After permeabilization, either directly on freshly stimulated cells

or after cryopreservation of the stimulated and fixed cells, surface and

intracellular antibody staining of the cells was combined and
Frontiers in Immunology 04
performed in the presence of Perm/Wash buffer during 30 min at

RT in the dark. Cells were stained with one of the two monoclonal

antibody panels; panel 1: CD3-PcP, CD4-APC H7, CD8-PE, CD14/

CD19-V500, IFN-g-BV421, IL-5/IL-13-APC, IL-17A-FITC (Details

see Table 1, panel 1); or panel 2: CD3-APC-H7, CD4-BB515, CD8-

PerCP-Cy5.5, IFN-g-BV421, IL-4-APC, IL-5-APC, IL-13-APC, IL-
17A-PE, IL-17F-PE, IL-22-PE-Cy7 (Details see Table 1, panel 2). The

antibody panel 1 was optimised in order to improve the detection of

Th1 and Th17-type responses. After staining, cells were washed with

2 mL Perm/Wash buffer, transferred in FACS tubes (BD Biosciences),

and washed again with PBS before they were recovered in FACS Flow

buffer (BD Biosciences) for acquisition.

Acquisition was initially performed on a FACSCanto II flow

cytometer (BD Biosciences) to assess the intra-assay reproducibility

and a BD-LSR Fortessa flow cytometer (BD Biosciences) was used

subsequently for the next experiments. The content of the tube was

completely acquired. Compensations were performed using Comp

Beads (BD Bioscience) tubes individually stained with each

fluorophore, and compensation matrices were calculated with

FACSDiva. Cytometer Setting and Tracking (CST) beads (BD

Biosciences) were acquired before each experiment to ensure that

cytometer parameters remained consistent across all experiments.
TABLE 1 Antibody clones and fluorochromes.

Marker Clone Fluorochrome Company Reference

Panel 1

1 IL-17A BL168 FITC Biolegend 512304

2 CD8 SK1 PE BD biosciences 345773

3 CD3 SK7 PcP BD biosciences 345766

4 IL-5 TRKF5 APC Biolegend 504305

IL-13 JES105A2 APC Biolegend 501908

5 IFN-g B27 BV421 BD biosciences 562988

6 CD4 SK3 APC-H7 BD biosciences 641398

7 CD14 M5E2 V500 BD biosciences 561391

CD19 HIB19 V500 BD biosciences 561121

Panel 2

1 CD4 SK3 BB515 BD Biosciences 565996

2
IL17A BL168 PE Biolegend 512306

IL17F 033-782 PE BD Biosciences 561197

3 IL22 22URTI PECy7 eBiosciences 25-7229-42

4 CD8 SK1 PcP Cy5.5 BD Biosciences 565310

5
IL4 MP-4-25D2 APC Biolegend 500812

IL5 TRKF5 APC Biolegend 504305

IL13 JES105A2 APC Biolegend 501908

6 CD3 SK7 APC H7 BD Biosciences 641415

7 IFN-g B27 BV421 BD biosciences 562988
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Flow cytometry analysis

All flow cytometry data analyses were performed with FlowJo

software (version 9.5.3, Tree Star, Ashland, OR USA) by using

sequential gating. Preliminary experiments using a live/dead dye

demonstrated that most cells were alive after the stimulation, and

successive gates were applied to exclude dead cells. The gating strategy

shown in Supplementary Figure 1 is an example of cryopreserved cells

stained with antibody panel 2. Briefly, after selection of a time of

homogenous acquisition, lymphocytes were determined according to

their size and granularity. After doublet exclusions and CD3+ T cells

selection, CD4+ CD8- T cells were analysed for their content in

cytokines. The numbers of acquired events and percentages of CD4+

T cells that produce IFN-g, IL-4/IL-5/IL-13, IL-17A/IL-17F or IL-22

were reported. The numbers of events recorded in the CD3 gate were

264,500 (median with range: 97,396-533,000) and 344,000 (median

with range: 96,432-577,000) for the samples stained freshly and after

cryopreservation, respectively. For CD4+ T lymphocytes, these

numbers were 119,000 (median with range: 43,536-346,000) and

144,500 (median with range: 53,800-377,000), respectively. CD8+ T

lymphocytes were analysed for their content in IFN-g, and the

numbers of CD8 events were 72,973 (median, range: 17,647-

149,000) and 89,034 (median, range: 23,288-164,000), respectively.

The numbers of acquired events were thus higher after

cryopreservation within the CD3, CD4 and CD8 gates (p=0.0001,

p=0.0003, p=0.0004, respectively).

The non-specific backgrounds were defined as the percentage of

cytokine-producing CD4+ or CD8+ T lymphocytes among cells

incubated in the absence of antigen. Percentages of antigen-specific

cytokine-producing CD4+ and IFN-g-producing CD8+ T cells were

determined after the non-specific background values were subtracted.
Criteria defining significant percentages
of Bp antigen-specific cytokine-
containing cells

To determine whether a Bp antigen-specific T cell response was

relevant, we first compared the results obtained for the stimulated

conditions to those from unstimulated condition by checking

carefully the Flowjo analyses. The percentages of cytokine-

containing cells in a diluted whole blood sample after Bp antigen

stimulation were arbitrarily defined as significant i.e. different from

the non-specific background, based on two criteria: a stimulation

index (SI, percentage of cytokine positive cells in Bp antigen-

stimulated condition/percentage of cytokine positive cells in the

absence of antigen) ≥ 2, and a percentage of Bp antigen-specific
Frontiers in Immunology 05
cells (i.e. after subtraction of the non-specific background) ≥ 0.030%

(Table 2). Both a high number of events acquired in the parent gate

and a low background in the absence of antigen allowed us to consider

low percentages of positive cells in stimulated conditions to be

antigen-specific. Results were considered doubtful in two cases (1):

a SI > 2 with a percentage of positive cells between 0.010–0.030%, and

(2) a SI between 1.5 and 2, with a percentage of positive cells ≥

0.010%. Results were always considered negative in case of a

percentage of positive cells lower than 0.010%. These criteria were

validated by checking back the Flowjo analyses.

Subjects with clearly detectable or doubtful percentages of Bp

antigen-specific T cells were identified as responders or doubtful

responders to that antigen, respectively. Subjects were considered as

non-responders when a negative result was recorded.
Statistical analysis

Graphpad Prism 7.03 for Windows (Graphpad software, La Jolla,

CA, USA) was used for statistical analysis. Correlations were

evaluated by a non-parametric Spearman test. Wilcoxon matched-

pairs signed rank test was applied to compare the results obtained for

paired samples. Friedman’s test was used to compared three or more

paired groups, with Dunn’s test as post hoc analysis to compare two

conditions. A value of p<0.05 was considered significant. *, p<0.05;

**, p<0.01.
Results

Intra-assay reproducibility of the
BpWB-ICS assay

In order to examine the intra-assay reproducibility of the BpWB-

ICS assay, blood samples from five adults (n°1 to n°5) was divided

into two aliquots and processed separately from the incubation step

until the direct staining of the cells, to detect intracellular cytokines

within CD4+ T cells (Figure 1, Table 1, panel 1). The percentages of

IFN-g- or IL-17A-producing CD4+ T cells obtained for the duplicates

were measured under unstimulated and stimulated conditions with

antigens (PT, FHA, Bp lysate, Bp sonicate, TT or SEB).

No Th2-containing CD4+ T cells were detected whereas the

percentages of antigen-induced IFN-g- or IL-17A-producing CD4+

T reached 0.604% and 0.034% in the median, respectively (P25-P75:

0.097%-3.18% for IFN-g and 0.010%-0.118% for IL17-A). Results

obtained in the absence of antigen were very low (0.011% and 0.004%

in the median, for IFN-g and IL-17A, respectively). The results
TABLE 2 Criteria to define responders and doubtful responders to Bp antigens.

SI Percentage of positive cells *

Responder ≥ 2 ≥ 0.030%

Doubtful responder ≥ 2
≥ 1.5 – 2

≥ 0.010% - < 0.030%
≥ 0.010%

Non-responder < 2 or ≥ 2 < 0.010%
SI, Stimulation index (percentage of cytokine positive cells in Bp antigen-stimulated condition/percentage of cytokine positive cells in the absence of antigen); *, non-specific background subtracted.
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obtained for the two different aliquots of blood were very well

correlated (r=0.980, p<0.0001 for IFN-g and r=0.958, p<0.0001 for

IL-17A (Figure 2). The coefficients of variation (CVs) of the results

obtained for the duplicates were 16% for IFN-g and 22% for IL-17A,

indicating that the precision of the assay may be considered as good

(40, 41).
Inter-operator reproducibility of data
analysis of the BpWB-ICS assay

To assess a potential operator effect on the flow cytometry

analyses, we compared results of acquired data obtained for the
Frontiers in Immunology 06
same samples and analysed with the FlowJo software by two

different operators, one experienced and one novice operator.

Blood samples from four adults (n°6 to n°9) and from two

children (n°1, n°2), were included here and they were processed

with an optimized antibody panel (panel 2, Table 1) to further expand

the detection of Th2 and Th17-type CD4+ T cells (Figure 1). As a flow

cytometer LSR Fortessa became available, datasets were analysed on

this cytometer, and we extent the analysis to CD8+ T lymphocytes in

addition to CD4+ T lymphocytes.

The percentages of total CD3+, CD4+ and CD8+ T lymphocytes

obtained by the two operators were strongly correlated (Figure 3A,

r=0.992, p<0.0001). Similarly, the percentages of IFN-g-producing-
CD4+ T cells, IL-4/IL-5/IL-13 and IL-17A/IL-17F were highly
FIGURE 1

Flow chart of the study with the different steps of development of the BpWB-ICS. Blood samples were collected from 12 adults and from two children.
The adults were all primed with a whole-cell pertussis vaccine (wP), whereas the children were primed with an acellular pertussis vaccine (aP). All the
subjects were aP boosted. The intra-assay reproducibility was first evaluated on blood samples from five adults, using a direct staining of the Bp-antigen-
stimulated cells. As antigen-specific Th2 cells were not detected, further optimisation was performed on blood samples from four adults and from two
children. The antibody panel 2 was determined, a BD-LSR Fortessa replaced the FACSCanto II, and the inter-operator reproducibility was evaluated.
Results obtained for the same blood samples were analysed head to head without and after a cryopreservation step to develop the BpWB-ICS with a
delayed staining of the cells. This allowed us to further analyse the assay performance of the BpWB-ICS.
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correlated (Figures 3B–D, p<0.0001). The percentages of IL-22-

producing CD4+ T cells were low but also well correlated

Supplementary Figure 2A). Similar to CD4+ T cells, the percentages

of IFN-g-producing CD8+ T cells were also well correlated

Supplementary Figure 2B). The percentages of other cytokines

produced by CD8+ T cells were insignificant.
Effect of cryopreservation in the workflow
of the BpWB-ICS assay

To evaluate the effect of cryopreservation of stimulated and fixed

cells, blood samples from four adults (n°6 to n°9) and two 5-6 years

old-children (n°1, n°2), were divided into two series of aliquots. The

first series was stained directly, while the second one was stained after

cryopreservation of the stimulated and fixed cells at -80°C during a

median of 12 months (range: 1 month – 22 months), for a head to

head comparison (Figure 1).

The percentages of total CD3+, CD4+ and CD8+ T lymphocytes

obtained from fresh versus frozen samples were highly correlated

(Figure 4A, r=0.956, p<0.0001), as were the percentages of IFN-g-
producing CD4+ T cells (Figure 4B, r=0.951 and p<0.0001). The

correlation between the percentages of CD4+ T cells-producing IL-4/

IL-5/IL-13 obtained by the two procedures was slightly lower albeit still

satisfactory (Figure 4C, r=0.766, p<0.0001). Eight discrepancies out of

30 results were noticed between results of Th2-producing cells obtained

by the two procedures, with slightly higher percentages noticed for the

direct staining than for the procedure performed after cryopreservation

(Figure 4C). These discrepancies originated from two adults for several

stimulating conditions, and from one child for the unstimulated

condition. The percentages of IL-17A/IL-17F-producing CD4+ T cells

obtained by the two procedures were perfectly correlated (Figure 4D,

r=0.974 and p<0.0001). Good correlations were also found for the very
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low percentages of IL-22-producing CD4+ T cells (r=0.860, p<0.0001,

Supplementary Figure 3A), and for IFN-g-producing CD8+ T cells

(r=0.883, p<0.0001, Supplementary Figure 3B). The non-specific

backgrounds were similar for direct staining compared to staining

after cryopreservation (Supplementary Figure 4). Figure 5 summarized

the final workflow of the BpWB-ICS assay.
Detection of Bp antigen-specific Th1, Th2
and Th17-type CD4+ T lymphocytes by the
BpWB-ICS assay

To determine the assay performance and the capacity of the assay to

detect Bp antigen-specific Th1, Th2, and Th17-type responses, we

compared the percentages of cytokine-producing CD4+ T cells of

cryopreserved samples stimulated with PT, FHA, BPL or SEB, to the

non-specific background, after staining with antibody panel 2 (Figure 1).

Samples from seven adults (n°6 to n° 12) and from two children (n°1, n°

2), all recently aP vaccine boosted, were analysed (Figure 1).

Except for Th2-producing cells, background percentages were

remarkably low, with median values of 0.012%, 0.007%, and 0.009%

for IFN-g, IL-17A/IL-17F, and IL-22-producing CD4+ T cells,

respectively (Supplementary Figure 5). This background was higher

for the percentage of IL-4/IL-5/IL-13-producing CD4+ T lymphocytes

with a median of 0.031%, although they were still in an acceptable

range (Supplementary Figure 5).

In contrast, the percentages of IFN-g-producing CD4+ T cells

obtained after stimulation with PT, FHA, BPL or SEB were higher

and significantly different from the background percentages

(Figure 6A). Overall, the percentages of antigen-induced-IL-4/IL-5/

IL-13-producing CD4+ T cells were not significantly different from the

background percentages, due to one subject with a very high IL-4/IL-5/

IL-13 background (Figure 6B). Excluding this outlier subject resulted in
A B

FIGURE 2

Intra-assay reproducibility of the BpWB-ICS assay. The percentages of (A) IFN-g- and (B) IL-17A-producing CD4+ T cells obtained after direct staining of
two separate aliquots of blood were compared two by two for each stimulation condition. Two different aliquots (400µl/aliquot) from single blood
samples were assayed separately from stimulation until the direct staining of the cells. Negative (no antigen, open circles) and positive (SEB, open
triangles) controls were used in parallel to blood incubated during 24 hrs with 5 µg/ml PT, 5 µg/ml FHA, 10 µg/ml BPL, 10 µg/ml Bp sonicate or 10 µg/ml
TT (black circles). Thirty-five comparisons were performed on five adults (n°1-5), two of which recently aP boosted, two aP boosted less than three years
before, and one, six years before. For the two subjects recently boosted, blood was collected before and after aP booster vaccination. After 24 hrs
incubation including a 5 hrs protein transport arrest, the cells were fixed, directly permeabilized and stained with antibody panel 1 (Table 1). The
acquisition was performed on a Canto II flow cytometer, and FlowJo software (version 9.5.3) was used for the analysis. Correlations were evaluated by a
non-parametric Spearman test with Graphpad Prism 7.03 software (Graphpad software, La Jolla, CA, USA).
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significant differences between PT, FHA or SEB-stimulated compared

to unstimulated cells (p=0.016 for PT and FHA and 0.008 for SEB). The

percentages of IL-17A/IL-17F-producing CD4+ T cells obtained after

stimulation were higher and significantly different than the background

percentages (Figure 6C). Significant percentages of IL-22-producing

CD4+ T cells, different from the background, were only noticed after

stimulation with BPL or SEB (Figure 6D).
Sensitivity of the BpWB-ICS assay to detect
CD4+ T cell memory in recently aP vaccine
boosted subjects

The sensitivity of the assay was assessed after staining

cryopreserved samples previously stimulated with PT, FHA, BPL,

with antibody panel 2. Samples were from seven adults (n°6 to n°12)

and from two children (n°1, n°2), all recently aP vaccine

boosted (Figure 1).
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Based on defined criteria of positivity (Table 2), PT-specific IFN-

g-producing CD4+ T cells were detected for 6/7 adults and 1/2

children (Figure 7A), with 0.047% of positive cells (median) and a

SI of 8 (median) (Supplementary Table 1). The second child had a

doubtful response. All the adults (7/7) and one child had FHA- and

BPL-specific IFN-g-producing CD4+ T cells, with both high

percentages of positive cells and SI (Supplementary Table 1). The

second child had a doubtful percentage of positive cells (Figure 7A

and Supplementary Table 2). Overall, IFN-g-producing CD4+ T cells

were detected to at least one Bp antigen in all subjects.

Bp antigen induced-Th2-type CD4+ T cells were clearly detected

in the children only. Both children had FHA-specific Th2-type CD4+

T cells, one of them had also a PT-specific response, whereas the other

one had also a BPL-specific response (Figure 7B and Supplementary

Table 1). The apparent Th2-type CD4+ T cell response detected for

one adult was non-specific, as it resulted from very high background

(Figure 6). Some additional Th2-type responses were detected

but considered doubtful, and induced by FHA (2/7 adults), PT
A B

DC

FIGURE 3

Inter-operator reproducibility of the analysis. The percentages of (A) CD3+ (open triangles), CD4+ (black circles), CD8+ (open circles) T cells, and the
percentages of (B) IFN-g, (C) IL-4/IL-5/IL-13 or (D) IL-17A/IL17-F-producing CD4+ T cells obtained by two different operators were compared two by
two for each stimulation condition after direct staining of the cells. Diluted blood was incubated during 24 hrs with 5 µg/ml PT, 5 µg/ml FHA or 10 µg/ml
BPL (black circles). Negative (no antigen, open circles) and positive (SEB, open triangles) controls were used in parallel. Thirty comparisons were
performed on samples from four adults (n°6-9), and two 5-6 years-old children, all recently aP vaccine boosted. The cells were fixed, directly
permeabilized, and stained with antibody panel 2, optimized for the detection of Th2 and Th17-type responses (Table 1). The acquisition was performed
on a LSR Fortessa flow cytometer, and FlowJo software (version 9.5.3) was used for the analysis. Correlations were evaluated by a non-parametric
Spearman test with Graphpad Prism 7.03 software (Graphpad software, La Jolla, CA, USA).
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(the second child), and BPL (1/7 adult) (Figure 7B and

supplementary Table 2).

As for IFN-g, most subjects had PT-specific IL-17A/IL-17F-

producing CD4+ T cells (5/7 adults and 2/2 children) (Figure 7C),

with 0.064% of positive cells (median) and a SI of 41 (median)

(Supplementary Table 1). Almost all the subjects were responders to

BPL (6/7 adults and 2/2 children) (Figure 7C and Supplementary

Table 1). In contrast, only three subjects had detectable FHA-specific

IL-17A/IL-17F-producing CD4+ T cells (1/7 adults and 2/2 children)

(Figure 7C and supplementary Table 1). In addition, doubtful Th17-

type responses were noticed for three adults (one induced by both PT

and FHA, a second by FHA, and a third one by BPL) (Figure 7C and

Supplementary Table 2). Of note, even if most subjects had both PT-

specific IFN-g- and IL-17A/IL-17F CD4+ T cells, these cytokines were

rarely co-expressed by the same cells (Supplementary Figure 6), so

that Boolean analysis was not further performed.

Finally, PT-specific IL-22-producing CD4+ T cells were

detected only in three subjects (2/7 adults and 1/2 children), while
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no FHA-specific IL-22-producing CD4+ T cells were noticed

(Figure 7D and supplementary Table 1). In contrast, seven

subjects had BPL-induced IL-22-producing CD4+ T cells (6/

7 adults and 1/2 children) (Figure 7D and supplementary

Table 1). In addition, doubtful IL-22 responses were noticed for

four subjects, and induced by PT (1/7 adults and 1/2 children) and

BPL (1/7 adults and 1/2 children) (Figure 7D and supplementary

Table 2). Subjects with specific IL-22-producing CD4+ T

lymphocytes also had IL-17-producing cells, but the cells were

different (Supplementary Figure 6).
Detection of Bp antigen-specific IFN-g-
producing CD8+ T lymphocytes

The presence of IFN-g-producing CD8+ T cells was investigated

in adults n°6 to n°12 and in the two children, following the same

procedure as described in Figure 5.
A B

DC

FIGURE 4

Effect of cryopreservation in the BpWB-ICS assay to detect Bp antigen-specific cytokine-producing CD4+ T cells. The percentages of (A) CD3+ (open
triangles), CD4+ (black circles), CD8+ (open circles), and the percentages of (B) IFN-g, (C) IL-4/IL-5/IL-13 or (D) IL-17A/IL-17F-producing CD4+ T cells
obtained by a direct staining procedure were compared to those obtained after cryopreservation of the stimulated and fixed cells. Results were
compared two by two for each stimulation condition. Diluted blood was incubated during 24 hrs with 5 µg/ml PT, 5 µg/ml FHA or 10 µg/ml BPL (black
circles). Negative (no antigen, open circles) and positive (SEB, open triangles) controls were used in parallel. Thirty comparisons were performed on
samples from four adults (n°6-9) and two 5-6 years-old children, all recently aP vaccine boosted. The cells were fixed and then, directly permeabilized
for the direct staining, or cryopreserved in the Recovery Freezing Medium (ThermoFisher) for storage at -80°C. Frozen samples were thawed in PBS
before permeabilization. The cells were stained with antibody panel 2 (Table 1). The acquisition was performed on a LSR Fortessa flow cytometer and
FlowJo software (version 9.5.3) was used for the analysis. Correlations were evaluated by a non-parametric Spearman test with Graphpad Prism 7.03
software (Graphpad software, La Jolla, CA, USA).
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The median background for IFN-g-producing CD8+ T cells was

0.014% (P25-P75:0.010%-0.049%, Figure 8A), which was significantly

higher than the background of IFN-g-producing CD4+ T lymphocytes

(median: 0.012%, P25-P75:0.004%-0.020% (Supplementary Figure 5),

and p=0.039, data not shown). Overall, the percentages of IFN-g-
producing CD8+ T cells after stimulation were significantly higher

than the background for PT, BPL and SEB, but not for FHA

(Figure 8B). The same criteria used to determine Bp antigen-

specific CD4+ T cell responses were applied for IFN-g-producing
CD8+ T cells. Even if less frequent than for the CD4+ T cells, PT- and

FHA-specific IFN-g-producing CD8+ T lymphocytes were detected in

3 and 2 adults, respectively, while BPL induced IFN-g-producing
CD8+ T cells in all subjects. In addition, one adult and 2 children had

a doubtful response to PT, and three adults to FHA (Figure 8C).
Discussion

The availability of standardized robust assays for the

quantification of cytokine-producing CD4+ T cells specific for Bp

antigens, as described here, is essential for the evaluation of
Frontiers in Immunology 10
immunological responses to pertussis vaccines. Similar assays,

performed on WB, have already been developed and validated in

the field of tuberculosis (34, 35) and dengue vaccination study (42),

but are, to our knowledge, not yet in use in the field of pertussis

vaccines. Previously, we reported on the development of an initial

version of a Bp antigen-specific WB FC assay (33). Here we further

refined the assay and validated the method for reproducibility. We

included a convenience step of cryopreservation of the stimulated

cells to enable batch-wise analysis of longitudinal samples from the

same individual. This BpWB-ICS assay allows for simultaneous

detection of Bp antigen-specific Th1/Th2/Th17-type CD4+ and Bp

antigen-specific IFN-g CD8+ T cell responses on a total of 2 mL WB,

and is thus useful for adult as well as pediatric clinical studies. It is

easy to perform, includes negative and positive controls, and is

feasible using an eight-color FC.

A main advantage of the BpWB-ICS assay over PBMC ICS assays

is that, being performed on WB, it closely reflects the in vivo blood

immune status, as all cells and components of the blood are present

during the stimulation time with antigens (26). PBMC isolation and

freezing/thawing procedures that are most often used, require larger

blood volumes, are source of pre-analytic variabilities, and have

proven difficult to standardize (26, 27). Additionally, such

procedures introduce technical bias affecting cellular proportions,

phenotypes and functions (26, 27), especially when recall responses

are investigated (28, 29), which may lead to potentially biased

conclusions (28, 43). In contrast to long in vitro stimulation time

with antigens, classically used in the pertussis field for the evaluation

of lymphocyte proliferation and for measurement of secreted cytokine

concentrations (15, 16, 31), we used a short in vitro stimulation

period, which is more suitable to detect effector memory T cells

induced by recent vaccination.

Another major advantage of the BpWB-ICS assay refined here is

that staining of cytokine-containing cells and their analysis by FC

may be performed later on by batches of selected stored samples,

thanks to the addition of a cryopreservation step after stimulation.

Here we show that the cryopreservation of the stimulated and fixed

cells had no impact on the results, as they were very well correlated to

those obtained without cryopreservation. This procedure allows thus

for the simultaneous analysis of samples collected at different time

points for the same subject in clinical studies, reducing the variability

inherent to the cell processing and analysis by FC. It also offers the

possibility to select for analysis only samples of interest and for

instance to focus only on samples from subjects with a complete

longitudinal follow-up. Workflows may thus be easier to organize,

and workload can be significantly reduced. In addition, this approach

avoids a potential detrimental influence of cryopreservation on

antigen presentation of Bp proteins by antigen-presenting cells (30).

We demonstrate here high reproducibility of the results, as well as

high sensitivity for detection of rare specific events due to very low

non-specific backgrounds. This was obtained thanks to technical

improvements resulting in very high numbers of acquired events by

FC, to careful optimization of the panel of antibodies used for cell

staining, and to the FC analysis strategy as recommended (26, 44). To

raise the sensitivity of detection of specific Th2 responses, that are

often difficult to evaluate, combined labelling of three different Th2

cytokines (IL-4, IL-5, IL-13) within the same fluorescence channel

was performed (15–17, 45). Similarly, labelling for IL-17A and IL-17F
FIGURE 5

Workflow for the BpWB-ICS assay. Blood was collected in sodium
heparin tubes and processed within three hours, maximum. Per
stimulation, 400 µl of blood was diluted 1:1 with RPMI supplemented
with gentamycin before incubation for 24 hrs in the presence of 1 µg/
ml anti-CD28 and anti-CD49 co-stimulants in 15 ml round-bottom
polypropylene tube (day 0, d0). Diluted blood was stimulated with 5
µg/ml heat-inactivated (hi) PT, 5 µg/ml FHA or 10 µg/ml hi Bp lysate.
Negative (no antigen) and positive (SEB) controls were used in parallel.
Protein transport arrest reagents (10 µg/ml Brefeldin-A and 1/1,000
Monensin) were added during the last 5 hrs of the incubation. After 24
hrs incubation (d1), red blood cells were lysed with the Pharmlyse
buffer (BD Biosciences), and the white blood cells were fixed with the
Fixation/Permeabilisation solution (BD biosciences), before freezing in
the Recovery Freezing medium (ThermoFisher) and storage at -80°C
for delayed analysis in batches (dx). After thawing in PBS, the cells
were permeabilized with the BD Perm/Wash buffer (BD Biosciences),
and stained with antibody panel 2 (Table 1) for analysis of IFN-g-, IL-4/
IL-5/IL-13-, IL-17A/IL-17F- or IL-22-producing CD4+ T cells to reveal
Th1, Th2, and Th17-type responses, respectively.
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was combined to investigate Th17 responses (46). In addition to

sensitivity improvement, this approach avoided the need for more

than an eight-color FC. Finally, reproducibility of the data analysis via

FlowJo software by operators with different levels of experience was

high. The assay is thus well standardized from the step of blood

collection until the FC data analysis provided that the standard

operational procedure (Figure 5) is strictly applied.

ELISPOT is often reported to be more sensitive than FC to detect

antigen-specific T cells among PBMC (47, 48), especially for the

detection of low-frequent memory T cells before vaccine booster (49).

However, to detect and visualize the cellular IFN-g recall responses to
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a protein antigen such as tetanus toxoid after booster vaccine

administration, higher sensitivity of FC compared to ELISPOT was

demonstrated (49). The superiority of ELISPOT over FC to measure

rare events before vaccine booster was suggested to be explained by

low cytokine production per memory T cell per time unit, favoring

measurement of accumulated cytokines during the in vitro culture

period (47), as is the case for ELISPOT and not for FC. However, since

the BpWB-ICS assay described here was adapted for the detection of

very low percentages of positive cells, FC now become the method of

choice to evaluate T cell responses induced by pertussis vaccines in

clinical studies. Compared to ELISPOT, FC also presents the
A

B

D

C

FIGURE 6

Frequencies of cytokine-producing CD4+ T cells in response to PT, FHA, BPL and SEB. The percentages of (A) IFN-g-, (B) IL-4/IL-5/IL-13-, (C) IL-17A/IL-
17F- and (D) IL-22- producing CD4+ T cells in cryopreserved samples after stimulation with PT, FHA, BPL or SEB are compared to those obtained in the
absence of antigen (NS). Diluted blood was incubated during 24 hrs with 5 µg/ml PT, 5 µg/ml FHA or 10µg/ml BPL. Negative and SEB positive controls
were used in parallel. The comparison is performed for seven adults (black circles) (n°6-12), and two 5-6 years-old children (open circles), all recently aP
vaccine boosted. The cryopreserved cells were processed for intracellular staining as described in Figure 5, and stained with antibody panel 2 (Table 1).
The acquisition was performed on a LSR Fortessa flow cytometer and FlowJo software (version 9.5.3) was used for the analysis. Comparisons were
performed by using the Wilcoxon matched-pairs signed rank test with Graphpad Prism 7.03 software. *p<0.05; **p<0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1101366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Corbière et al. 10.3389/fimmu.2023.1101366
advantage to be feasible on WB on very small volumes, and to allow

for the characterization of the phenotype of the cytokine-producing

cells, thereby excluding potential contribution of other cell types, such

as NK cells, to cytokine production (50).

This refined version of the BpWB-ICS assay comprises well-

defined criteria for positivity of responses. Based on these criteria, we

confirmed the presence in blood from recently boosted subjects of Bp-

specific Th1-type CD4+ T cells, associated with Bp-specific Th2-type

CD4+ T cells in children who, in contrast to adults, were aP-primed

during infancy. In addition, we detected significant Bp antigen-

specific Th17 lymphocytes, as most wP-primed adults and the two

aP-primed children had PT- and BPL-specific IL-17A/IL-17F-

producing CD4+ T cells. The induction of IL-17 by pertussis

vaccines was only rarely reported in humans until now. They were

detected either at very low levels in supernatants of Bp-stimulated

PBMC from aP-primed children (51–53), or within CD4+ T cells from

recently aP boosted individuals with a wP or aP-primed background

(33). Considering the contribution of IL-17 in protection against Bp

in non-human primates and other animal models (10), optimal

detection of IL-17 production, as feasible with the BpWB-ICS assay,

is thus a clear added value of this test to be used in human vaccine

studies. Interestingly, we observed FHA-specific Th1/Th2/Th17

mixed responses in children, as described in mice immunized with

aP vaccines (20). The protective role of Th17 responses against Bp in
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these cases remains questionable, as Th17 function may be inhibited

in a Th2 environment (54, 55). Low percentages of PT-specific IL-22-

producing CD4+ T cells were also detected, in agreement with

previous results in aP boosted subjects (33). The potential role of

IL-22 in the defence against B. pertussis has to our knowledge not yet

been investigated, even if IL-22 has recently attracted great interest

being considered as a regulator of host defence in the lung (56).

Finally, the BpWB-ICS assay also detected PT- and FHA-specific

IFN-g-producing CD8+ T lymphocytes in most subjects and in

response to BPL in all of them. Such Bp antigen-induced cellular

immune responses were previously reported during Bp infection and

after vaccination in infants and young adults (15, 22–25). Their

detection here sustains their involvement in immunity against Bp,

but their potential role in protection still requires investigation.

A limitation of the study is that the validation of the refined version

of the BpWB-ICS assay was only performed on blood samples from a

small number of recently aP vaccine boosted subjects. However, the

previous version of the assay was validated by testing blood samples

from a large clinical booster vaccination study (33). Themajor difference

of the refined version was the addition of a cryopreservation step and we

demonstrated here high correlations of the results obtained head-to-

head without and with a cryopreservation step. One might thus

reasonably assume that the performance of the refined BpWB-ICS

assay will be equally satisfactory in large clinical studies.
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FIGURE 7

Distribution of non-responders and responders in the BpWB-ICS assay. The percentages of responders (grey areas), doubtful responders (hatched areas)
and non-responders (white areas) to PT, FHA and BPL, based on their specific (A) IFN-g-, (B) IL-4/IL-5/IL-13-, (C) IL-17A/IL-17F-, (D) and IL-22-positive
CD4+ T cells were determined. The analysis was performed for seven adults (n°6-12), and two 5-6 years-old children, all recently aP vaccine boosted.
The results obtained after staining of the Bp antigen-stimulated cryopreserved blood cells were considered after subtraction of the non-specific
background. The criteria shown in Table 2 were applied for the classification in responders, doubtful responders and non-responders.
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In summary, the BpWB-ICS assay described here is an optimal test to

characterize both the quantity and the quality of Bp antigen-specific

CD4+ and CD8+ T cells in a very small blood volume, during clinical

studies with a longitudinal design. It appears therefore as a promising

test to assess the immunogenicity of current and next generation

pertussis vaccines.
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FIGURE 8

Detection of Bp antigen-specific IFN-g-producing CD8+ T lymphocytes. The presence of IFN-g-producing CD8+ T cells was investigated following the
same procedure as described in Figure 5. The analysis was performed for seven adults (n°6-12) and two 5-6 years-old children, all recently aP vaccine
boosted. (A) Non-specific background of IFN-g-producing CD8+ T cells was determined after 24 hrs incubation in the absence of antigen (NS). The
cryopreserved cells were processed for intracellular staining as described in Figure 5, and were stained with antibody panel 2 (Table 1). Horizontal line
within the box, box and whisker represent the median, the P25-P75 and the range, respectively. (B) The percentages of IFN-g-producing CD8+ T cells
obtained after staining of PT-, FHA-, BPL- or SEB-stimulated cryopreserved blood cells were compared to those obtained in absence of antigen (NS).
Black and open circles represent the results obtained from adult and children samples, respectively. The Wilcoxon matched-pairs signed rank test with
Graphpad Prism 7.03 software was used for statistical analysis. *p<0.05; **p<0.01. (C) The percentages of responders (grey areas), doubtful responders
(hatched areas) and non-responders (white areas) to PT, FHA and BPL are based on IFN-g-producing CD8+ T cells after background subtraction. The
criteria shown in Table 2 were applied for the classification in responders, doubtful responders and non-responders.
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