
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Gian Marco Ghiggeri,
Giannina Gaslini Institute (IRCCS), Italy

REVIEWED BY

Lutz Thorsten Weber,
University Children’s Hospital in Krakow,
Poland
Vikas Agarwal,
Sanjay Gandhi Post Graduate Institute of
Medical Sciences (SGPGI), India

*CORRESPONDENCE

Hangjin Jiang

jianghj@zju.edu.cn

Jianhua Mao

maojh88@zju.edu.cn

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Autoimmune and Autoinflammatory
Disorders: Autoimmune Disorders,
a section of the journal
Frontiers in Immunology

RECEIVED 05 November 2022
ACCEPTED 09 January 2023

PUBLISHED 26 January 2023

CITATION

Ye Q, Li Y, Liu H, Mao J and Jiang H (2023)
Machine learning models for predicting
steroid-resistant of nephrotic syndrome.
Front. Immunol. 14:1090241.
doi: 10.3389/fimmu.2023.1090241

COPYRIGHT

© 2023 Ye, Li, Liu, Mao and Jiang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 26 January 2023

DOI 10.3389/fimmu.2023.1090241
Machine learning models for
predicting steroid-resistant of
nephrotic syndrome

Qing Ye1†, Yuzhou Li2,3†, Huihui Liu4†, Jianhua Mao4*

and Hangjin Jiang2*

1Department of Clinical Laboratory, The Children’s Hospital, Zhejiang University School of Medicine,
National Clinical Research Center for Child Health, National Children’s Regional Medical Center,
Hangzhou, China, 2Center for Data Science, Zhejiang University, Hangzhou, China, 3School of
Mathematical Sciences, Zhejiang University, Hangzhou, China, 4Department of Nephrology, The
Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child
Health, National Children’s Regional Medical Center, Hangzhou, China
Background: In the absence of effective measures to predict steroid

responsiveness, patients with nonhereditary steroid-resistant nephrotic

syndrome (SRNS) have a significantly increased risk of progression to end-stage

renal disease. In view of the poor outcomes of SRNS, it is urgent to identify the

steroid responsiveness of idiopathic nephrotic syndrome (INS) early.

Methods: To build a prediction model for SRNS, we collected 91 subjects; 57 of

them had steroid-sensitive nephrotic syndrome, and the others had SRNS. For

each subject, 87 clinical variables were measured. In general, only a small part of

these variables is informative to SRNS. Thus, we proposed a new variable selection

framework including a penalized regression approach (named MLR+TLP) to select

variables having a linear effect on the SRNS and a nonparametric screening

method (MAC) to select variables having a nonlinear marginal (joint) effect on the

SRNS. Thereafter, considering the correlation between selected clinical variables,

we used a stepwise method to build our final model for predicting SRNS. In

addition, a statistical testing procedure is proposed to test the overfitting of the

proposed model.

Results: Twenty-six clinical variables were selected to be informative to SRNS, and

an SVM model was built to predict SRNS with a leave-one-out cross-validation

(LOO-CV) accuracy of 95.2% (overfitting p value<0.005). To make the model more

useful, we incorporate prior medical information into the model and consider the

correlation between selected variables. Then, a reduced SVMmodel including only

eight clinical variables (erythrocyte sedimentation rate, urine occult blood,

percentage of neutrophils, immunoglobulin A, cholesterol, vinculin

autoantibody, aspartate aminotransferase, and prolonged prothrombin time) was

built to have a LOO-CV accuracy of 92.8% (overfitting p value<0.005). The

validation cohort showed that the reduced model obtained an accuracy of

94.0% (overfitting p value<0.005), with a sensitivity of 90.0% and a specificity of

96.7%. Notably, vinculin autoantibody is the only podocyte autoantibody included

in this model. It is linearly related to steroid responsiveness. Finally, our model is

freely available as a user-friendly web tool at https://datalinkx.shinyapps.io/srns/.
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Conclusion: The SRNS prediction model constructed in this study

comprehensively and objectively evaluates the internal conditions and disease

status of INS patients and will provide scientific guidance for selecting treatment

methods for children with nonhereditary SRNS.
KEYWORDS

idiopathic nephrotic syndrome, steroid responsiveness, machine learning, prediction
model, nephrotic syndrome
Introduction

Idiopathic nephrotic syndrome (INS) is the most common

glomerular disease in children and is characterized by proteinuria,

hypoproteinemia, and edema (1, 2). Glucocorticoids (GCs) are the

first-line treatment for INS. It can induce remission in approximately

80% of children and is known as steroid-sensitive nephrotic

syndrome (SSNS). However, 10% - 20% of children still have

steroid-resistant nephrotic syndrome (SRNS) and need to be

supplemented with immunosuppressants (3). Children with SSNS

have a good renal prognosis. The risk of developing chronic kidney

disease (CKD) in SSNS patients is estimated to be less than 5% ten

years after diagnosis (4). In contrast, children with SRNS have a

significantly increased risk of progression to end-stage recurrent

disease (ESRD) (5). Children with SRNS on biopsy had focal

segmental glomerulosclerosis (FSGS), and 50% of them had a risk

of progression to ESRD within five years (4, 6). It has been reported

that SRNS is the second most common cause of CKD in the first 30

years of life (7).

At present, many studies have found that approximately one-

third of children with SRNS have a genetic background. Dysfunction

of the glomerular filtration barrier (GFB) is the main pathological

mechanism of SRNS. The loss of its normal selective permeability

leads to proteinuria (8). To date, more than 60 gene mutations related

to GFB function have been found in children with SRNS, such as

NPHS1, NPHS2, and MYOIE. Deletion of these genes in the human

body causes GFB function defects (9–11). Unfortunately, in the

absence of effective measures to predict steroid responsiveness,

approximately 70% of patients with nonhereditary SRNS are at high

risk of side effects and disease progression due to prolonged ineffective

GCs treatment.

Notably, immune factors also play an important role in the

pathogenesis of INS. An increasing number of researchers have

found that the potential role of B cells in INS is under discussion

due to the therapeutic effect of anti-CD20 antibodies and the

identification of pathogenic antibodies against podocyte-expressed

proteins, in addition to T lymphocyte dysfunction or dysfunction (12,

13). In INS children, the antibody specifically binds to the target

antigen on podocytes, which interferes with the normal function of

GFB and causes proteinuria. In our previous study, at least 66% of INS

children had podocyte autoantibodies. These podocyte autoantibodies

were positively correlated with proteinuria, and their titers decreased

rapidly after effective treatment (14, 15). This suggests that the level of
02
podocyte autoantibodies may be a good biomarker for predicting

steroid responsiveness. Considering the poor outcomes of SRNS, early

identification of the steroid responsiveness of INS is urgent.

This study used 78 laboratory parameters and podocyte

autoantibodies to predict steroid responsiveness. To build a precise

and efficient model, we proposed a new variable selection procedure

that includes an SVM-based and model-free variable selection

procedure. The SVM-based variable selection procedure is a model-

based method that tends to select variables (marginally or partially)

informative to the response according to the model. However, the

model-free variable selection procedure tends to select variables

having a nonlinear marginal (pairwise joint) effect on the response

without any assumptions about the model. Thus, these two

subprocedures tend to complement each other in real applications.

Applying this new variable selection procedure to this study gives 26

important variables and an SRNS prediction model with a leave-one-

out cross-validation (LOO-CV) accuracy of 95.2% (overfitting p

value< 0.005). Note that we also propose a statistical test method

for testing the overfitting of a statistical (machine learning) model.

Although this full model is promising, it still contains too many

clinical variables. Taking into consideration the correlation between

selected variables, we used a stepwise strategy to build a model only

including erythrocyte sedimentation rate (ESR), urine occult blood

(u-OB), percentage of neutrophils (N%), IgA, cholesterol (CHOL),

vinculin autoantibody, aspartate aminotransferase (AST) and

prolonged prothrombin time (PT), which has a LOO-CV accuracy

of 92.8%, very close to the full model (overfitting p value<0.005).
Methods

Selection of subjects

A total of 91 subjects were recruited at the Children’s Hospital,

Zhejiang University School of Medicine, between September 2020 and

September 2021. All enrolled patients met the International Study of

Kidney Disease in Children (ISKDC) criteria for INS. Patients with

suspected heritable nephrotic syndrome, reduced renal function,

infectious diseases, malignant tumors, or other autoimmunological

diseases were excluded. Children who respond well to steroids within

four weeks are considered to have SSNS. Otherwise, it is considered

an SRNS. The subjects in this study were divided into two groups: one

group included 34 patients with SRNS, and another group included
frontiersin.org
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57 patients with SSNS. Patients with SSNS received steroid treatment

of 2 mg/(kg–d) for four weeks, whereas for refractory patients,

tacrolimus was added at 0.05-0.15 mg/(kg–d).
Data collection

Blood and urine samples were collected from each subject after

INS diagnosis and before steroid treatment. A total of 87 variables

were collected (Supplementary Table 1). Demographic characteristics

were collected, including age, sex, and weight. By hematological tests,

43 variables were analyzed, including white blood cell counts,

percentage of neutrophils, percentage of lymphocytes, hemoglobin,

platelet, C-reactive protein, ESR, total protein, albumin, globulin,

alanine aminotransferase, aspartate aminotransferase, serum

creatinine, urea, serum cystatin c, serum b2-MG, triglyceride,

cholesterol, antistreptococcal hemolysin O, prolonged prothrombin

time, fibrinogen, prolonged activated partial thromboplastin time,

prolonged thrombin time, D-dimer, IgG, IgA, IgM, C3, C4, retinol

conjugated protein, total IgE, IL-2, IL-4, IL-6, IL-10, TNF, IFN-g,
CD19%, CD3%, CD4%, CD8%, CD3-CD16+CD56+%, and CD4/CD8.

By urine tests, 25 variables were analyzed, including urine occult

blood, urine protein, urine specific gravity, urinary RBC, urinary

WBC, urinary microprotein, 24-hour urine protein, urinary

microalbumin, urinary a1-MG, urinary b2-MG, urinary transferrin,

urinary retinol conjugated protein, urinary IgG, uric acid, 24-hour

uric acid, urinary protein/creatinine, urinary calcium, 24-hour

urinary calcium, urinary calcium/creatinine, urinary microalbumin/

creatinine, urinary a1-MG/creatinine, urinary b2-MG/creatinine,

urinary transferrin/creatinine, urinary retinol conjugated protein/

creatinine, and urinary IgG/creatinine. A total of 17 autoantibodies

to podocyte proteins were detected, including talin-1 (Tln1), moesin

(Msn), myosin light chain 1 (Myh1), vinculin (Vcl), aconitate

hydratase, mitochondrial (Aco2), cytoskeleton-associated protein 4

(Ckap4), desmoglein 1 (Dsg1), proteasome subunit alpha type-1

(Psma1), F-actin-capping protein subunit beta (Capzb), filamin-A

(Flna), plectin (Plec), heat shock protein HSP 90-beta (Hs90a),

peptidyl-prolyl cis-trans isomerase D (Ppid), peroxiredoxin-1

(Prdx1), alpha-enolase (Eno1), neuroblast differentiation-associated

protein AHNAK (Ahnak), and serine/arginine-rich splicing factor

9 (Sfrs).
Detection of podocyte autoantibodies

According to a previous method (14), the autoantigens were

spotted on a nitrocellulose membrane (0.8 mm pore size,

manufactured by Sartorius, Germany) using a chip sampling

apparatus (model: AD1500, manufactured by BioDot), and biotin-

labeled mouse anti-human immunoglobulin G by Thermo Fisher and

56°C-inactivated serum were also spotted onto the nitrocellulose

membrane as positive and negative controls, respectively. The

nitrocellulose membrane spotted by autoantigens was soaked in 5%

bovine serum albumin sealing solution for one h (the buffer system

was Tween-Tris-buffered saline with a pH of 7.4.) and then dried in

the oven. The nitrocellulose membrane was then fixed in the groove of
Frontiers in Immunology 03
a polyvinyl chloride assay plate. Then, 300 mL of patient serum was

added to the groove of the assay plate. After incubation and washing

with Tris buffer five times, we added 300 mL of biotin anti-human IgG

antibody complex to the assay plate. After incubation and washing,

we washed the assay plate with running water and read its optical

density value with a scanner.
Data preprocessing

Summary statistics, such as the maximum, minimum, mean, etc.,

of these 87 clinical variables are given in Supplementary Table 2.

Continuous variables are normalized to have mean 0 and variance 1.

Additionally, variables with too many missing values (missing rate >

50%) are deleted. Finally, 78 clinical variables were used for

downstream analysis.
SVM-based variable selection

Let n=91 be the sample size in this study, Xi=(1, xi1, xi2,…., xi, 87)

be the observations of the 87 clinical variables measured for the i -th

subject plus the intercept term, and yi be the corresponding response,

SSNS or SRNS, where i=1,2,…, n. We aim to build an SVM model

using part of these 87 clinical variables to predict SSNS or SRNS. To

introduce our SVM model, we first define the hinge loss function as

LH(b) = n−1o
n

i=1
(1 − yiX

T
i b)+, where (z)+=max(0, z) . Then, building an

SVM model minimizes LH(b)+l|b|2 , which is in the same spirit as

ridge regression built upon squared loss instead of hinge loss, and the

term Pl(|b|)=l|b|2 is called ridge regularization (or ridge penalty).

The aim of variable selection cannot be attained by ridge

regularization (16). Well-known penalties designed for variable

selections are LASSO (17), SCAD (16), MCP (18), and TLP (19),

whose definitions are given below.

SCAD :Pl   bj jð Þ =

l   bj j,                     if   bj j ≤ l,

al   bj j− l2+  b2ð Þ=2
a−1 ,   if l ≤   bj j ≤ al,

al2

2 ,                         if   bj j > al :

      (a > 0)

8>>><
>>>:

MCP :Pl   bj jð Þ =
l   bj j − q2

2al

� �
,   if   bj j ≤ al,

                al
2

2 ,                         if   bj j > al :
  (a > 0)

8<
:

LASSO: Pl(|b|)=l|b|

TLP :Pl   bj jð Þ = TLP   bj j, tð Þl = min
  bj j
t

, 1

� �
l           (t > 0)

It is shown that the LASSO penalty introduces bias into parameter

estimation, and SCAD and MCP tend to select more irrelevant

variables than TLP (19). Thus, in this paper, we take the TLP as the

penalty function to achieve variable selection; that is, we consider

building an SVM model by solving the following problem: minimize

LH bð Þ + ∑
n

i=1
min (

  bj j
t

, 1)l  
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However, it is difficult to solve this optimization problem due to

the discontinuity of the derivative of the hinge loss LH(b). Thus, we
use a modified logistic regression (20) (MLR) function to approximate

the hinge loss, which is defined as

Lg bð Þ = 1
ng o

n

i=1
log 1 + eg 1−yi xTi bð Þð Þ� �

It is easy to see that Lg(b)! LH(b) , as g! ∞ .Thus, we build the

SVM model by minimizing Lg(b) with the TLP penalty,

1
ng

∑
n

i=1
log(1 + eg(1− yi(x

T
i b))) + min

b i
�� ��
t

, 1)l
�

and denote this method as MLR+TLP.
Model-free variable selection

Variable selection based on SVM only selects variables having a

linear effect on the response. However, some informative variables

have a nonlinear effect on the response. Thus, we use a recently

proposed nonparametric variable screening method, MAC (21), to

select variables having nonlinear marginal (MAC1) and joint effects

(MAC2) on the response. There are two types of joint effects for each

pair of variables: T1) both have no marginal effect on the response,

and T2) only one has a marginal effect on the response. In summary,

we first use MAC1 to select variables with marginal effects and then

use MAC2 to select variable pairs with joint effects.
Model training

As previously mentioned, there are three different classes of

variables selected by our method: (1) variables selected based on

SVM; we model each variable X in this class as linear, i.e., bX .(2)

variables selected by MAC due to their marginal effect; these variables

are modeled using B-splines denoted by Bs(X), and the order s of B-

splines are selected under the control of overfitting; and (3) variables

selected by MAC due to their joint effect. These variables are modeled

similarly to those in class (2). Finally, the model is trained and tested

using leave-one-out cross-validation due to this study’s relatively

small sample size. Missing data problems occurred in our study.

Although data imputation makes use of partially observed samples, it

induces unknown bias in the analysis. Thus, subjects with missing

values on selected variables are not included in model training

and testing.
Statistical test for overfitting

It is crucial to eliminate overfitting for machine learning models

for their application to other datasets. Here, we propose a statistical

test procedure for overfitting with the null hypothesis that the model

is overfitted. The principle of the procedure is that given explanatory

variable X, a model f(q, X) is considered to be overfitting if its

accuracy of predicting the real response Y is not significantly higher

than that of predicting a random and independent response. Let T0 be
Frontiers in Immunology 04
the true accuracy of model f(q, X) in predicting the true response.

Next, we obtain the performance of the model in predicting a random

response. Taking b=1, 2, …, B, for each b, we (1) generate a random

response Yb by permuting the true response Y (2), train the model f

(q, X) using Yb , and (3) obtain the random accuracy. Tb for predicting

Yb . Now, we have B random accuracies. In other words, we obtain the

distribution of the accuracy of predicting a random response. If model

f(q, X) is not overfitting, the true accuracy T0 should be significantly

larger than the random accuracy, that is,. ould be located at the right

tail of the distribution. Thus, we define the p value for the overfitting

test as p value = oB
b=1

(Tb>T0 )+1

B+1 , and a p value<0.05 means we should

reject the null hypothesis, i.e., the model is not overfitted. In our

analysis, we take B=200.
Statistical analysis

All statistical analyses were performed using R 4.1.1. P values<

0.05 were considered to indicate statistical significance in statistical

tests. In this study, we use the leave-one-out cross-validation (LOO-

CV) accuracy and the following measurements to show the

performance of different models.

SN =
TP

TP + FN

SP =
TN

TN + FP

Precision =
TP

TP + FP

ACC =
TP + TN

TP + FN + TN + FP

MCC =
TP� TN − FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp
where TP is the number of true positives, FN is the number of

false negatives, FP is the number of false positives, and TN is the

number of true negatives.
Results

Data characteristics and the
analysis workflow

A total of 91 newly diagnosed pretreatment subjects comprising

57 patients with SSNS and 34 patients with SRNS were enrolled in the

present study. The dataset consisted of 78 variables covering

demographic, hematological, and urinary characteristics and

podocyte antibodies. The distribution characteristics of each

variable are summarized in Supplementary Table 2. To analyze the

above data, we developed a novel variable selection procedure to select

informative and meaningful variables (Figure 1). The essence of the

approach is to build our machine learning models after a careful
frontiersin.org
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variable selection procedure. The overall workflow of the variable

selection procedure and the prediction model is as follows.

First, we use two different methods to select informative variables:

SVM-based variable selection (MLR+TLP) and model-free variable

selection (MAC) (see Methods for details). MLR+TLP is a model-

based variable selection method that tends to select variables with a

linear effect on the response, but MAC tends to select variables with a

nonlinear effect on the response. Then, SVM models are trained and

tested based on selected variables. However, the clinical variables in

this study showed strong correlations (Figures 1 and 2A); thus, we

introduced a greedy pruning stage to prune the prediction model by

considering the correlation between the selected variables. Finally, a

machine learning model is built after a careful variable selection

procedure. The details of variable selection to training the models are

described in the following sections.
Selection of variables with a linear effect
on SRNS

In this part, variables with a linear effect on the response were

selected by SVM-based variable selection (MLR+TLP). There are two

tuning parameters in our model, t and l. Following (21, 22), we set

t = 0.0001 and select l by cross-validation from the range (1 ∼
2−10)×10−3 (Figure 3A). This method gives five clinical variables: L%,

N%, ALB, C4, and vinculin autoantibody, with a LOO-CV accuracy of

74.6% and an overfitting p value< 0.005. The predictive model is given

by

sign(0:2527 − 0:4493� L%−0:7948� N %−0:2683�

ALB + 0:2879� C4 + 0:0925� VclÞ
As a comparison, we also run the SVM model with the SCAD

penalty (SVM+SCAD) on this dataset, which selects 41 clinical variables

with a LOO-CV accuracy of 80.2%. The relationship between variables
Frontiers in Immunology 05
selected byMLR+TLP and SVM+SCAD is given in Figure 3B. Compared

with MLR+TLP, the results from SVM+SCAD are not good for selecting

too many variables but have a comparative accuracy with that fromMLR

+TLP. Furthermore, the overfitting p value (=0.031) of the model from

SVM+SCAD shows its potential risk of overfitting.

Overall, L%, N%, ALB, C4, and vinculin autoantibodies were

singled out, with a linear effect on the response. The levels of L%, N%,

and ALB are negatively related to SRNS. The levels of C4 and vinculin

autoantibodies are positively related to SRNS. INS patients generally

suffer from hypoalbuminemia and high C4 levels. It is suggested that

the more severe the disease for INS patients, the more likely it is to be

resistant to steroids. The occurrence of vinculin autoantibodies in INS

patients demonstrates the activation of B cells and damage to the

podocyte actin cytoskeleton. Higher vinculin autoantibody levels are

less likely to be sensitive to steroids, and treatment with B-cell-

depleting anti-CD20 antibodies may be helpful for these patients.
BA

FIGURE 2

(A) Heatmap of correlations between selected variables. This shows that the variables contained in the reduced model have weak correlations. (B) Building the
reduced model is based on selected variables while considering the correlation between them. The reported accuracy is the LOO-CV accuracy.
FIGURE 1

Overview of the method. First, we propose a new variable selection
procedure to select informative variables. This procedure contains two
parts: SVM-based variable selection (MLR+TLP) and model-free
variable selection (MAC). Then, by considering the correlation between
selected variables, we use a stepwise regression strategy to build our
final prediction model.
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Selection of variables with a nonlinear effect
on SRNS

Now, the model-free variable selection selects variables with a

nonlinear effect on the response. First, we used MAC1 to select

variables with a marginal main effect on SRNS, and we obtained 26

clinical variables with a p value<0.05 (Supplementary Table 3).

Among them, L%, N%, ALB, and C4 were selected again, but

vinculin autoantibodies were missed. This is consistent with the fact

that MAC1 tends to select marginal main effects but may lose

variables showing a strong partial effect (21). Second, MAC2 is used

to select variables with joint effects on the response to identify the

interaction between multiple variables. It selects hundreds of pairs of

joint effects (Supplementary Tables 4, 5).

Although 26 variables are selected by MAC1, many variables are

challenging to analyze. Meanwhile, hundreds of pairs of joint effects

selected by MAC2 also exhibit similar problems. Therefore, the

variable pairs having joint effects on the response are ignored in the

downstream analysis.
Prediction models

We used the 27 clinical variables selected by MAC1 and MLR+TLP

to build an SVM for predicting SRNS and obtained a LOO-CV accuracy

of 95.2% (overfitting p value<0.005). This model is called “the full model”

for convenience. The performance of the full model is promising, but it

contains too many variables for clinical applications.

We explored the internal relationship between 27 variables to

further optimize the model. Figure 2A shows that there is a strong

correlation between the selected variables. Assuming that the current

model includes variable X, it is known that adding a variable W

strongly correlated to X does not help much to improve the model’s

performance but increases the model complexity. This allows us to

reduce the complexity of the full model without losing much accuracy

by removing some correlated variables. Motivated by this fact, we use

a stepwise forward regression method to build a reduced model with
Frontiers in Immunology 06
relatively low accuracy. To this aim, we start from a one-variable SVM

model with the best performance and add another variable from the

remaining 25 variables that give the best performance (Figure 2B).

Finally, we obtained a reduced model including only eight clinical

variables, ESR, u-OB, N%, IgA, CHOL, vinculin autoantibody, AST,

and prolonged PT, with a LOO-CV accuracy of 92.8% (overfitting p

value<0.005). As shown in Figure 2A, these variables have weak

correlations. The mathematical formula of the model is given below:

sign
0:440 − 0:1516� N %+0:0845� Vcl + B4 ESRð Þ · bESR + B4 u − OBð Þ · bu−OB

+B4 IgAð Þ · bIgA + B4 CHOLð Þ · bCHOL + B4 ASTð Þ · bAST + B4 prolongedð Þ · bprolongedPT

 !

, with bAST=(3.2336,−4.3389,3.1936,1.2667)T,

bESR = −0:1802, 2:8125, 0:8125, 0:5181ð ÞT ,

bu−OB = 1:9623,−2:5043, 2:3149,−0:4819ð ÞT ,

bIgA = 1:9071,−4:0454, 2:4880,−0:5299ð ÞT ,

bCHOL = −0:8849,−2:2604, 1:5635,−0:5050ð ÞT

bprolongedPT = −3:6318, 1:8816,−1:2195,−1:9774ð ÞT ,
where B4(X) means that variable X is modeled by a 4th-order

B-spline.

Figure 4A presents the ROC curves for the full and reduced

models, which shows a comparative performance of these two

models. In addition, Figure 4B shows that these two models have

comparative performance in various aspects. This is consistent with

the selected variables being strongly correlated, as shown

in Figure 2A.

In the reduced model, N% and vinculin autoantibody were

linearly related to SRNS. ESR, u-OB, IgA, CHOL, AST, and

prolonged PT are nonlinearly related to SRNS. Only N% was

negatively associated with steroid responsiveness. These biomarkers

cover immune function, liver function, the urinary system,

coagulation function, and other aspects, which are common organs
BA

FIGURE 3

(A) Selecting l in MLR+TLP using leave-one-out cross-validation; (B) Venn diagram shows the relationship between chosen variables by MLR+TLP and SVM
+SCAD. The four variables selected by the two methods are L%, ALB, N%, and C4, and the one elected only by MLR+TLP is Vcl, which is very important.
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and systems involved in INS. Hyperlipidemia and coagulation

disorders are common characteristics in INS patients. Vinculin

autoantibody is the only podocyte autoantibody included in the

prediction model. The occurrence of vinculin autoantibodies in INS

patients demonstrates the activation of B cells and damage to the

podocyte actin cytoskeleton. GFB damage leads to protein leakage,

and u-OB may occur. Higher vinculin autoantibody levels are less

likely to be sensitive to steroids, and treatment with B-cell-depleting

anti-CD20 antibodies may be helpful for these patients. Considering

that these biomarkers are readily available in medical care and routine

detection for INS patients, the model for predicting SRNS is easy to

apply in the clinic.

Finally, we provide a user-friendly web tool for researchers to

predict their results (available at https://datalinkx.shinyapps.io/srns/).

Importantly, we will be delighted if others are willing to improve our

model by sharing their data with us.
Validation cohort

Due to the stronger applicability of the reduced model, 50 patients

were included as validation cohort to verify the predicted effect,

including 30 cases of SSNS and 20 cases of SRNS. The results showed

that the reduced model obtained an accuracy of 94.0% (overfitting p

value<0.005), with a sensitivity of 90.0% and a specificity of 96.7%.

Discussion

It is well known that SSNS and SRNS have similar clinical

manifestations before steroid therapy. The mechanism of steroid

resistance in children with INS remains unclear. Although early

genetic testing has helped clinicians formulate more personalized

treatments, it does not cover all children with SRNS (22). Therefore,

at the beginning of INS diagnosis, accurate prediction of steroid

responsiveness is an urgent problem for clinicians. Recently, various

biomarkers have been evaluated for their ability to predict different

clinical phenotypes of INS (Table 1). Urinary proteomics is effective

in predicting glomerular diseases. According to the urinary protein

profile, apolipoprotein A1, urinary protein gelatinase-associated

lipocalin, urine protein-bound sialic acid, urine vitamin D binding
Frontiers in Immunology 07
protein, and urinary protein-carbohydrate content have been

regarded as new biomarkers to distinguish SSNS from SRNS (23–

31). In addition to urine analysis, biomarkers in blood samples were

also found to help predict the response of children with INS to steroid

therapy. By flow cytometry, P-glycoprotein expression was

significantly higher in SRNS (29). By ELISA, serum nephronectin

concentrations were significantly lower in patients with SRNS than in

patients with SSNS and controls (30). Metabolomic profiling of

plasma samples from children with INS suggested that creatinine

concentration, glutamine concentration, and malonate concentration

were three candidate biomarkers predictive of SRNS (31). However,

the number of patients recruited in the above study was very small,

and only a simple univariate statistical test was conducted. Therefore,

there is not enough convincing evidence to distinguish SSNS from

SRNS. In this study, a total of 91 patients with INS (54 patients with

SSNS, 37 patients with SRNS) were recruited, significantly exceeding

the number of subjects in the above study. In addition, the usage of

LOO-CV makes the training data closer to the original dataset, and

there is only one sample difference between them. This has greatly

filled a gap between the sample size of this study and that of other

large-scale clinical studies. We comprehensively analyzed INS

patients’ urine and blood samples before steroid treatment and fully

extracted the disease information. To fully use this valuable dataset,

we proposed a new variable selection procedure to select important

variables for the response and then built SVM models for predicting

SNRS. In addition, a statistical test approach is proposed for testing

the overfitting of a statistical (machine learning) model, which is very

important for ensuring the applicability of our model to other similar

datasets. As a result, we built a full model based on all selected

variables with a LOO-CV accuracy of 95.2%. To make our model

more useful, we considered the correlation between variables chosen

and used a stepwise forward regression method to obtain a precise

model containing only eight clinical variables but with a LOO-CV

accuracy of 92.6% (close to that of the full model). This is promising.

Finally, we provide a user-friendly web tool to facilitate the use of

our model.

In a previous study, we found many kinds of podocyte

autoantibodies in children with INS. The titer of these antibodies

decreased with the remission of the disease. In vivo and in vitro

experiments confirmed that these antibodies can cause podocyte
BA

FIGURE 4

(A) The ROC curve for the full model (AUC=0.977) and the reduced model (AUC=0.951). (B) Comparison of different measurements for evaluating the
performance of the full model and reduced models’ performance.
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injury and proteinuria (14). The results of the current study also found

that podocyte autoantibodies helped predict responsiveness to steroid

therapy and further confirmed that podocyte autoantibodies were an

important part of the pathogenesis of INS. Vinculin autoantibody is the

only podocyte autoantibody included in this model. There was a linear

correlation between it and steroid responsiveness. This suggests that the

higher the concentration of vinculin autoantibody, the more likely the

children with INS will be resistant to steroids. Vinculin is a cytoplasmic

protein that couples actin filaments to integrin-mediated matrix

adhesion and cadherin-mediated intercellular junctions (32, 33).

Vinculin is necessary to maintain the integrity of GFBs. Podocyte-

specific vinculin KO mice can increase proteinuria and make the

podocyte foot process disappear (34). Loss of vinculin increases FAK

tyrosine phosphorylation in podocyte focal adhesions, affecting signal

transduction from focal adhesions to the actin cytoskeleton.

Furthermore, transfection of HEK293 embryonic kidney cells with

serum- and glucocorticoid-dependent kinases significantly enhanced

cell motility via vinculin dephosphorylation (35). Therefore, the

appearance of vinculin autoantibody interferes with vinculin’s normal

function and damages GFB function. The recurrence of proteinuria in

children with SRNS may also be due to the repeated appearance of

vinculin autoantibody. Themechanism by which vinculin autoantibody

affects steroid responsiveness in children with INS needs further study

in vivo and in vitro.
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When the number of red blood cells in the urine reaches a certain

level, the urine occult blood test results are positive. With the

continuous damage of GFB, not only protein but also red blood cells

can be detected in urine. In contrast, kidney damage worsens with the

leakage of urinary red blood cells and proteinuria (36). This also reflects

that glomerular function damage in SRNS patients is more severe than

that in SSNS patients, and it is a positive feedback process.

In the clinical course of INS, a typical feature is a dysregulated

coagulation state, promoted by the breakdown of the permeability

barrier of the glomerular capillary wall, resulting in the leakage of high-

molecular-mass proteins (37). This hypercoagulable condition is

supported by several factors, such as abnormalities in platelet

activation and an imbalance between anticoagulation/antithrombosis

and procoagulant/prothrombotic mechanisms (38). Deep venous

thrombosis of the lower extremities and renal veins are the most

dangerous INS complications (39). However, based on our results,

prolonged PT tends to increase in SRNS patients, which reflects

dysfunction of the exogenous coagulation system. Specifically, a

prolonged PT indicates an abnormal reduction in vitamin K-

dependent clotting factors (II, VII, IX, X) or factor V (40).

Coagulation and anticoagulation function in SRNS patients may be a

complex system affected by many factors.

Hyperlipidemia is a common characteristic in INS patients.

Elevated CHOL levels are largely related to an acquired LDL
TABLE 1 Biomarkers in urine and blood that distinguish between SSNS and SRNS.

Study
(year) Number of subjects Samples Methodology Key findings Ref.

Suresh CP
et al.
(2016)

Discovery, 15 SSNS, 12 SRNS, 5
controls. Validation, 40 SSNS, 20
SRNS, 20 controls

Urine
Proteomics (MS)
and ELISA

ApoA-1 differentiated SRNS from FRNS/SDNS; alpha-2 macroglobulin,
orosomucoid 2 and retinol binding protein 4 distinguished SRNS MCD
from SRNS FSGS.

(20)

Kalantari S
et al.
(2014)

6 SSNS, 4 SRNS Urine Proteomics (MS)
Apolipoprotein A1 most increased in SSNS compared with SRNS;
matrix remodeling-associated protein 8 decreased more in SSNS than in
SRNS.

(21)

Nickavar A
et al.
(2016)

25 SSNS, 27 SRNS,
18 controls

Urine Urine NGAL
Urine NGAL significantly higher in SRNS than in SSNS; optimal cutoff
0.46 ng/mg creatinine.

(22)

Gopal N
et al.
(2016)

47 SSNS, 23 SRNS Urine UPBSA
UPBSA significantly higher in SRNS than in SSNS; optimal cutoff 2.71
mg/ml of protein

(23)

Bennett
MR et al.
(2016)

28 SSNS, 24 SRNS,
5 controls

Urine VDBP ELISA Urine VDBP significantly higher in SRNS than in SSNS or controls (24)

Gopal N
et al.
(2017)

47 SSNS,
23 SDNS/SRNS

Urine Levine’s method
UPCC significantly higher in SDNS/SRNS group; threshold of 5.10
nmol/mg of protein

(25)

Badr HS
et al.
(2016)

20 SSNS, 16 SRNS
Blood
PBMCs

Flow cytometry P-glycoprotein expression significantly higher in SRNS. (26)

Watany
MM et al.
(2018)

40 SSNS, 40 SRNS,
40 controls

Serum NPNT ELISA
NPNT significantly higher in SSNS than in SRNS and controls, and
significantly lower in SRNS than in controls.

(27)

Gooding JR
et al.
(2020)

30 SSNS, 15 SRNS Plasma Metabolomics
Metabolomic analyses from children with SSNS and SRNS identified
elevated creatinine and glutamine concentrations, and reduced malonate
concentrations.

(28)
frontiers
ApoA-1, apolipoprotein A-1; ELISA, enzyme-linked immunosorbent assay; MS, mass spectrometry; NGAL, neutrophil gelatinase-associated lipocalin; NPNT, nephronectin; PBMC, peripheral
blood mononuclear cells; SDNS, steroid-dependent nephrotic syndrome; SRNS, steroid-resistant nephrotic syndrome; SSNS, steroid-sensitive nephrotic syndrome; UPBSA, urinary protein-bound
sialic acid; UPCC, urinary protein carbonyl content; VDBP, vitamin D binding protein.
method gives five clinical variables.
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receptor deficiency, which limits the removal of cholesterol-rich LDL

particles from circulation (41, 42). In addition, hyperlipidemia can

cause accelerated ESR. Elevated ESR is also associated with increased

immunoglobulin. Elevated ESR, CHOL, and IgA increase the risk of

steroid resistance in INS patients. Surprisingly, increased N% is

positively associated with SSNS. Acute respiratory and urinary tract

infections are the most frequent triggers of relapse in SSNS patients

(43). Currently, at least 50% of relapses are triggered by a viral upper

respiratory tract infection, which may be linked to a nonspecific host

response to infection (44).

A total of 78 variables of 87 variables collected were analyzed in

the present study. After repeated attempts and optimization design

ideas, we propose a full model by this new variable selection

procedure with 27 important variables. To facilitate clinical

application, a reduced SVM model including only eight clinical

variables (ESR, u-OB, N%, IgA, CHOL, vinculin autoantibody,

AST, and prolonged PT) was constructed to have a LOO-CV

accuracy of 92.8%. These biomarkers cover immune function, liver

function, the urinary system, coagulation function, and other aspects,

which are common organs and systems involved in INS. By

laboratory tests, the model comprehensively and objectively

evaluates the internal conditions and disease status of INS patients,

providing scientific guidance for selecting treatment methods. More

importantly, the model provides a method for managing children

with nonhereditary SRNS, which may solve the problem of blind

medication in children with nonhereditary SRNS in the future and

effectively avoid unnecessary steroid exposure.
Conclusion

The SRNS prediction model constructed in this study

comprehensively and objectively evaluated the internal conditions and

disease status of INS patients, which will provide scientific guidance for

selecting treatment methods for children with nonhereditary SRNS. The

reason why steroids are used as first-line treatment drugs in the clinic is

that compared with immunosuppressants, the effects of steroids are

relatively mild, and the side effects are relatively small. In addition, most

of patients are sensitive to steroids. Therefore, steroids are the first choice

in the clinic. However, once predicted by our model, the possibility of

steroid resistance in patients is high. Clinically, there is every reason to

abandon steroids and directly choose immunosuppressants with stronger

effects. These patients are likely to be ineffective after 4 weeks of steroid

therapy, which not only delays 4 weeks of precious treatment time but

also suffers from the side effects of steroids. At this time, it is undoubtedly

a wiser decision to choose an immunosuppressant, although it has

slightly larger side effects that are still controllable.
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