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Introduction: Allografts are the most common bone grafts for repairing osseous

defects. However, their use is associated with an increased risk for infections,

donor disease transmission and osteointegration deficiency. Resolvin D1 (RvD1) is

an endogenous lipid with a scientifically proven pivotal role in inflammation

resolution and osteoclastogenesis inhibition. Yet, its biological relevance as a

potential bone regenerative drug has been scarcely studied. Here, we aim to

investigate the RvD1 effect on allograft osteointegration in the alveolar bone

regeneration (ABR) murine model.

Methods: ABR model consisted of osseous defects that were generated by the

extraction of the maxillary first molar in C57BL/6 mice. The sockets were filled with

allograft and analyzed via RNA sequencing. Then they were locally injected with

either RvD1 or saline via single or repeated administrations. Themice were sacrificed

2W after the procedure, and regenerated sites were analyzed using µCT and

histology. First, MC3T3-E1 preosteoblasts were plated with IL-17 pro-inflammatory

medium, and RANKL/OPG ratio was measured. Secondly, the MC3T3-E1 were

cultured w/o RvD1, for 3W. Osteoblasts’ markers were evaluated in different days,

using qRT-PCR and Alizarin Red staining for calcified matrix.

Results: In vivo, neither allograft alone nor single RvD1 administration promote

bone regeneration in comparison to the control of spontaneous healing and even

triggered an elevation in NR1D1 and IL1RL1 expression, markers associated with

inflammation and inhibition of bone cell differentiation. However, repeated RvD1

treatment increased bone content by 135.92% ± 45.98% compared to its specific

control, repeated sham, and by 39.12% ± 26.3% when compared to the

spontaneous healing control group (n=7/group). Histologically, repeated RvD1

reduced the number of TRAP-positive cells, and enhanced allograft

osteointegration with new bone formation. In vitro, RvD1 rescued OPG

expression and decreased RANKL/OPG ratio in IL-17 pro-inflammatory
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conditions. Furthermore, RvD1 increased the expression of RUNX2, OSX, BSP and

OC/BGLAP2 and the mineralized extracellular matrix during MC3T3-E1

osteoblasts differentiation.

Conclusions: Repeated administrations of RvD1 promote bone regeneration via a

dual mechanism: directly, via enhancement of osteoblasts’ differentiation and

indirectly, through reduction of osteoclastogenesis and RANKL/OPG ratio. This

suggests that RvD1 may be a potential therapeutic bioagent for osseous

regeneration following allograft implantation.
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Introduction

Despite the gradual growth in the graft industry, there is still a

growing demand for innovative treatments for bone deficiencies in

orthopedics, implantology and general dentistry (1). Evidence suggests

that treatments with bone substitutes alone may result in insufficient

bone repair, and optimal bone healing is dependent on two major

aspects: an active stimulating of bone growth and bone remodeling. For

stimulating bone growth, a combination of local presence of bioactive

bone growth stimulators with grafts is considered a good strategy to

improve bone regeneration (2–4). Some familiar bone growth

stimulators are Bone Morphogenic Proteins (BMPs), which are

released in osteoclastic resorption and promote osteoblasts

differentiation in bone healing process (5). Other biomaterials, such

as Vascular Endothelial Growth Factor (VEGF), Transforming Growth

Factor beta (TGF-b), Platelet Derived Growth Factor (PDGF),

stimulate migration and differentiation of osteoprogenitor cells to the

injury site. VEGF enhances blood vessels growth and formation of

callus in bone fracture healing, while TGF-b mostly promotes

osteoblasts chemotaxis (2), and therefore, promote bone healing.

However, there are still concerns related to these stimulators. Their

efficiency in humans is controversial (6), there is a lack of data on the

optimal therapeutic dose and some of them, such as BMPs, have been

associated with potential carcinogenic side effects (7, 8).

Bone remodeling is based on the complex interplay between the

skeleton and immune system, an interplay termed recently

‘Osteoimmunology’. Optimal bone recovery is mediated by the

recruitment of immune cells to the site, and secretion of multiple

factors. In the inflammatory phase of fracture healing, platelets,

neutrophils and macrophages invade to the injury site, and secrete

growth factors and cytokines that promote mesenchymal cells to arrive

(9). However, these inflammatory signals are limited and temporary.

Therefore, the resolution of inflammation is also beneficial for optimal

bone remodeling and healing. It is an active process that is mediated in

part by specialized pro-resolving lipid mediators (SPMs), such as

Resolvins, Protectins and other derivates of omega-3 fatty acids (10).

Nowadays, there is no drug which can promote bone healing or

graft osteointegration via stimulation of bone deposition and

controlling the inflammation.
02
Resolvin D1 (RvD1) (7S,8R,17S-trihydroxy-4Z,9E,11E,

13Z,15E,19Z-docosahexaenoic acid), a derivative of docosahexaenoic

acid (DHA), is efficient in treating inflammation across a wide variety of

inflammatory conditions such as bowel disease, acute lung injury (covid-

19), peritonitis and heart failure (11). In addition to its pro-resolving

activity in an inflammatory environment, RvD1 has an anti-catabolic

effect in diseases that are accompanied by bone loss and tissue

degradation. RvD1 abolishes a few factors which are involved in

osteoarthritis in human chondrocytes (12), thus has the potential to

serve as a target for other rheumatic diseases (13). RvD1 contributed to

joint protection in the murine arthritis model by inhibition of cartilage

resorption (14). RvD1 also decreased osteoclast differentiation and

activation in vitro and decreased bone and joint destruction in vivo

(15). We also previously showed that RvD1 affected immune cells

expression and decreased osteoclastogenesis in orthodontic tooth

movement (16).

Inadditionto itsanti-cataboliceffect, someevidence implies thatRvD1

is capable of actively preserving bone. RvD1 embedded in chitosan

scaffolds improved bone healing (17). However, there is no mechanism

showing the direct effect of RvD1 on bone deposition. In a recent in vitro

study, IL-6 was introduced with its receptor in osteoclast cultures and

decreased RANKL and OPG expression, while stimulation of these cells

withRvE1 increasedOPGwithout any change inRANKLexpression (18).

Another in vitro experiment included neonatal calvaria cells that were

treatedwith testosteronewhich decreased the expression ofOC,OPGand

RANKL. RvD2 treatment restored their expression levels to baseline (19).

Accordingly, we here hypothesize that RvD1 might have an

anabolic effect and increase bone formation by actively promoting

osteoblasts functionality. Subsequently, we aim to assess the potential

therapeutic activity for RvD1 as a bone healing stimulator when

combined with allograft in tooth extraction sockets. Tooth extraction

might result in complications such as ridge bone loss (20), socket

infection (21) and poor repair in some alveolar sockets that are not

treated with bone grafts (22). In addition, some cases require

alveolar bone augmentation before inserting dental implants

due to insufficient bone mass and proximity to limiting

anatomical structures.

Our results provide promising evidence for a novel anabolic effect

of RvD1 in bone remodeling. Although we focused on tooth socket
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healing, the results might be relevant in several other fields, such as

non-union fractures and degenerative diseases.
Materials and methods

Animals

The study was approved by the Animal Care and Use Committee

of the Hebrew University. 8 weeks old C57BL male mice at weight of

20 grams were purchased from Harlen, Israel and maintained under

specific pathogen-free (SPF) conditions at the Ein-Kerem campus of

the Hebrew University, Jerusalem. Mice were kept at 250C with a 12–

24 hours light/dark cycle and given free access to food and water.
Bone allograft preparation

Murine allograft was prepared from femurs and tibias as

previously described (23).

Briefly, long bones (femurs and tibias) from C57BL/6 mice, 6 to 8

weeks old, were harvested using fine forceps and a scalpel to remove

the surface periosteum and the marrow cavity was flushed with

phosphate buffered saline (PBS) to remove free bone marrow cells.

The graft was then washed with hydrogen peroxide for 10 minutes,

followed by PBS wash and incubation in tert‐butyl alcohol overnight.

Next, grafts were thoroughly rinsed in PBS to remove residual tert‐

butyl alcohol, fast freeze at −196°C and lyophilized overnight. The

dried bones were thawed to room temperature, pulverized using

mortar and pestle to give an average of 65.60 ± 20‐mm particle size.

Finally, allograft particles were immersed into PBS in cell culture

conditions (37°C, 5% CO2) for 24 hours. Protein quantification of the

allograft particles was performed using micro bicinchoninic acid assay

to ensure no protein as well as live cell in the prepared allograft bones.

Before implantation, bones were ultraviolet irradiated for 30 minutes

to ensure sterility. The absence of proteins in the particulate bone

material was validated (data not shown).
Allograft implantation combined with free
RvD1 in alveolar bone regeneration (ABR)
murine model

ABR model was performed in C57BL mice, as previously

described (24, 25). Then, the mice were randomly divided

according to the administrated treatment (n=7/group): (a) first

treatment group received allograft particles mixed with RvD1

(allograft + single RvD1) (b) second treatment group received

al lograft part ic les mixed with RvD1 and 3 addit ional

administrations of RvD1 at 4, 7, 10 days post ABR, (c) first control

group in which alveolar bone was allowed to heal spontaneously

without allograft (Spon. Healing), (d) second control group received

allograft mixed with saline (allograft +single sham), (e) third control

group received allograft mixed with saline + 3 gingival injections of

saline at 4, 7, 10 days post ABR, to examine the effect of repetitive

tissue injury on bone healing (rep-sham). The administration of
Frontiers in Immunology 03
RvD1 (15 ml, 0.51 mg/ml: 0.76 mg, per administration) or saline was

performed as previously described (23).

All mice were sacrificed 2 weeks post ABR, and maxillae were

harvested for analysis.
Sample preparation

For RvD1 Elisa, maxillae were harvested and the alveolar bone

socket, PDL, and gingiva were pulverized in a homogenizer and kept

in 500 ml of sterile saline histidine (pH=7). All samples were

immediately frozen in liquid nitrogen and kept in -80 until the

RvD1 Elisa assay and according to manufactures instruction.

For radiographic and histologic analysis, maxillae were harvested

and fixed in 4% paraformaldehyde (pH 7.4) in PBS for 1 day at 4°C

and then kept in 70% ethanol. Following the scanning, samples were

prepared for histological sections and examinations previously

described (26).
Micro-Computed Tomography (mCT)
imaging and ABR measurement

Maxillae were scanned via mCT40®, Scanco Medical, Brüttisellen,

Switzerland (24) as previously described. Morphological parameters

of trabecular bone microarchitecture were assessed according to

guidelines as previously described (27, 28). The borders of the

regenerated bone sites were marked according to a cylindrical

region of interest (ROI) in all the samples mesial to M2 with an

axis depth/length of 350 mm (150‐ to 500‐mm below the M2 root

furcation) and a diameter of 700 mm. two‐dimensional

microarchitecture measurements were included and calculated:

bone volume/total volume (BV/TV, %) and bone mineral density.
Hematoxylin and eosin, Tartrate- resistant
acid phosphatase, and Masson
Trichrome staining

Max i l l a e b o n e s w e r e d e c a l c ifi e d i n 1 0% (w / v )

ethylenediaminetetraacetic acid (EDTA, pH 7.4) for 10 days. Then,

samples were embedded in Optimal Cutting Temperature compound

and sagittal slices of 10‐mm‐thick cryo‐sections were performed.

For Massons’s Trichrome staining, samples were stabilized in

preheated Bouin’s solution at 56°C for 15 minutes, then washed in tap

water and stained in Weigert’s Iron Hematoxylin Solution for 5

minutes (nuclei staining). Stained samples were then washed with

Biebrich Scarlet-Acid Fucshin for 5 minutes (cytoplasm & muscle

staining). Subsequently, samples were placed with phosphotungstic

and phosphomolybdic acid followed by soaking the samples in

Aniline Blue Solution for 5 minutes (collagen fibers staining) were

then rinsed with Acetic Acid, 1%, for 2 minutes followed by rinsing

and dehydration with alcohol and xylene. Slides were then mounted

for additional analysis (Kit components from Sigma- Aldrich).

For Tartrate‐resistant acid phosphatase staining (TRAP) staining,

with hematoxylin counterstaining was performed according to the
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manufacturer’s instructions and enabled quantification of the

osteoclasts (N=3-4/group).

Following H&E, TRAP andMasson-Trichrome staining, specimens

were examined and photographed with high-quality microscope (Nikon

eclipse 90i, Tokyo, Japan). Images captured using x2 and x10

magnification. Morphometric analysis included visual observation of

osteoid and allograft particles. To assess de-novo osteoid apposition, a

grid sized 640X488 µmof the regenerated site (the area ofM1 socket) was

analyzed by ImageJ software (N=3-4/group).
RNA extraction for mRNA sequencing, qRT-
PCR and quality control

Maxillae were pulverized in a homogenizer, and total RNA was

isolated from bones lysates or from cultured cells with TriZol (1000 ul

per sample; Thermo Fisher Scientific). RNA purity was detected with

a Nanodrop. DNA-free RNA was obtained by using and RNeasy Mini

Kit (QIAGEN) with DNase treatment according to the

manufacturer’s instructions. For quality control of RNA extraction

yield, an RNA Screen Tape kit (Agilent Technologies), a D1000

Screen Tape kit (Agilent Technologies), Qubit RNA HS Assay kit

(Invitrogen) and a Qubit DNA HS Assay kit (Invitrogen) were used

for each specific step. RNA samples from Allograft vs Spon. Healing

groups were all passed quality control analysis on a Bioanalyzer 2100

(Agilent Technologies). The 3 biological replicates with the highest

RNA were used for mRNA library preparation and bioinformatics

analysis as described previously (29).
mRNA library preparation

RNA concentration was measured using Qubit 4 Fluorometer

(Thermo Fisher Scientific) and RNA quality was measured using

Agilent 2200 Tape Station (Agilent). RNA sequencing libraries were

prepared using the CEL-Seq2 protocol, as published by (30) with

minor modifications. Instead of single cells as input, 2 ng purified

RNA was taken as input for library preparation. The CEL-Seq2

libraries were sequenced on an Illumina NextSeq 550 sequencer

(Illumina). RNA measurements, library preparation and sequencing

were performed by the Technion Genome Center, Technion, Israel.
Trimming and filtering of raw reads

Quality trimming was done at the 3’ end using cutadapt. The

quality cutoff was 10, skipping all G bases (that can indicate a lack of

signal in Next-Seq’s two-color chemistry). The parameter was –

nextseq-trim=10. Also using cutadapt, adapter and poly-A sequences

were removed. The error rate (-e parameter) was set to zero. Reads that

became shorter than 28 nt were filtered out (-m parameter).
Alignment and counting

The processed fastq files were aligned to the Mus musculus

transcriptome and genome using TopHat. The genome version was
Frontiers in Immunology 04
GRCm38 with annotations from Ensembl release 99. ERCC spike-in

sequences (positive controls of CEL-Seq protocol) were aligned as

well to the DNA Sequence Library SRM-2374. Strand information

was taken into consideration (–library-type fr-secondstrand).

Alignment allowed up to 2 mismatches per read, and a total edit

distance of 5.

Quantification was done using htseq-count. Reads that aligned

with a quality lower than 10 were skipped. Strand information was

taken into consideration (–stranded=‘yes’). An annotation file that

lacked information for genes of type IG, TR, Artifact, miRNA,

Mt_rRNA, Mt_tRNA, ncRNA, piRNA, pre_miRNA, rRNA,

ribozyme, sRNA, scRNA, scaRNA, siRNA, snRNA, snoRNA, tRNA

and vaultRNA was used.
Differential expression

Differential expression analysis was done with the DESeq2

package. Genes with a mean of counts less than 3 over all samples

were filtered out, then size factors and dispersion were calculated.

Normalized counts were used for several quality control assays, such

as distance heatmaps and principal component analysis, which were

calculated and visualized in R. Differential expression was calculated

with default parameters except not using the independent Filtering

algorithm. Significance threshold was taken as padj<0.1 (default).

Finally, the results were combined with gene details (such as symbol,

known transcripts, etc.), taken from the results of a BioMart query

(Ensembl, release 99), to produce the final Excel file.
qRT-PCR

mRNAwas reverse-transcribed into cDNA using a High-Capacity

cDNA Reverse Transcription Kit (Tamar laboratory supplies Ltd).

The resultant cDNA was subjected to qRT-PCR using the qPCRBIO

SyGreen Blue Mix Hi-Rox (Tamar laboratory supplies Ltd) The

mRNA expression was normalized to murine GAPDH1

(Glyceraldehyde-3-phosphate dehydrogenase). Murine primers

sequences used for reverse transcription- quantitative PCR.

Supplementary Data Table S1.
MC3T3-E1 cell culture

TheMC3T3-E1, Subclone- 4 were purchased fromATCC and used

as osteoblastic primary cell line. MC3T3-E1 cells were cultured in

Mem- Alpha medium w/o ascorbic acid (Rhenium) containing 10%

FBS, 1% streptomycin and 1% glutamine. Cells were cultured at 37°C in

a humidified 5%CO2 atmosphere.MC3T3-E1 cells were cultured in a 6

well plates at a density of 104 cells per 1 ml (total 2 ml per well).
RvD1 effect on RANKL/OPG in inflammatory
condition in vitro

Cells were cultured with IL-17 (50 nM,Pepro Tech) and with or

without RvD1 (200 nM) for 24 hours. Cells without IL17 nor RvD1
frontiersin.org
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treatment served as a control. RNA was extracted and RANKL and

OPG expression were measured.
RvD1 effect on osteoblastogenesis in vitro

To promote osteoblasts differentiation, cells were cultured with a

supplemented medium consisted of ascorbic acid (280 mM) and b-
glycerophosphate (10 mM) with or without RvD1 (200 nM). Medium

was changed every other day. RNA was extracted from cells in days 5,

7, 9, 14 and 21. The extracellular calcium was analyzed via Alizarin

Red staining in days 10, 14 and 21.
Alizarin red staining

The extracellular calcium deposition was stained via alizarin red

staining protocol (31, 32). The medium was removed, and cells were

washed with PBS three times and fixed with 4% paraformaldehyde.

Subsequently cells were washed with PBS 3 times and stained in

filtered 40 mM alizarin red (pH ~ 4.2) for 15 minutes in room

temperature (Alizarin Red powder, Cas Number 130-22-3 Sigma).

Finally, cells were washed, and the wells photographed in

stereomicroscope (SMZ25) to identify calcified nodules in bright-

orange- red color. For numerical quantification (33), stained cells

were dissolved in 10% acetic acid. The suspended samples were

heated to 80°c for 10 minutes. Then, samples were cooled on ice for

5 minutes, and centrifuged at 20,000 g for 15 minutes. Supernatant

pH was adjusted to 4.2 and absorbance was measured in 405 nM.
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Statistical analysis

The gene expression data were analyzed as mentioned above. In

other experiments, the data were analyzed with GraphPad Prism v.8

(GraphPad Software, San Diego, CA, USA) and the numerical values

obtained are expressed as the means ± SEM. Normally distributed

data were analyzed with paired t-test. The asterisk symbol represents

a statistical significance *<0.05 **< 0.01 ***< 0.005..
Results

Allograft implantation did not improve bone
healing vs. spontaneous healing at 2 weeks
post ABR

According to the experimental timeline (Figure 1A), 2 weeks post

ABR radiographic numerical analysis of the socket showed that

allograft did not improve the BV/TV ratio and the bone mineral

density (Figures 1B, C).

For a deeper understanding of the underlying molecular changes

induced by allograft osteointegration at this time point, we conducted

mRNA sequencing. A few pathways were upregulated in allograft

compared to Spon. Healing, including MTORC and androgenic

response (Figure 1D). The gene set enrichment analysis (GSEA) showed

a total of 97 differentially expressed genes (DEGs).Among them, 33DEGs

were downregulated and 64 DEGs were upregulated in allograft vs. Spon.

Healing. (Figure 1E), These findings were also supported by the heatmap

analysis (Figure 1F). To validate the sequencing data, genes of interest

including NR1D1 and IL1RL1 were assessed by qRT- PCR (Figure 1G).
B
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FIGURE 1

Bone healing two weeks following alveolar bone regeneration with Allograft vs. Spontan. Healing. (A) Experimental timeline: 8 weeks old male mice
(C57BL =7/group) were divided into two groups; the control group of a tooth extraction without allograft implantation (Spon. Healing), an experimental
group with allograft implantation, were sacrificed for radiographic and mRNA sequencing analysis 2 weeks post-procedure. (B) Numerical µCT evaluation
of alveolar socket: bone volume/total volume (BV/TV) and Bone Mineral Density. (C) µCT 3- dimensional analysis of the regenerated alveolar bone
(marked in red square), with magnification. (D) Upregulated GSEA pathways in allograft treatment. (E) The highest differentially down\ up-regulated
genes. (F) Heatmap showing the highest 60 Differentially expressed genes (DEGs) (G) mRNA validation for genes of interest (NR1D1, IL1RL1).
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We also monitored the changes in mice weight during the

experiments, to investigate their rehabilitation after surgery.

Allograft treatment mice displayed lower values of body weight

post-surgery, compared to the Spon. Healing group (Figure S1C)

(n=7/group, p<0.005).
Rep-RvD1 administrations improve bone
volume and density

Following saline injection in the ABR socket, RvD1 was found in

only small amounts (186.82 ± 93.9 pg/ml), indicating no significant

endogenous RvD1 production post-surgery or post allograft

augmentation. In contrast, the RvD1 treatment sockets exhibited

high RvD1 levels (4403.9 ± 1765.4 pg/ml) at 3 hours post

administration. However, 1 day post procedure, the RvD1 values

dropped significantly to levels similar to the saline groups (146.9 ±

61.5 pg/ml) (Figure 2A).

Therefore, to maintain an adequate level of RvD1 at the target site,

we repeated its gingival administrations 3 more times during the 2

weeks follow-up period (Figure 2B) Rep-RvD1 had a significant

impact on bone quality parameters when compared to all allograft

control groups, especially when compared to its specific control (rep-

sham), as displayed by the µCT 3D analysis (Figure 2C). Rep-RvD1

elevated BV/TV compared to rep-sham (0.49 ± 0.09 vox vs. 0.21 ±

0.06, p=0.007) and to Spon. Healing (0.49 ± 0.09 vox vs. 0.35 ± 0.09

vox, respectively, p=0.013) (Figure 2D). Single RvD1 treatment

displayed no benefit in bone regeneration compared to single-sham

control (BV/TV ratio 0.33 ± 0.1 vox vs. 0.29 ± 0.05, respectively,

p>0.05) (Figure 2D). When rep-sham was considered 100%, rep-
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RvD1 elevated the BV/TV ratio by 135.92% ± 45.98% (p= 0.001)

(Figure 2F). In contrast, when Spon. Healing was considered 100%,

rep-RvD1 elevated the BV/TV ratio by 39.12% ± 26.3% (Figure 2G).

Rep-RvD1 also elevated the bone mineral content compared to rep-

sham (488.48 ± 56.21 vs. 278 ± 59.3, respectively, p<0.001) and to Spon.

Healing (488.48 ± 56.21 vs. 391.16 ± 67.4, respectively, p=0.009) while

single RvD1 had no impact on the bone mineral content compared to

single sham (379.79 ± 71.3 vs. 343.58 ± 41.7, respectively) (Figures 2E, F).

The experiments presented in Figure 2 clearly show that

prolongation of the exposure of bone to RvD1 during healing,

results in superior therapeutic effects. However, repeated drug

administration has drawbacks since it requires repeated anesthesia

and injures the tissue several times (Figure 2B). Therefore, it was not

surprising to find that the rep-sham control group was associated with

poor BV/TV ratios in comparison to single sham treatment (Figure

S2A). The same trend was reflected also in the bone mineral content

(Figure 2D). Furthermore, 1 day after the first intra-palatal injection

(day 8 post ABR), a significant weight loss was found in repeated

RvD1 & sham administration groups, compared to allograft single

treatment groups (Figure S2B).
Rep-RvD1 increases allograft
osteointegration and enhances bone
remodeling at the cellular and
molecular level

Following the radiographical analysis, we proceeded with

histological evaluation. Allograft particles were observed at two weeks

post-implantation, as well as woven bone (Figure 3A) Trichrome
B

C

D E F G

A

FIGURE 2

Rep-RvD1 improved bone healing. (A) RvD1 concentrations in bone sockets, in different time points (days) post ABR procedure (pg/mL) (n=4-6/group).
(B) Experimental timeline: 8 weeks old male mice (C57BL n=7/group) were divided into five groups. Control group mice were operated for ABR without
allograft implantation (Spon. Healing), an experimental group of mice received allograft combined with RvD1 (60 ug/ml 15 ul) Allograft + single RvD1);
the control group of allografts combined with saline (Allograft + single sham). Another experimental group of mice received allograft combined with
RvD1 (60 ug/ml 15 ul), in addition to three more intra- palatal RvD1 injections (60 ug/ml 15 ul) in days 4, 7, 10 post-ABR (Allograft + Rep-RvD1), beside
the control group which received allograft combined with saline (15 ul), followed with three more intra- palatal saline injections (15 ul) in days 4, 7, 10
post-ABR (Allograft + Rep-sham). All mice were sacrificed in 2 weeks post ABR procedure for radiographic analysis. (C) µCT 3- dimensional analysis of
the regenerated alveolar bone, the occlusal plane of molars (above images), and the roots plane (below images). (D) Bone volume/total volume (BV/TV)
numerical evaluation values for all groups. (E) Bone mineral density numerical evaluation for all groups. (F) BV/TV of RvD1 administration normalized the
specific control group (%). (G) BV/TV of rep-RvD1 administration combined with allograft normalized to the Spon. Healing control group (%). The asterisk
symbol represents a statistical significance *<0.05; **< 0.01; ***< 0.005; **** <0.001 .
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(Masson) staining distinguished the allograft particles in red and the

woven bone in blue. Rep-RvD1 showed higher woven bone content in

the alveolar bone defect and improved osteointegration between allograft

and new bone (mixed red allograft with new blue bone), in comparison

to single allograft treatments with or without RvD1. The rep-sham

exhibited sparse collagen fibers, and relatively big allograft particles

lacking significant osteointegration with new bone. (Figure 3B)

Numerical grid evaluation of novel osteoid apposition demonstrate

that all allograft treatment groups displayed decreased osteoid

apposition compared with Spon. Healing, except rep-RvD1. Rep-RvD1

exhibited statistically significant increased osteoid apposition sites

compared with all other groups (Figure 3D) This is indicative of

enhanced osteoblastic activity in- vivo.

The osteoclast’s number (TRAP-positive multinuclear cells) was

increased in all allograft groups, except in the rep-RvD1 group, in

which it dramatically decreased (Figures 3C, E).
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Following histological and radiographical analysis, we quantified

the mRNA expression of key markers in vivo to investigate the RvD1

mechanism of action in ABR.

Rep-RvD1 significantly decreased IL1RL1 0.07 ± 0.03 and NR1D1

0.02 ± 0.006 and the RANKL/OPG ratio (0.7 ± 0.15)), compared with

rep-sham treatment group (1.2 ± 0.7 p= 0.01, 1.08 ± 0.4 p=0.005, 1 ±

0.17, p=0.02, respectively) (Figure 3F).

In contrast, rep-RvD1 enhanced the expression of key markers of

osteoblastic differentiation, survival and activity, such as RUNX2

(RUNX Family Transcription Factor 2) (1.79 ± 0.411) and OSX

(Osterix) (1.7 ± 0.46), in comparison to rep-sham (1.08 ± 0.45, p=0.04

and 1.01 ± 0.15, p=0.03, respectively).

In addition, rep-RvD1 increased the expression of anabolic

factors, such as BMP-5 (2.26 ± 0.42) and AMELX (Amelogenin)

(2.79 ± 1.48) in comparison to rep-sham (1.1 ± 0.43, p=0.008 and 1.02

± 0.24, p=0.04, respectively) (Figure 3F).
B

C
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FIGURE 3

Rep-RvD1 increased osteoid apposition and decreased osteoclasts. Representative histological images are presented at x2 and x10. (A) Hematoxylin & Eosin
staining. (B) Trichrome (Masson) staining. (C) TRAP staining. (D) Numerical evaluation of de-novo osteoid apposition. (E) Numerical evaluation of osteoclasts/
ROI. (F) Fold change of mRNA expression in rep-RvD1 vs. rep-sham bones samples. The asterisk symbol represents a statistical significance *<0.05; **< 0.01.
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RvD1 increases OPG expression and the
OPG/RANKL ratio in inflammatory
environment in vitro

To investigate whether RvD1 can modulate osteoblasts in an

inflammatory environment (induced by IL-17), the mRNA

expression of OPG and RANKL were determined in MC3T3-E1

osteoblasts primary cells line cultured with or without RvD1 (200

nM), for 24 hours (Figure 4A). RvD1 rescued the OPG (Figure 4B)

but did not significantly alter RANKL expression (Figure 4C).

Consequently, the RANKL/OPG ratio was decreased (Figure 4D).
RvD1 increases osteoblasts’ differentiation
and calcium deposition in vitro

Next, we proved that RvD1 is capable to enhance the expression

of osteoblastic key markers of functionality and differentiation.

MC3T3-E1 preosteoblasts were cultured with or without RvD1

200 nM for 21 days (Figure 5A). RvD1 increased osteoblastogenesis

markers during time: mRNA expression of Runx2 and BSP were

observed at a higher level in the RvD1 treatment group on day 7. In

most of the time points (days 5, 9, 14, 21) RvD1 treatment

upregulated OSX expression compared to the control of the

differentiating cell. OC/Bglap2 (osteocalcin/bone gamma-

carboxyglutamate (gla) protein 2) exhibited the same trend until

day 14. Later OC/Bglap2 expression was significantly downregulated

in comparison to differentiating cells control (Figure 5B).
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The extracellular calciumdepositwas stainedviaAlizarin-red staining

for 10, 14 and 21 days. Differentiated cells that were treated with RvD1

exhibited redder plaques in day 10, and darker staining at days 14 and 21,

indicatinghigher accumulative calcium layers in thewell.Undifferentiated

cells were slightly reddish as a control. Alizarin red optical density in 405

nm numerical values revealed increased calcium staining in RvD1

differentiated cells compared to the differentiated cells control group

(Figure 5C) (days 10, 14 n=6, day 21 n=5 * P<0.05 *** P< 0.005).
Discussion

The results of our study indicate that in addition to control of

inflammation and to the anti-catabolic effect, repeated administration

of RvD1 has a bone regenerative effect, via enhanced osteoblasts

differentiation and secretion of anabolic factors.

In the mRNA sequencing analysis, there were no significant

pathways or prominent genes specifically related to bone. In

contrast, allograft increased the expression of inflammatory

markers, IL1RL1 and NR1D1, which might explain the delay in

bone healing at this time point. IL1RL1 is coding to ST2 protein,

(the receptor of IL-33) which is usually related to TH2 cells (34, 35).

The literature provides conflicting evidence regarding ST2’s effect on

bone. Some studies showed that ST2 is mediating human

degenerative diseases associated with bone and cartilage destruction

(36, 37). NR1D1 is overexpressed in osteoarthritis, in which it

negatively regulates the expression of OPG and decreases

osteoblasts differentiation (26).
B C D

A

FIGURE 4

RvD1 increased OPG and decreased the RANKL : OPG ratio expression inflammatory conditions in vitro. (A) MC3T3E-1 pre-osteoblasts were stimulated
with IL-17 (50 nM) with and without RvD1(200 nM) for 24 hours. RNA was extracted from cells followed by RANKL, and OPG mRNA evaluation by qRT-
PCR. Unstimulated cells were analyzed as an experimental control group. (B) OPG mRNA expression in cells normalized to stimulated cells without RvD1
treatment. (C) RANKL mRNA expression in cells normalized to stimulated cells without RvD1 treatment. (D) RANKL/OPG ratio mRNA expression in cells
normalized to stimulated cells without RvD1 treatment. The asterisk symbol represents a statistical significance *<0.05; ***< 0.005.
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We decided to limit the duration of the experiment at 2 weeks post

implantation, as we intended to study the effect of RvD1 before bone

regeneration. This was based on our previous study, in which we showed

that bone healingwas impaired in presence of allograft particles at 2weeks

post implantation, whereas at 6 weeks regeneration already occurred (24).

A single administration of RvD1 did not improve bone

regeneration and allograft osteointegration, probably because of its

relatively short-term effect, as shown by its fast clearance from the site

of administration (Figure 2A) The kinetics experiment showed that

RvD1 was flushed away in less than 24 hours. These results are

supportive of previous reports on RvD1 pharmacokinetics (38).

Our working hypothesis was that repeated administration (Rep-

RvD1) will result in longer exposure of the bone to RvD1 and therefore it

will improve its therapeutic efficacy. To prolong RvD1’s presence near

the alveolar bone socket we conducted three sub-gingival injections.

Repeated administration of RvD1 increased BV/TV not only

compared with allograft implantation treatment groups, but also

compared with Spon. Healing. Additionally, RvD1 increased de-

novo osteoid apposition.

Previous attempts to improve bone healing with RvD1 were made.

Xiaofeng et al. demonstrated improved bone healing in rat-calvaria model.

Rats were treated with collagen scaffolds, in addition to weekly

subcutaneous (SC) injections of RvD1 (39). Subcutaneous tissue enables

slow release of molecules due to its special tissue architecture and its

combination with collagen scaffolds, thereby reducing the need for frequent

injections and their related side effects. In contrast, in our study RVD1 was
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injected into attached gingiva, a vascular and sparse tissue which allows

rapid dissipation. In addition, we aimed to investigate the RvD1 local effect

and therefore we chose to administrate it locally and not SC.

So far, resolvins, in general and RvD1 in particular, were

mentioned as beneficials in bone degeneration conditions, due to

their anti-inflammatory effect (12–15, 18). Vasconcelos et al. showed

that chitosan porous 3D scaffolds embeddedwithRvD1 improved bone

healing (17). They showed that RvD1 preserved bone by a traditional

effect of immunomodulation and not by an active anabolic process.

Our results provide further support for these findings, as we show

that rep-RvD1 decreases the IL1RL1 and NR1D1 expression, which

are both inflammatory indicators that were increased following

allograft implantation.

Furthermore, we show for the first time a direct anabolic effect of

RvD1 in vivo & in vitro. Rep-RvD1 increased RUNX2, OSX, BMP-5

and Amlex expression compared to rep-sham, in-vivo. Runx2 is a

well-known factor of osteoblasts differentiation, bone formation, and

mineralization (40). Runx2 is crucial for optimal bone metabolism in

many bone conditions and is considered one of the master markers of

osteoblastic activity. Increased Runx2 expression in vivo is correlative

with improved bone parameters, as demonstrated in this research and

supported by previous data (40, 41). OSX is also expressed in

osteoblast- lineage cells and serves as a transcription factor that

induces the expression of collagen type1, osteocalcin (OC) and

Bone sialoprotein (BSP) (41, 42). BMP5 inhibits osteoclastogenesis

(43) and promotes osteogenesis (44). AMLEX is a growth factor-like
B C

A

FIGURE 5

Resolvin D1 increased osteoblasts differentiation and calcium deposition. (A) Experimental timeline: MC3T3E-1 pre- osteoblasts cells were plated and
treated with differentiation supplemented medium (materials& methods) with and without RvD1 (200 nM) for 21 days. Undifferentiated cells were
analyzed as a control group. (B) RNA was extracted from cells in time points: days 5, 7, 9, 14, 21 and mRNA expression was detected by qRT-PCR. Runx2,
OSX, BSP and OC/BGKAP2mRNA expression normalized to undifferentiated cells control group. (C) In 10, 14 and 21 days, cells were blocked in
paraformaldehyde 4% and stained for Alizarin red staining (above), and numerical evaluation for Alizarin red optical density in 45 nm was calculated
(graph below) (days 10, 14 21, N=5-6/group). The asterisk symbol represents a statistical significance *<0.05; **< 0.01; ***< 0.005.
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molecule expressed in alveolar bone, long bone and cartilage and is

associated with enhanced osteogenic differentiation (45).

In vitro, repeated administration of RvD1 directly increased

osteoblasts differentiation. Known osteoblastogenesis markers (40,

46), indicative of osteoblastic activity were evaluated, as well as the

calcified matrix that was secreted from the cells. RvD1 multiplied the

expression of RUNX2 by almost 4 and doubled the expression of BSP

on day 7. OSX and OC/Bglap were also significantly increased in most

of the time points, except for a decrease in OC/Bglap2 on day 21.

Differentiated cells that were treated with RvD1 demonstrated higher

mineralized extracellular matrix, and higher optical density compared

with differentiated osteoblasts without RvD1. These results are in

contrast to Coetzee et al., which showed that arachidonic acid and

docosahexaenoic acid did not enhance MCT3E1 cell differentiation

into osteoblasts after 48 hours (47). However, in our experiment we

tested the MCT3E1 cell differentiation for a longer period, by utilizing

the continuous effect of repeated administration of RvD1.

Our results support the well-known RvD1 anti-catabolic effect,

since Rep-RvD1 decreased the osteoclast’ number compared to all

allograft controls. The TRAP analysis revealed that osteoclasts

numbers increased in all allograft groups compared with Spon.

Healing, supporting previous study in dogs, which showed that
Frontiers in Immunology 10
when tooth extraction sockets were filled with Bio-oss collagen

grafts, osteoclasts were involved in graft incorporation (48).

Moreover, RvD1 had a significant effect on RANKL/OPG ratio in

vitro, a pivotal pathway for osteoclastogenesis induction. IL-17

inflammatory environment increased RANKL/OPG ratio, while the

presence of RvD1 significantly reduced this ratio, thus decreasing

osteoclastic activity. These findings are in concordance to previous

studies on RvE1. Gao et al. showed that RvE1 increased the balance of

OPG secretion levels from osteoblasts in IL-6 inflammatory conditions

(18), while Funaki et al. reported a decreased RANKL expression in

osteoblasts cultured with Il-17, without a change in OPG expression (49).

The dual role of RvD1 in bone regeneration is summarized in a

scheme (Figure 6). Firstly, RvD1 indirectly reduces osteoclastogenesis

by elevating the OPG secretion from pre-osteoblasts without altering

RANKL secretion, thereby decreasing RANKL/OPG ratio. Secondly,

RvD1 has an anabolic effect as it increases osteoblastogenesis in vitro

and allograft osteointegration and new bone formation, in vivo.

To the best of our knowledge, we are the first to demonstrate that

RvD1 positively and directly affects osteoblast function, as manifested

through increased expression of osteoblasts key markers of differentiation

and through enhanced secretion of bone matrix. Although future

experiments are needed to further unravel its mechanism of action on
FIGURE 6

RvD1 promotes bone healing via inhibition of osteoclastogenesis and accelerating osteoblastogenesis. RvD1 controls bone healing via dual mechanisms:
From left, in proinflammatory conditions of IL-17, the RANKL/OPG ratio is increased following a decrease of OPG thus, promoting osteoclastogenesis. In
contrast, and in spite of the presence of IL-17 in the medium, RvD1 increases OPG secretion from osteoblasts, thus, leading to reduction of RANKL/OPG
ratio and osteoclastogenesis inhibition. From right, RvD1 as an adjuvant in the medium of vitro cell culture of preosteoblasts directly effects them to
express higher osteogenesis markers such as Runx2, OSX and OC/Bglap. Therefore, RvD1 accelerates the development of osteoblasts and their secretion
of calcified matrix. In vivo, RvD1 enhances the apposition of osteoid and improves bone regeneration. The figure was created with Biorender.
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osteoblasts, this novel result is of significance to the osteoimmunology

field and expands the potential clinical uses of RvD1.

Despite these encouraging results, the use of the repetitive

administration has several drawbacks. Firstly, it impaired bone

healing by almost 30% when compared to single sham treatment

(Supplementary Figure A), due to repeated injury to the healing

tissues (50). Subsequently, although rep-RvD1 improved bone

healing by~130% compared with rep-sham, it only increased the BV/

TV ratio by 36% compared with Spon. Healing control (Figure 2G).

Secondly, repeated administration requires repetitive anesthesia, which

weakened the mice and led to weight loss (Supplementary Figure 2F)

(51). We assume that repeated anesthesia decreased motor activity and

food consumption (52) and inflicted intra-oral pain. Thirdly, repetitive

administrations are also not clinically viable (53, 54).

Despite these limitations, our study demonstrates that prolonged

exposure of bone tissue to RvD1 has an anabolic effect and enhances

bone regeneration via a dual mechanism: inhibition of osteoclasts and

promotion of differentiation and functionality of osteoblasts.

Conclusion
Fron
1. A single administration of RvD1 as-is has no therapeutic

effect due to its rapid clearance from the administration site.

2. Prolonged exposure of bone to RvD1 can overcome this

limitation, but is associated with side effects.

3. Repeated RvD1 administration has a bone regenerative effect

via a dual mechanism: suppression of osteoclastogenesis and

enhanced osteoblasts differentiation and functionality and

secretion of anabolic factors.
RvD1 bioagent possesses promising features that justify further

research on its potential integration in various bone related fields such

as implantology, degenerative diseases and treatment of non-union

fractures. Due to the downsides of repeated injections, future studies

should aim to develop an RvD1 sustained release delivery system

which will reduce treatment frequency and the associated damage,

while preserving the clinical therapeutic effectiveness.
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days 4, 7, 8 and 14 post-ABR of all groups.
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