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COVID-19 has been affecting the world unprecedentedly and will remain widely

prevalent due to its elusive pathophysiological mechanism and the continuous

emergence of new variants. Critically ill patients with COVID-19 are commonly

associated with cytokine storm, multiple organ dysfunction, and high mortality. To

date, growing evidence has shown that extracorporeal hemoadsorption can exert

its adjuvant effect to standard of care by regulating immune homeostasis, reducing

viremia, and decreasing endotoxin activity in critically ill COVID-19 cases.

However, the selection of various hemofilters, timing of initiation and

termination of hemoadsorption therapy, anticoagulation management of

extracorporeal circuits, identification of target subgroups, and ultimate survival

benefit remain controversial. The purpose of this narrative review is to

comprehensively summarize the rationale for the use of hemoadsorption in

critically ill patients with COVID-19 and to gather the latest clinical evidence in

this field.

KEYWORDS
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1 Introduction

The current pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), with a spectrum of disease severity

ranging from mild symptoms to critical illness. A recent systematic analysis found that the

number of people who died from COVID-19 from Jan 1, 2020, to Dec 31, 2021 globally

reached 18.2 million (1), which was much higher than the WHO official statistics (2).

The pathophysiological changes in the course of COVID-19 can be prevented and treated

through various approaches. Efforts to develop effective means of prevention and treatment

mainly target the host immune response to COVID-19 (3). For example, as the key to
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limiting SARS-CoV-2 transmission, real-world data have shown that

vaccination has considerable effectiveness against severe disease and

hospitalization despite the slow vaccination rate in some regions (4,

5). Antiviral medications such as remdesivir, and anti-inflammatory

regimens such as corticosteroids, interleukin-6 (IL-6) inhibitors, and

Janus kinase inhibitors have also been reported to improve clinical

outcomes in hospitalized COVID-19 patients in specific subgroups

(6–9). The emergence of newmultiple variant infections indicates that

protection against severe disease is really anticipated (10).

Additionally, the reduction in the infection-fatality ratio in the

postvaccination era should be further evaluated (11). Post-COVID

syndrome, which is closely related to host immune dysfunction, has

also attracted much attention recently (12).

Along with the characteristics and disease course of critically ill

COVID-19 patients continuously evolving throughout the pandemic

(13), we should note that treatment strategies still remain limited in a

subgroup of critically ill COVID-19 patients with cytokine storm and

multiple organ dysfunction syndrome (MODS), such as acute kidney

injury (AKI) and acute respiratory distress syndrome (ARDS) (3).

The truth is that the effectiveness of several explored therapeutic

approaches, including antiplatelet agents and high-dose convalescent

plasma, on the survival of critically ill COVID-19 patients is not

promising (14–16). The conflicting study outcomes of anti-

interleukin drugs also remind us that broader immunoregulation in

severe patients is still required to prevent malignant disease

progression (17).

Extracorporeal hemoadsorption, an important adjuvant

treatment to standard of care, has been used in various critical care

settings during the past two decades (18). Accumulating evidence

collectively shows that the selective or nonselective removal of

multiple inflammatory mediators and circulating toxins from the

bloodstream during hemoadsorption sessions has an immediate effect
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on the regulation of host inflammatory response, but the evidence for

beneficial effects is uncertain (19). More recently, new indications are

developing in this field, and novel hemofilters are available for clinical

use (20). An early systematic review recommended against the

indiscriminate use of extracorporeal hemoadsorption in critically ill

COVID-19 patients outside of investigational clinical trials. However,

this analysis only included low-quality case series and observational

studies with no randomized studies included (21). In contrast,

another narrative review that included 16 studies (including a

controlled trial) demonstrated that hemoadsorption therapy is an

alternative salvage treatment method in critically ill COVID-19

patients, but it also has methodological shortcomings in data

analysis and thus still needs to be supported by stronger evidence

(22). Meanwhile, previously published narrative reviews were mostly

based on previous practical experience with other diseases such as

sepsis, severe acute respiratory syndrome and middle east respiratory

syndrome (MERS) instead of COVID-19 (23, 24).

Herein, we summarize the rationale and the latest evidence for

hemoadsorption that are exclusively applied in the specific context of

COVID-19 until January 20, 2023. We also discuss perspectives for

future research design and clinical application of hemoadsorption-

based techniques in critically ill COVID-19 patients.
2 Rationale for the use of
hemoadsorption in severe
COVID-19 patients

SARS-CoV-2 is a highly pathogenic virus. As shown in Figure 1,

when SARS-CoV-2 invades the body, the first responder is innate

immunity, like monocytes, macrophages, neutrophils, dendritic cells,
FIGURE 1

The pathophysiology of inflammatory events in COVID-19. Abbreviations: IFN, interferon; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2;
IL, interleukin; TGF, transforming growth factor. The picture was generated using BioRender software.
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natural killer cells, and then adaptive immunity, like T helper 1 (Th1),

Th2 cells and B cells (25). Innate immune responses induced by

pattern recognition receptors (PRRs) signaling activate effector cells

to mediate viral clearance (26). Interferons (IFNs), classified as

interferon I (IFN I), IFN II (IFN-g) and IFN III, are critical in the

initiation of the innate immune response, while delayed IFN I

secretion induced by SARS-CoV-2 will reduce chemotaxis, leading

to a weakened innate immune response (27). Typically, the adaptive

immune response in COVID-19 patients shifts to the Th2 phenotype,

and Th2 cells exerts anti-inflammatory effects by secreting cytokines

such as IL-4, IL-5 and IL-10, which contributes to the control of

SARS-CoV-2 infection rapidly (28). While the weakened innate

immune response will in turn lead to enhanced viral replication

and hyperactivation of Th1 cells, which subsequently activates

macrophages by releasing IFN-g, thus causing the production and

secretion of IL-1, IL-6, IL-8 and transforming growth factor (TGF-b),
the latter of which activate Th17 cells to secrete IL-17, and together

generate a cytokine storm, which is characterized by an aberrant,

rapid, excessive and prolonged inflammatory response to cytokines/

chemokines (29). The cytokine storm originates in the lung, and then

pro-inflammatory cytokines and chemokines are released from the

tissue and circulated to other parts of the body (30). To date, it has

been widely accepted that abnormal immune response to SARS-CoV-

2 infection is mainly characterized by hyperinflammation,

hypercoagulation, and endothelial dysfunction, which are all inter-

related with cytokine storm, leading to MODS, such as ARDS and

AKI, and subsequent morbidity and mortality (31, 32). Meanwhile, a

few patients with critically ill COVID-19 may have mild symptoms in

the early stages but suddenly deteriorate or even die in the later stages,

further making cytokine storm in the spotlight. Additionally,

hemophagocytic lymphohistiocytosis and multisystem inflammatory

syndrome associated with SARS-CoV-2 have been recognized as

complications due to cytokine storm (33–35). In this regard,

controlling the inflammatory response may be as important as

targeting the virus in critically ill COVID-19 patients (36).

However, the limited understanding of specific inflammatory

responses in different pathologies and complex networks of

inflammatory responses are insufficient to control the overall
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inflammatory response. For instance, sepsis-like syndromes may

also occur due to viral per se or superimposed bacterial infections

(37). Unfortunately, microorganisms cannot be identified in up to

one-third of the cultures, which will hinder the timely initiation of

appropriate antibiotic therapy (38). Meanwhile, irrationally direct use

of nonspecific immunomodulators such as corticosteroids can add

insult to injury in critically ill COVID-19 patients (39).

Current evidence suggests that conventional blood purification

modalities such as dialysis, hemofiltration and plasmapheresis show

insufficient performances in removing middle to large cytokine

molecules and pathogens (40). Therefore, the rationale for the use

of hemoadsorption is indeed strong when specific inflammatory

mediators (e.g., cytokines and endotoxin) in critically ill COVID-19

patients with cytokine storm and MODS are selectively targeted, as

their reduced levels are associated with decreased morbidity and

mortality (18). Because of a lack of well-defined biomarker

thresholds to consider the initiation of hemoadsorption, the rate

of cytokines removal by hemoadsorption is thought to depend on

the high-level of baseline cytokine concentrations in plasma (41),

implying that the presence of higher levels of cytokines is associated

with a better benefit from cytokine hemoadsorption. Along with a

number of novel hemofilters being created in quick succession,

hemoadsorption therapy with immunomodulation and toxin

clearance is a promising alternative to standard of care in

critically ill COVID-19 patients. Considering the interactions of

adsorptive hemofilters with pathological mechanisms caused by

COVID-19, the potentia l mechanisms of the effect of

hemoadsorption in severe COVID-19 are as follows: 1) reversing

the state of immune dysregulation through the elimination of peak

cytokine concentrations (42–44); 2) interrupting cascade immune

reactions by modulating the composition and kinetic redistribution

of mediators in body fluids (45, 46); 3) restoring immune function

by regulating monocytes, neutrophils and lymphocytes to increase

their sensitivity to drugs and to reduce virus reactivation (47–49); 4)

directly eliminating SARS-CoV-2 viral load and pathogen-

associated molecular patterns (endotoxins, etc.) (50). Basic

characteristics of currently available hemoadsorption therapy in

COVID-19 patients are shown in Table 1.
TABLE 1 Basic characteristics of currently available hemoadsorption therapy in COVID-19 patients.

Hemofilter (manufacturer)/
technique

Composition Rationale in COVID-19 Reference

oXiris (Baxter International, Deerfield, IL, USA) Polyethyleneimine with pregrafted heparin layer and
negatively charged hydrogel

Adsorption of endotoxin and cytokine,
antithrombogenic properties

(51, 52)

CytoSorb (CytoSorbents, Monmouth Junction,
NJ, USA)

Highly porous polyvinylpyrrolidone-coated
polystyrene-divinylbenzene beads

Non-selective adsorption of inflammatory
mediators and toxins

(53, 54)

Seraph 100 Microbind affinity filter (ExThera
Medical, Martinez, CA, USA)

Ultra-high molecular weight polyethylene beads with
end-point-attached heparin

The reduction of SARS-CoV-2 nucleocapsid
protein and RNAemia

(55, 56)

Polymyxin B (Toraymyxin®, Toray Medical,
Tokyo, Japan)

Polymyxin B-immobilized polypropylene-polystyrene
fiber fabrics

Adsorption of endotoxin (57, 58)

HA resin (Jafron Biomedical Co., China) Neutro-macroporous resin adsorbing beads made of
styrene-divinylbenzene copolymer

Non-selective adsorption of inflammatory
mediators and toxins

(59, 60)

ALS Modules for plasma replacement, plasma adsorption,
and blood/plasma filtration

Clearance of inflammatory mediators and
small-medium molecule toxins

(61, 62)

(Continued)
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3 Current evidence for
hemoadsorption use in severe
COVID-19 patients

3.1 oXiris membrane

The oXiris membrane (Baxter International, Deerfield, IL, USA)

employs a unique polyethyleneimine coating to modify the

conventional AN69 membrane, with significant endotoxin and

cytokine adsorption properties by the polyethyleneimine layer and

the bulk negatively charged hydrogel structures, respectively (51, 65).

In addition, the oXiris membrane exhibits antithrombogenic

properties due to a pre-grafted heparin layer and has long been

used in continuous renal replacement therapy (CRRT) for critically ill

patients with sepsis (51, 66). As severe COVID-19 patients frequently

develop life-threatening AKI and cytokine storm, the oXiris

membrane has been authorized for emergency use in adults with

confirmed COVID-19 by the FDA since April 2020 (67).

Most small-size case series (68–71) collectively found that CRRT

with the oXiris membrane significantly decreased levels of

proinflammatory cytokines and improved hemodynamics and organ

function in critically ill COVID-19 patients. A prospective cohort study

established the fluctuation of biomarkers over time through the

collection of 3,000+ accumulated hours of CRRT with the oXiris

hemofilter run-time and real-time data for 44 patients, demonstrating

the safety and efficacy of oXiris-CRRT in the reduction of C-reactive

protein (CRP) and IL-6 levels, thereby mitigating the systemic damage

caused by abnormal immune activation and stabilizing the clinical

conditions of participants (46). Compared to the mortality rates

calculated by the Acute Physiology and Chronic Health Evaluation

(APACHE) IV score, the mean observed mortality rates were also lower

after oXiris treatment (69, 71). Premužić et al. further demonstrated

that critically ill COVID-19 patients with oXiris treatment survived

significantly longer than other intensive care unit (ICU) COVID-19

patients (69). In contrast, a small-size single-center study reported

negative results for alleviating cytokine storm in non-AKI patients with

severe COVID-19, which might be attributed to the selected non-AKI

with normal renal clearance patients and the relatively lower IL-6

concentration (tens of pg/mL) in COVID-19 patients than that in

patients with septic shock (72). Furthermore, the differences in

inflammatory sub-phenotypes, SARS-CoV-2 viral load, innate and

acquired immune defense, and comorbidities may also have a certain

impact on the production and release of circulating cytokines and

chemokines (72). These findings suggested that routine clinical use of

the oXiris membrane in non-AKI COVID-19 patients should be

considered with caution.
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Although current evidence collectively suggests that the use of the

oXiris membrane in COVID-19 patients is well tolerated in most cases,

adequate anticoagulation to maintain the patency of the extracorporeal

circuit remains a challenge in COVID-19 patients with a

hypercoagulable state. Compared to non-COVID-19 patients, a

significantly higher incidence of metabolic alkalosis and

hypercalcemia consistent with reduced filter patency was observed in

COVID-19 patients undergoing CRRT with regional citrate

anticoagulation (73). However, the mean half-life of the CRRT

hemofilter in COVID-19 patients was similar to that in non-COVID-

19 patients with septic shock because hospitalized COVID-19 patients

routinely received systemic heparin for thromboprophylaxis (74).

These results suggested that close monitoring of the acid-base

balance appears warranted when delivering CRRT with regional

citrate anticoagulation in severe COVID-19 patients.

Currently, there is an ongoing open-label randomized controlled

trial (RCT) (oXAKI-COV study) comparing CRRT with the oXiris

membrane vs. standard AN69 membrane during a 72-h treatment

period in critically ill COVID-19 patients with AKI (NCT04597034)

(75). The primary outcome of the oXAKI-COV study is the change in

norepinephrine requirement by at least 0.1 mg/kg/min to maintain

similar mean arterial pressure after initiation of CRRT. Secondary

outcome measures included the change in interleukin serum levels

(IL-6, IL-10, and TNF-a) and length of (intensive care unit) ICU stay

in these patients. It is believed that the final analysis of such a high-

quality RCT could provide solid evidence in this field and advance

clinical practice.
3.2 Cytosorb® adsorber

The Cytosorb® (CytoSorbents, Monmouth Junction, NJ, USA)

has long been approved for the removal of cytokines, bilirubin, and

myoglobin by hemoadsorption (53, 76). The adsorber consists of a

cylindrical cartridge filled with tiny, highly porous, hemocompatible

polyvinylpyrrolidone-coated polystyrene-divinyl-benzene copolymer

beads with a total surface area of > 40,000 m2, which significantly

adsorbs hydrophobic cytokine molecules within the 5–55 kDa

molecular weight range (54, 77). Currently, the Cytosorb® adsorber

can be used for hemoadsorption or in series with CRRT and

extracorporeal membrane oxygenation (ECMO) circuits (43, 78,

79), and the duration of Cytosorb therapy usually permits at least

72 continuous hours with device exchange every 24 hours (78).

Currently, the Cytosorb® adsorber has been broadly used in

patients with critical illnesses such as infective endocarditis (80, 81),

severe acute pancreatitis (82), postcardiac arrest syndrome (83), and

septic shock (84) during the last decade. Early in the COVID-19
TABLE 1 Continued

Hemofilter (manufacturer)/
technique

Composition Rationale in COVID-19 Reference

SCD (SeaStar Medical, Inc., Denver, CO) A sequestering membrane and a biologic moiety
(citrate)

Clearance of highly activated circulating
leukocytes and cytokines

(63, 64)
f

ALS, Artificial-Liver Blood-Purification System; SCD, selective cytopheretic device.
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pandemic, extracorporeal hemoadsorption with the Cytosorb®

adsorber was also approved as an adjunctive therapy to remove

excessive inflammatory mediators in COVID-19 patients by the

European Union and FDA.

Data on clinical effectiveness are inconsistent. Most small-size

observational studies or case series consistently found that CytoSorb

treatment was effective in alleviating inflammation [IL-6,

procalcitonin, CRP, ferritin] (85–89), decreasing D-dimer (86), and

improving oxygenation and hemodynamics (88–90) in critically ill

COVID-19 patients with refractory ARDS or MODS. In a case series

study enrolling 6 COVID-19 patients who were characterized by

severe acute respiratory failure with poor response to the prone

position (PaO2/FiO2 [arterial oxygen pressure (PaO2), inspired

fraction of oxygen (FiO2)] ratio remained <150 after the prone

position) and hyperinflammatory state (IL-6 > 1,000 pg/ml and

increased levels of ferritin and D-dimer), cytokine hemoadsorption

with the CytoSorb adsorber was used as an effective and safe rescue

therapy. After the CytoSorb treatment, the extra high median baseline

IL-6 concentration (17,367 pg/ml [4,539–22,532]) had a significant

reduction to 2.403 pg/ml [917–3.724], p = 0.043. Oxygenation also

improved significantly from 103 (18.4) mm Hg to 222 (20.9) mm Hg,

p = 0.029 (86). A multicenter, retrospective registry enrolling 52

patients who received veno-venous ECMO plus CytoSorb therapy at 5

medical centers in the USA also demonstrated that CytoSorb therapy

was associated with lower 90-day in-hospital mortality (26.9%) than

the ELSO ECMO COVID-19 Registry (52%), suggesting the potential

survival benefit of cytokine adsorption (78). Moreover, CytoSorb

therapy was well tolerated without any device-related adverse

events reported (78, 79).

Disappointingly, data from three RCTs investigating the effect of

CytoSorb® in COVID-19 patients showed inconsistent findings (43,

79, 91). In the CYCOV study, Supady et al. found a significantly

higher mortality in 14 of 17 COVID-19 patients (82%) receiving

ECMO and CytoSorb therapy compared with 4 of 17 ECMO patients

(24%) treated without cytokine adsorption (43). There was also no

significant difference for IL-6 between the two groups after 72 h of

ECMO, which might be attributed to low median baseline IL-6 levels

(357 ng/L) in the intervention group. In contrast, the data from the

international CytoSorb registry suggests that serum IL-6

concentrations can be reduced from a median of 5000 pg/mL down

to 289 pg/mL after 24 h of cytokine adsorption in severe patients,

suggesting that COVID-19 patients with higher levels of cytokines

might benefit more from cytokine hemoadsorption with the Cytosorb

treatment (41, 92). In another prospective, randomized controlled

pilot study, 23 COVID-19 patients with vasoplegic shock and MODS

were randomized to receive Cytosorb® therapy incorporated in the

continuous veno-venous hemodiafiltration (CVVHD) circuit, and 26

patients received standard CVVHD therapy (79). The results showed

that hemoadsorption with Cytosorb® did not decrease the time until

resolution of vasoplegic shock (5 d, interquartile range: 4-5 d)

compared with the control group (4 d, interquartile range: 3-5 d).

Importantly, the ICU mortality rate was 78% in the CytoSorb® group

and 73% in the control group (unadjusted hazard ratio, 1.17 [95% CI,

0.61-2.23]; p=0.64). Meanwhile, the effects on the kinetics of

inflammatory parameters (e.g., IL-6 and CRP) and catecholamine

requirements were similar between the groups. The negative results
Frontiers in Immunology 05
may be attributed to the late intervention given the severity of disease,

and the results of the statistical analysis were limited by the total

number of cases. In addition, it was unclear to what extent

vasoparalytic shock can be attributed to COVID-19-driven

hyperinflammation or sepsis due to secondary recurrent infections,

so there might be potential confounding factors. In the latest

prospective, randomized controlled pilot study to date, 24 COVID-

19 patients with refractory shock, hypercytokinemia (defined as IL-6

≥500 ng/L), and indication for RRT or ECMO were enrolled.

Compared with standard of care, hemoadsorption with the

CytoSorb® adsorber for up to 5 days was not associated with an

significant improvement in shock resolution (33% vs. 17%, p=0.640)

and survival (42% vs. 33%, p=1.0), possibly because critically ill

patients with high sequential organ failure assessment (SOFA) and

simplified acute physiology score II scores in this cohort were more

likely to have a high in-hospital mortality (91). Altogether, the

inconsistent results from RCTs call for a very careful application of

Cytosorb® in severe COVID-19 patients requiring ECMO or RRT.

The indication and optimal initiation timing for CytoSorb treatment

should also be investigated in future high-quality RCTs.
3.3 Seraph 100 Microbind affinity filter

A Seraph 100 Microbind affinity blood filter (ExThera Medical,

Martinez, CA, USA) is an extracorporeal heparin-immobilized

sorbent hemofilter that can remove pathogens from the

bloodstream. On April 17th, 2020, the FDA granted COVID-19

emergency use authorizations for the Seraph 100 filter because it

can utilize the structural similarity between heparin and pathogen

receptors (e.g., heparan sulphate) to bind certain pathogens (55, 93).

Heparin binding of the spike protein is of more clinical significance in

SARS-CoV-2 than in other coronaviruses because viral RNAemia is

more frequent (up to 78%) in critically ill COVID-19 patients (94, 95)

and is associated with COVID-19 severity. In a small-size case series,

Seraph 100 was found to decrease SARS-CoV-2 nucleocapsid protein

and RNAemia/viraemia in the blood of critically ill COVID-19

patients (56).

Several cases reported that treatment with Seraph 100 was

associated with a rapid improvement in oxygenation (96) and

reduced D-dimers (97), and most cases behaved well tolerated and

had a good clinical response (98, 99). The latest interim analysis of

the COSA registry enrolling 78 COVID-19 patients showed that the

observed 30-day mortality rate in the registry was lower than the

mortality predicted by the coronavirus clinical characterization

consortium score (11.1% vs. 38.0%) in non-ICU patients and the

sequential organ failure assessment score (50.7% vs. 56.7%) in ICU

patients (100). Although more than half of the treatments were

performed in conjunction with renal replacement therapy, the

premature end of treatment due to circuit failure was reported in 9

(8.8%) of the 102 treatments with Seraph 100, which was less likely to

occur than CRRT sessions in COVID-19 patients (101). Moreover,

multivariate Cox regression revealed that delayed Seraph® 100

treatment after ICU admission (>60 h) was associated with

increased mortality (100). Most recently, the PURIFY-OBS-1 study

included 53 COVID-19 patients treated with Seraph 100 and another
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53 matched control patients in 9 participating ICUs across the USA.

The Seraph 100 group had lower Charlson comorbidity index scores

and APACHE II scores with higher vasopressor-free days than the

control group. On univariate analysis, Seraph 100 treatment was

associated with decreased mortality with an odds ratio of 0.26 (95%

CI: 0.12–0.59). However, a survival benefit with Seraph 100 treatment

compared with the external Penn Medicine cohort was not observed

in a post hoc analysis (102).

Currently, an RCT (NCT04547257) evaluating the safety and

effectiveness of Seraph 100 in COVID-19 patients with organ

dysfunction is ongoing in Germany and Spain, which takes the

change in organ failure from baseline to 48 hours as a primary

outcome (103). All-cause 28-day mortality, organ dysfunction-free

days, and reduction of viral load will be used as secondary outcome

measures. This study is estimated to be completed by the end of 2022.
3.4 Polymyxin B hemoperfusion

The Polymyxin B hemoperfusion column (Toraymyxin®, Toray

Medical, Tokyo, Japan) is composed of polymyxin B-immobilized

polypropylene-polystyrene fiber fabrics. Polymyxin B hemoperfusion

(PMX) is characterized by removing endotoxin for the treatment of

sepsis caused by gram-negative bacteria (18). Recently, common

multidrug-resistant bacterial infection in COVID-19 patients has

brought it back into our sight (104), and PMX has been suggested

to alleviate the peak of endotoxins in COVID-19 patients with

secondary bacterial infection, thereby restoring immune

homeostasis without prolonging the immunosuppressed state (105,

106). The latest approval of Canada on the use of Toraymyxin® in

severe COVID-19 was announced on April 20, 2020 (107). Besides

removal of endotoxins, other possible mechanisms for Toraymyxin®

use in COVID-19 including cytokine regulation, removal of activated

neutrophils, and prevention of the migration of activated leukocytes

to the lungs deserve further exploration (57, 58). As the only direct

hemoperfusion device targeting endotoxin, PMX can be

intermittently performed without dialysis (108).

Early case reports showed an improvement in PaO2/FiO2 (109,

110) and a reduction in serum CRP levels after Toraymyxin®

treatment (111). Likewise, Mayuko et al. reported that

Toraymyxin® treatment decreased inflammatory markers and

improved oxygenation in a COVID-19 patient with respiratory

failure and hyperinflammation, which halted the patient’s

progression to ARDS and avoided the need for mechanical

ventilation (112). In another case series, Daisuke et al. performed

22 PMX sessions on 12 COVID-19 patients with a PaO2/FiO2 < 300

(113). On day 14 after the first Toraymyxin® treatment, disease

severity decreased in 7 of 12 patients, with an increased PaO2/FiO2

ratio and decreased urine b2-microglobulin. In addition, cytokine

measurements before and after Toraymyxin® treatment revealed

decreased IL-6 levels. However, coagulation-related events still

occurred in 12 of the 22 cases (54.5%) during the course of

treatment, causing the need for reconfiguration of the circuit. It is

still difficult to determine whether longer (>12 hours) treatment with

PMX is effective in improving oxygenation (113). In a recent case

series study from EUPHAS2 registry, PMX treatment was also used in
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12 COVID-19 patients with sepsis. The results showed that SOFA

score progressively improved after 120 hours of PMX treatment,

along with a significant decrease of median endotoxin activity assay

(EAA) from 0.78 [0.70-0.92] to 0.60 [0.44-0.72], suggesting that the

measurement of contemporary EAA levels can be used for

therapeutical efficacy monitoring during treatment (114).
3.5 HA resin hemoperfusion cartridges

HA resin hemoperfusion cartridges (HA130, HA230, HA330 and

HA380) (Jafron Biomedical Co., China) have been widely used to

remove a wide spectrum of endogenous and exogenous toxins (59). The

cartridges contain highly biocompatible neutro-macroporous resin

adsorbing beads made of styrene-divinylbenzene copolymer and have

a high surface area (115). In acute inflammatory conditions such as

sepsis, acute lung injury, hepatitis, and pancreatitis, HA 330 and HA

380 cartridges significantly remove excessive proinflammatory

cytokines (IL-6, IL-10, TNF-a) in the bloodstream (59, 116). The

recommended treatment duration of HA330 and HA380 cartridges is

usually 2 to 2.5 h.

A prospective cohort study in Thailand compared the efficacy of

additional hemoperfusion with standard of care on 29 severe COVID-

19 patients admitted to the ICU (117). Patients who received at least 3

sessions of HA 330 hemoperfusion therapy were defined as the

hemoperfusion group, while those who were treated by standard of

care alone or received less than 3 sessions of HA-330 hemoperfusion

were classified as the control group. Compared to the control group,

patients in the hemoperfusion group showed a clinical improvement

associated with a decreased SOFA score, and the addition of at least 3

sessions of HA330 hemoperfusion to standard treatment could

alleviate organ failure and reduce mortality (117). However, only

serum CRP levels in the patients were monitored to evaluate the effect

of HA330 hemoperfusion on cytokine removal. Another single-

center, matched control retrospective study enrolled 128 COVID-19

patients to investigate the efficacy of hemoperfusion in combination

with standard therapy in critically ill COVID-19 patients (118). Of 55

patients in the hemoperfusion group, the number of patients who

received one, two, and three or four courses of hemoperfusion was 18

(32.7%), 14 (25.4%), and 23 (41.9%), respectively. The results showed

that the mortality rate was significantly lower in the HA 330

hemoperfusion group than in the matched group (67.3% vs. 89%,

p= 0.002). In addition, the median length of ICU stay, duration of

incubation, and median final SPO2 were significantly higher in the

hemoperfusion group than in the matched group. Likewise, Ruslan

et al. demonstrated that cytokine adsorption with HA330 or

Mediasorb cartridges significantly decreased CRP and fibrinogen at

postfiltration in COVID-19 patients admitted to the ICU (119).

However, there was no improvement in patient-centered outcomes

such as SOFA scores, vasopressor use and in-hospital mortality.

Extracorporeal hemoperfusion therapies with HA resin cartridges

are also associated with a number of complications, such as

hematomas at insertion sites, pneumothorax, infections, and

nonselective removal of nutrients and drugs (120, 121).

Consequently, it is crucial to consider drug elimination during HA

resin cartridge hemoadsorption sessions. The optimal timing for
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TABLE 2 Summary of prospective studies evaluating hemoadsorption in COVID-19 patients.

Main
findings

Limitations
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(33% vs. 17%, p=0.640) and

42% vs. 33%, p=1.0).

- Differences regarding age and
norepinephrine dose at baseline
between both groups
- Inherent bias of trials involving
rather complex medical devices
- Whether longer duration or an
earlier start of HP with CytoSorb
would result in an improved
outcome remains unclear.

n of vasoplegic shock was
in 13 of 23 patients (56.5%) in
orb and 12 of 26 patients
n the control group, and the HR
(95% CI, 0.54-2.79); p = 0.63.

- Without formal sample size
calculation
- Whether an earlier start of HP
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improved outcome remains unclear
given the severity of disease with
vasoplegic shock and multiple organ
failure.
- Potential confounding factors

mean log IL-6 concentrations
were 0.30 higher in the cytokine
n group (95% CI, 0·70, 1·30,

fter 30 days was three (18%) of
ytokine adsorption and 13 (76%)
hout cytokine adsorption
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- The large variability of the degree
of systemic inflammation in patient
cohort (different baseline
concentrations for IL-6.)
- Small sample size does not allow
meaningful sub-group analyses
- Inferences about cytokine
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periods during ECMO support in
COVID-19 nor about cytokine
adsorption at different timepoints
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not allowed
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e in CRP, and control of IL-6 and
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- Observational design, the absence
of randomization and limited cohort
size

on of at least 3 sessions of HA-
perfusion therapy was associated
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t = −1.28; p = 0.008).

- Limited sample size
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regression analysis still has
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hemoadsorption administration in critically ill patients with COVID-

19 should also be further determined in the future.
3.6 Artificial liver blood purification system

The Artificial-Liver Blood-Purification System (ALS) integrates

plasma exchange, hemoperfusion, continuous hemofiltration,

hemodialysis and bilirubin adsorption (61). It has been well

established that ALS is effective in eliminating inflammatory

mediators and small-medium molecules to maintain water/

electrolyte balance and homeostasis (122). Despite the lack of solid

evidence, the use of ALS in severe COVID-19 patients with cytokine

storm was recommended by a Chinese expert consensus in early 2020

(122). Subsequently, through a paired study analyzing serum cytokine

levels pre- and post-ALS, a nonrandomized clinical trial found that

three consecutive courses of ALS treatment significantly decreased the

plasma levels of 32 cytokines, including IL-6 and TNF-a (44).

Furthermore, the APACHE II and SOFA scores also decreased after

three consecutive sessions with ALS (44). Another case series

consistently showed that the levels of IL-6 and IL-10 significantly

declined after treatment with ALS (123). More recently, a multicenter,

prospective study enrolling 101 participants found that, beyond a

remarkable reduction in plasma IL-6 concentration, the 28-day

mortality of COVID patients in the ALS group (16%) was

significantly lower than that of the control group (50.98%),

suggesting that ALS treatment could block cytokine storm and

reduce short-term mortality (61). However, given the complexity of

the modules of ALS, more detailed studies on the mechanism and

long-term follow-up are needed.
3.7 Selective cytopheretic device

The selective cytopheretic device (SCD) is an immunomodulatory

extracorporeal device that can promote a lower proinflammatory

phenotype in circulating neutrophils and monocytes, thereby

modulating the immune response and moderating tissue damage

(63, 124). The device is usually placed postfilter in the CRRT circuit

with regional citrate anticoagulation to facilitate leukocyte binding to

the filter (125). An early case report showed that treatment with SCD

in two COVID-19 patients with severe ARDS resulted in significant

reductions in inflammatory markers, including procalcitonin, D-

dimer, LDH, ferritin, CRP, and IL-6 (63). The PaO2/FiO2 ratios of

the two enrolled patients also increased from 55 and 58 to 200 and

192, respectively, within hours of SCD initiation. Another recent

prospective, single-arm treatment clinical trial at two academic

medical centers enrolled 22 COVID-10 patients with ARDS to

further evaluate the safety and clinical outcomes of extracorporeal

immunomodulation treatment with SCD (49). The results of flow

cytometry demonstrated that SCD selectively eliminated highly

activated circulating leukocytes and diminished the inflammatory

phenotype of circulating effector cells, with significant reductions in

plasma levels of proinflammatory cytokines, including IL-6, IL-15,

and soluble ST2 (49). More importantly, the mortality rate of the

patients who received greater than 96 hours of SCD treatment was

significantly lower than that of a contemporaneous control (31% vs.
T
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81%, p < 0.012) (49). These encouraging findings suggested that early

intervention with SCD in critically ill COVID-19 patients might be

associated with an improvement in systemic inflammation and a

potential survival benefit. It is also noteworthy that no device-related

serious adverse events were observed during extracorporeal SCD

sessions. A summary of prospective studies evaluating

hemoadsorption in COVID-19 patients are also shown in Table 2.
4 Summary and future perspectives

Although the management of critically ill COVID-19 patients is

still challenging, hemoadsorption therapy may be life-saving by

regulating immune homeostasis, alleviating viraemia, and reducing

endotoxin activity in critically ill COVID-19 patients. Inspiringly,

data from low-quality case series and observational studies show that

hemoadsorption therapy effectively reduces the levels of

inflammatory mediators and improves hemodynamics and organ

function. However, it is worth noting that there are still several

open problems to tackle: 1) knowledge of unintended removal

during hemoadsorption is still scant, and the determination of an

individualized anticoagulation regime remains a puzzle that is much

more complicated due to the hypercoagulable state in COVID-19

patients; 2) the optimal timing of initiation and duration of

hemoadsorption and hemofilter replacement intervals are unknown;

3) the identification of specific patient subgroup who will benefit from

hemoadsorption therapy is urgently required; 4) the effect of

hemoadsorption therapy in patient-centered outcomes remains to

be investigated. Therefore, for the moment these techniques should be

considered experimental, high-quality of clinical studies with

standardized study design and implementation, rigorous quality

control, individualized consideration of risks and benefits, and even

evidence-based advice on health economics in such resource-

constrained settings are still needed.
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