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Inflammasomes aremultiprotein complexes, which are assembled in response to

a diverse range of exogenous pathogens and endogenous danger signals,

leading to produce pro-inflammatory cytokines and induce pyroptotic cell

death. Inflammasome components have been identified in teleost fish.

Previous reviews have highlighted the conservation of inflammasome

components in evolution, inflammasome function in zebrafish infectious and

non-infectious models, and the mechanism that induce pyroptosis in fish. The

activation of inflammasome involves the canonical and noncanonical pathways,

which can play critical roles in the control of various inflammatory and metabolic

diseases. The canonical inflammasomes activate caspase-1, and their signaling is

initiated by cytosolic pattern recognition receptors. However the noncanonical

inflammasomes activate inflammatory caspase upon sensing of cytosolic

lipopolysaccharide from Gram-negative bacteria. In this review, we summarize

the mechanisms of activation of canonical and noncanonical inflammasomes in

teleost fish, with a particular focus on inflammasome complexes in response to

bacterial infection. Furthermore, the functions of inflammasome-associated

effectors, specific regulatory mechanisms of teleost inflammasomes and

functional roles of inflammasomes in innate immune responses are also

reviewed. The knowledge of inflammasome activation and pathogen clearance

in teleost fish will shed new light on new molecular targets for treatment of

inflammatory and infectious diseases.

KEYWORDS

canonical inflammasomes, noncanonical inflammasomes, sensors, ASC,
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Highlights
1. NLRP1 and NLRP3 inflammasomes exist in teleost fish.

2. Inflammasome components or inflammasome-associated effectors may vary on

the fish species selected.
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3. The specific regulatory mechanisms of inflammasome

activation exist in teleost fish.

4. The activation mechanisms of inflammasome-associated

effectors may vary on different pathogens.
Introduction

Inflammasomes are cytosolic protein complexes which can

recognize various exogenous pathogens and endogenous danger

signals. Formation of a functional inflammasome is initiated by

germline-encoded pattern recognition receptors (PRRs). In

response to pathogen-associated molecular patterns (PAMPs),

danger-associated molecular patterns (DAMPs) or homeostasis-

altering molecular processes (HAMPs), certain PRRs recruit the

adaptor protein called apoptosis-associated speck-like protein

(also known as ASC or PYCARD) and an effector pro-caspase-1

to form the funct ional canonical inflammasome (1) .

Inflammasome complexes are assembled via homotypic CARD

(caspase activation and recruitment domain)–CARD or PYD

(pyrin domain)–PYD interactions. Among several families of

PRRs, the nucleotide-binding domain and leucine-rich repeat

receptors (NLRs), the absent in melanoma 2-like receptors

(ALRs) and pyrin have been described to form the expanding

inflammasome family, which includes the NLR family pyrin

domain containing 1 (NLRP1), 3 (NLRP3), 6 (NLRP6), 7

(NLRP7), 9b (NLRP9b), NLR-family CARD-containing protein

4 (NLRC4) and 5 (NLRC5), AIM2, IFI16 and pyrin canonical

inflammasomes (1–3). Different from these canonical

inflammasomes mentioned above, which convert pro-caspase-1

into the catalytically active caspase-1, the non-canonical

inflammasome promotes caspase-11 activation in mice or

caspase-4 and caspase-5 activation in human (2, 4, 5).

Caspase-1 activation leads to cleave the proinflammatory

cytokines pro-IL-1b and pro-IL-18 into their mature forms IL-1b
and IL-18, and also activates the proteolytic cleavage of the

gasdermin D (GSDMD) to induce pyroptosis, a form of cell death

(6, 7). Activation of caspases 4, 5 and 11 also leads to pyroptosis (6).

Generally, the secretion of IL-1b and IL-18 and the activation of

inflammatory cell death contribute to antimicrobial defense, and

inflammasome activation plays beneficial roles for the host against

pathogen infection. Whereas aberrant activation and regulation of

inflammasome triggered by PAMPs or DAMPs may lead to the

pathogenesis of autoimmune, metabolic or neurodegenerative

diseases (8–11). Therefore, inflammasomes act as a double-edged

sword with both protective and detrimental potential for

host health.

Zebrafish have become a research model to study human

diseases due to a wide range of advantages including: (i) high

fecundity and rapid embryonic development; (ii) transparent

embryos and the ability easy for gene knockdown or

overexpression; (iii) high quality of genome assembly and up to

70% of human genes that have at least one obvious zebrafish

orthologue (12, 13). Previous reviews have highlighted

inflammasome components in zebrafish, including inflammasome
tiers in Immunology 02
sensors (such as NLRP6, GBP1, GBP3, GBP4, NLR-B30.2 genes),

inflammasome adaptors (ASC and Caiap), proinflammatory

caspases (caspa, caspb, caspbl and caspc) and inflammasome

effector GSDMEb, and discussed the activation of inflammasomes

during pathogenic infection and the induction of pyroptosis in

teleost fish (14, 15). Different from previous reviews, the current

review will focus on the recent research advances made in terms

of NLRP1 inflammasome, NLRP3 inflammasome, NLRC4

inflammasome and non-canonical inflammasome (Table 1), with

a particular emphasis on the mechanisms that regulate

inflammasome signaling as well as functional roles of piscine

inflammasome-associated effectors and inflammasomes in innate

immune responses.
NLRP1 inflammasome

NLRP1, which is also known as NACHT-leucine-rich-repeat

protein-1 (NALP1), belongs to the superfamily of NLRs. The

human NLRP1 is structurally characterized by the presence of an

N-terminal PYD, a nucleotide-binding domain (NBD or NACHT),

a leucine-rich repeat (LRR) domain, a ‘function to find’ (FIIND)

domain, and a C-terminal CARD (25). NLRP1-encoding genes are

found in most mammalian species, and undergo extensive

diversification among different species (26). Humans and most

primates encode only a single NLRP1 paralog, however there are

3 paralogs of NLRP1 in mice, namely NLRP1a, NLRP1b and

NLRP1c. Different from human NLRP1, mice NLRP1 paralogs

contain NR100, NACHT, LRR, FIIND and CARD domains (27).

The mammalian NLRP1 auto-cleaves for generating an N-terminal

and a C-terminal fragment (28). Murine NLRP1 inflammasome is

assembled by recruitment of caspase-1 independently of ASC (29).

However for human NLRP1 inflammasome, the C-terminal

fragment of NLRP1 containing the partial FIIND and the entire

CARD recruits ASC to activate caspase-1 through CARD–CARD

instead of PYD–PYD interactions (28).

Mammalian NLRP1 inflammasome can be activated by

muramyl dipeptide (MDP), reduction of cytosolic ATP or

pathogens such as Shigella flexneri, Toxoplasma gondii and

Listeria monocytogenes (25, 30, 31). The activation of NLRP1

inflammasome is also regulated by diverse pathogen-encoded

enzymatic activities. The IpaH7.8 ubiquitin ligase secreted by

the type III secretion system (T3SS) from S. flexneri and the

lethal factor (LF) protease secreted by Bacillus anthracis activate

NLRP1b inflammasome via “functional degradation” (32, 33). The

protease from tobacco etch virus and the virally encoded 3C

protease termed 3Cpro from diverse picornaviruses can

specifically cleave human NLRP1, leading to activation of the

NLRP1 inflammasome (28, 34). Furthermore, the inhibition of the

cytosolic dipeptidyl peptidases DPP8 and DPP9 by Val-boroPro

inhibitor activates the murine NLRP1b inflammasome (35).

Human DPP9 has been confirmed to be a specific NLRP1-

interacting partner and function as an endogenous inhibitor of

NLRP1 inflammasome (36).

In teleost, NLRP1 inflammasome is only reported in common

carp (Cyprinus carpio) and zebrafish. The piscine NLRP1 possesses
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NACHT, LRR, FIIND and CARD domains (16, 17), however lacks

PYD in the N-terminal. In zebrafish, caspase-a (caspy) and caspase-

b (caspy2), whose N-terminal regions share higher sequence

similarity with the PYD than the CARD of mammalian caspases,

are analogues of mammalian caspase-1 and caspase-4/5,

respectively (37). Zebrafish NLRP1 containing a CARD cannot

directly bind with caspy and caspy2 without a CARD. The

recruitment of caspy and caspy2 into zebrafish NLRP1

inflammasome needs the help of ASC. Furthermore, sequential

activation of caspy and caspy2 in zebrafish NLRP1 inflammasome

for the maturation of IL-1b is dependent on the caspy– and caspy2–

directed cleavage order, with a preference for caspy and a

subsequent choice for caspy2. In short, the domain organization

of zebrafish NLRP1 is the same as mice NLRP1. However, the

mechanism of zebrafish NLRP1 in triggering the activation of

inflammatory caspase and maturation of IL-1b is in an ASC-

dependent way (Figure 1), which is different from murine NLRP1

inflammasome that activates caspase-1 in an ASC-independent

way (38).

Similar to mammalian NLRP1 inflammasome, MDP has been

confirmed to activate piscine NLRP1 inflammasome (16, 17). In

zebrafish, it is also suggested that the activation of NLRP1

inflammasome may be promoted by the alteration of redox state

during bacterial infection. In response to Edwardsiella tarda

infection, zebrafish NLRP1 inflammasome played important

roles in antibacterial immune response, with the high mortality

observed for zebrafish NLRP1 morphants (17). However,

whether pathogen-encoded effectors activate piscine NLRP1

inflammasome via ‘functional degradation’ is unclear. Future
Frontiers in Immunology 03
research is needed to clarify regulatory mechanisms for NLRP1

inflammasome in teleost.
NLRP3 inflammasome

Among numerous inflammasomes identified in mammals,

NLRP3 inflammasome consisting of NLRP3, ASC and caspase-1

is the most extensively studied inflammasome complex. The

mammalian NLRP3 is structurally characterized by the presence

of the amino-terminal PYD for homotypic interactions with the

ASC, the central NACHT domain for facilitating self-

oligomerization, and the C-terminal LRRs domain for sensing

endogenous alarmins and microbial ligands (39). Upon

stimulation, NLRP3 firstly self-oligomerizes through its NACHT

domain, and then recruits ASC through its PYD for nucleating

helical ASC clusters. Multiple ASC filaments coalesce into an ASC

speck, and the assembled ASC nucleates caspase-1 filaments

through CARD-CARD interactions (40, 41).

Several cellular signaling events for activating the NLRP3

inflammasome, which include ion flux, mitochondrial damage

and dysfunction, and lysosomal disruption, have been observed

(42, 43). To date, studies show that various pathogens, PAMPs,

DAMPs or environmental irritants, such as Candida albicans,

influenza virus, LPS, lipooligosaccharide, MDP, nucleic acids,

pore-forming toxins, asbestos, silica, nanoparticles, aluminum

hydroxide, cholesterol crystals, ATP, monosodium urate (MSU),

hyaluronan, and heparan sulfate so on, activate the NLRP3

inflammasome by inducing canonical, noncanonical or alternative
TABLE 1 Summary of inflammasomes in teleost fish.

Inflammasome Research
model

Activator of inflammasome Mechanism Function Ref.

NLRP1 common
carp

MDP / / (16)

zebrafish bacterial LPS, MDP and DNA ASC-dependent way;
sequential activation of
caspy and caspy2

Antibacterial innate immunity against
E. tarda infection

(17)

NLRP3 zebrafish LPS and cellular oxidation ASC-dependent way;
sequential activation of
caspy/caspy2

ASC-dependent IL-1b maturation;
GSDME–mediated pyroptosis

(18)

carp Cd / Inducing lymphocytes pyroptosis (19)

Japanese
flounder

nigericin, ATP or MSU ASC-dependent way;
activation of JfCaspase-1

Controlling IL-1b production;
defensing against E. piscicida invasion

(20)

turbot nigericin, ATP or MSU ASC-dependent way;
activation of SmCaspase

Bacterial clearance of E. piscicida;
epithelial desquamation in gill
filaments

(21)

NLRC4 zebrafish Lm-pyro L. monocytogenes, a strain engineered
to activate the inflammasome via ectopic
expression of flagellin

/ Inducing macrophage recruitment to
infection sites; controlling L.
monocytogenes infection

(22)

Non-canonical
inflammasome

zebrafish LPS caspy2 binds directly to
LPS, resulting in caspy2
oligomerization

Restricting bacterial invasion of E.
piscicida; NETosis

(23,
24)

turbot LPS SmCaspase directly binds
with LPS

Bacterial clearance of E. piscicida (21)
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NLRP3 inflammasome (44, 45). Canonical NLRP3 inflammasome

activation requires the priming and activation two steps. The

ligands of toll-like receptors (TLRs), NLRs and cytokine receptors

induce the expression of pro-IL-1b and NLRP3 via the myd88-NF-

kB pathway during the priming step, whereas PAMPs or DAMPs

promote NLRP3 inflammasome assembly during the activation step

(46). Different from canonical NLRP3 inflammasome activation,

noncanonical NLRP3 inflammasome activation occurs downstream

of caspase-11, which is initiated by cytosolic LPS (47). For

alternative NLRP3 inflammasome activation, TLR ligands alone

are sufficient to activate the NLRP3 inflammasome via the TLR4–

TRIF–RIPK1–FADD–CASP8 signaling axis, which is absence of

classical inflammasome characteristics including inducing K+

efflux, pyroptosome formation or pyroptosis (48).

In teleost fish, NLRP3 inflammasomes have been identified in

zebrafish (18), carp (19), Japanese flounder (Paralichthys olivaceus)

(20) and turbot (Scophthalmus maximus) (21). Similar to the

domain architecture of mammalian NLRP3, piscine NLRP3
Frontiers in Immunology 04
contains an N-terminal PYD, a central NACHT and a series of

LRRs. Besides the three domains, piscine NLRP3 still contains a C-

terminal B30.2 (PRY/SPRY) domain that is unique in fish (18, 20).

However, the B30.2 domain is not functional in the assembly of

NLRP3 inflammasome and the activation of caspy/caspy2.

Cyprinid-type NLRP3 inflammasome consists of NLRP3, ASC

and caspy/caspy2 (Figure 2A) or of NLRP3 and caspy2

(Figure 2B). In other fish species except Cyprinidae, NLRP3

inflammasome consists of NLRP3, ASC and pro-caspase-1

(Figure 2C). Upon ligand recognition, the PYD of NLRP3

interacts with the PYD of ASC. Then, the recruitment and

activation of caspase-1 lead to the ASC-dependent IL-1b
maturation and GSDME-mediated pyroptosis. Cyprinid-type

NLRP3 also directly activates caspy2 and elicits cell pyroptosis in

a GSDME-dependent but ASC-independent manner (18).

LPS and cellular oxidation were found to contribute to the

activation of zebrafish NLRP3 inflammasome. The knockdown of

zebrafish NLRP3 increased the mortality of embryos with E. tarda
A

B

FIGURE 1

NLRP1 inflammasomes in teleost fish. (A) Minimal NLRP1 inflammasomes. Domains: NACHT, nucleotide-binding and oligomerization domain; LRR,
leucine-rich repeat; FIIND, domain with function to find; CARD, caspase recruitment domain; PYD, pyrin domain. (B) Activation of the NLRP1
inflammasome. Teleost NLRP1 inflammasome complex formation was triggered by MDP but not by LPS.
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infection (18). In the HKM cells of Japanese flounder, ATP,

nigericin or MSU could trigger the NLRP3 inflammasome. In

response to E. piscicida infection, knockdown of either NLRP3

or caspase-1 promoted the bacterial colonization, while

overexpression of NLRP3 or caspase-1 hampered the bacterial

colonization in Japanese flounder (20). These studies reveal the

importance of teleost NLRP3 inflammasome in restricting bacterial

infection in vivo. Besides PAMPs and DAMPs, the piscine NLRP3

inflammasome can also activated by toxic metals such as Cadmium
Frontiers in Immunology 05
(Cd). The exposure of Cd can induce pyroptosis of lymphocytes by

activating NLRP3 in carp pronephros and spleens, and inhibition of

NLRP3 activity can slow down the degree of lymphocytes

pyroptosis (19). However in sharp contrast, the activators of

mammalian NLRP3 inflammasomes, including ATP, nigericin,

cell swelling, MSU and aluminum fail to activate caspase-1 and

IL-1b processing in seabreammacrophages, although stimulation of

macrophages with PAMPs or DAMPs promoted the processing of

proIL-1b and the release of IL-1b (49). These data suggest that
A

B

ED

C

FIGURE 2

NLRP3 inflammasomes in teleost fish. (A) Minimal NLRP3 inflammasomes in an ASC-dependent manner in cyprinids. (B) Minimal NLRP3
inflammasomes in an ASC-independent manner in cyprinids. (C) Minimal NLRP3 inflammasomes in other fish species. For (A–C), domains are shown
as follows: PYD, pyrin domain; NACHT, nucleotide-binding and oligomerization domain; LRR, leucine-rich repeat; CARD, caspase recruitment
domain. (D) Activation of the NLRP3 inflammasome in cyprinids. The ASC-dependent NLRP3 inflammasome contributes to caspy/caspy2 activation,
which leads to proIL-1b maturation. Meanwhile, NLRP3 possesses the ability to directly recruit and activate caspy2, which is sufficient for cleaving
GSDMEa/b to elicit pyroptosis. (E) Activation of the NLRP3 inflammasome in other fish species. In the most fish such as Japanese flounder and
turbot, NLRP3, ASC and pro-caspase-1 form the canonical NLRP3 inflammasome. The activation of caspase-1 can recognize and cleave the
GSDMEb to release its N-terminal domain, mediating pyroptosis and restricting bacterial infection against Edwardsiella piscicida.
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although the mechanisms involved in IL-1b secretion are conserved

throughout evolution, the activators of NLRP3 inflammasome or

inflammasomes selected used for the secretion of IL-1b may varied

on different fish species (Table 1).

Zebrafish NLRP3 recruits ASC and caspy/caspy2 to mediate IL-

1 maturation for triggering canonical inflammasome activation.

Similar to the NLRP1 inflammasome, the sequential activation of

caspy/caspy2 is also observed in an NLRP3 inflammasome.

Meanwhile, zebrafish NLRP3 directly recruits and activates

caspy2 to induce IL-1b secretion and cell pyroptosis in a

GSDME-dependent manner for triggering noncanonical NLRP3

inflammasome activation (18). Moreover, the NLRP3 from

Japanese flounder can assemble ASC through PYD-PYD

interaction and trigger caspase-1 activation and IL-1b maturation

(20). In the turbot, the inflammatory caspase (SmCaspase) can

directly recognize LPS through its N-terminal CARD and possess a

caspase-5-like substrate specificity. However different from its

mammalian or zebrafish counterparts, SmCaspase can associate

with NLRP3-ASC complex to mediate canonical NLRP3

inflammasome activation (21). The mechanisms of NLRP3

inflammasome activation in teleost fish are depicted in

Figures 2D, E. Whether alternative NLRP3 inflammasome

activation exists in teleost fish remains unknown.
NLRC4 inflammasome

NLRC4 was initially described as a pro-apoptotic protein, which

could specifically activate caspase-1 via CARD-CARD interaction

and induce apoptosis in human cells in a caspase-1-dependent

manner (50). NLRC4, which contains an N-terminal CARD, a

central NACHT domain and C-terminal LRRs, is a critical

component of defense against enteric or systemic pathogens (51).

Several pathogens such as Salmonella Typhimurium, Burkholderia

pseudomallei, Escherichia coli, S. flexneri and Pseudomonas

aeruginosa possess flagellin-like virulence factors and can activate

the NLRC4 inflammasome (52). Besides bacterial flagellin, NLRC4

inflammasome is also activated by the type III and type IV secretion

systems of bacteria (53, 54).

NAIPs, which contain an N-terminal baculovirus IAP-repeat

(BIR) domain, a central NACHT, and a carboxy-terminal LRR, act

as upstream sensors for NLRC4 inflammasome assembly (55).

Upon interaction of inactive NAIP proteins with ligands and

ligand activation of NAIP proteins, NAIP changes its

conformation and associates with NLRC4 to induce activation of

the NAIP/NLRC4 inflammasome (56). The CARD of NLRC4

allows it to directly bind to the CARD of caspase-1, which is

different from other inflammasome proteins that need the

adaptor protein ASC. However NLRC4 can also bind ASC,

leading to more efficient activation of caspase-1 and cytokine

secretion (57). Furthermore, a study showed that WD repeat

containing protein 90 (WDR90) is a new component of the

NLRC4 inflammasome in human. WDR90 could interact with

NLRC4, and specifically mediate the cellular redistribution of

NLRC4, but not for NLRP3 and AIM2 (58).
Frontiers in Immunology 06
Compared to the mammalian NAIP/NLRC4 inflammasome,

little is known about this inflammasome in other species. The

murine genome encodes seven NAIP proteins. Among them,

NAIP1 and NAIP2 sense needle and inner rod protein of the

Type 3 secretion system respectively, and NAIP5/NAIP6 for

flagellin (59, 60). Although humans only encode one single NAIP

protein (hNAIP), the hNAIP could sense needle, inner rod protein

and flagellin (61, 62). Interestingly, pigs have a single locus

encoding NLRC4 and NAIP, but neither the NLRC4 nor the

NAIP gene was expressed in pigs, which suggest that pigs lack the

NLRC4 inflammasome (63). In zebrafish larvae, WDR90 is involved

in caspy activation, and acts upstream of ASC and caspy to promote

S. Typhimurium resistance (58). The virulence effector trxlp of E.

piscicida, which is an important pathogenic bacterium that causes

hemorrhagic septicemia in fish, mainly promotes the NLRC4 but

not NLRP3 inflammasome activation during E. piscicida infection

in murine macrophages (64). In response to the infection of Lm-

pyro L. monocytogenes, a strain engineered to activate the

inflammasome via ectopic expression of flagellin, zebrafish

inflammasome is activated, which leads to the recruitment of

macrophages to infection sites and confers host protection to

bacterial infection. These data suggest that this signaling axis

similar to mammalian NLRC4 inflammasome sensing flagellin is

present in zebrafish, although specific NAIP or NLRC4 homologue

has not been identified (22).
Non-canonical
inflammasome activation

The mammalian innate immune system senses LPS via TLR4,

however non-canonical inflammasome activation by intracellular

LPS is independent of TLR4 (65). The non-canonical

inflammasome results in the activation of caspase-4, -5 or -11,

and the non-canonical caspases function as both sensor and effector

molecules for LPS. LPS binding induces conformational changes

and the oligomerization of caspase-4, -5 or -11. Then the activation

of caspase-4, -5 or -11 cleaves GSDMD to induce pyroptosis (66).

Furthermore, many studies have shown that IFN inducible

GTPases, such as guanylate binding proteins (GBPs), participate

in the activation of the non-canonical inflammasome, and facilitate

the interaction of LPS with caspase-11. Therefore, GBPs function as

critical cofactors for the activation of the noncanonical

inflammasome by cytoplasmic LPS (67–69). In addition to LPS,

some evidence also supports that the oxidized phospholipid

oxPAPC can prevent caspase interaction with LPS and thereby

inhibit the non-canonical inflammasome in macrophages (70).

In zebrafish, caspy preferentially cleaved caspase-1 substrates

whereas caspy2 possessed caspase-5–like substrate activity (71).

Zebrafish caspy2, but not caspy, directly binds LPS via the N-

terminal PYD and forms oligomers responding to E. piscicida

infection, which induces noncanonical inflammasome mediated

pyroptosis (23). In addition, three GSDM family proteins,

including GSDMEa, GSDMEb and DFNB59, were identified in

zebrafish. Similar to mammalian caspase-4/5/11, zebrafish caspy2
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can engage the downstream GSDMEb cleavage to gate pyroptosis

(72). Furthermore, neutrophils were found to play an important

role in bacterial clearance (73). The activation of caspy2 and

GSDMEb induced pyroptosis of neutrophils, which was essential

for the release of neutrophil extracellular traps (NETs) and the

formation of NETs (NETosis). More importantly, the caspy2–

GSDMEb axis-mediated NETosis protected the zebrafish from E.

piscicida infection (24). These findings have led to a model of non-

canonical inflammasome activation in zebrafish wherein caspy2

serves as a sensor and effector molecule for LPS (Figure 3A).

Interesting, the caspy2 gene is undetectable in other fish

databases except zebrafish (74). In addition, most fish species

except zebrafish and several other cyprinidae do not exist TLR4.

The zebrafish TLR4 does not recognize LPS, which is suggested to

be paralogous but not orthologous to mammalian TLR4 (75–77).

Since inflammatory caspases have been confirmed to innate

immune receptors for intracellular LPS (78), the distinct numbers

of identified inflammatory caspases from different fish species (14,

74, 79, 80) suggest that species-specific or diversified functions of

inflammatory caspases in the recognition of LPS for inducing

noncanonical inflammasome mediated pyroptosis may exist in

teleost. For example although little is known about non-canonical

inflammasome activation in other teleost fish, a study showed the

dual function of an inflammatory caspase (namely SmCaspase) in

mediating both canonical and non-canonical inflammasome

activation in the turbot S. maximus (21). Different from zebrafish
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caspy and caspy2, SmCaspase contains an N terminal CARD, and a

C-terminal large and small subunit of caspase domain. SmCaspase

can directly bind with LPS via its N-terminal CARD domain,

resulting in caspase-5-like enzyme activity-mediated pyroptosis.

Furthermore, the SmCaspase-GSDMEb axis-gated pyroptosis

controls the bacterial clearance against E. piscicida infection

(Figure 3B). SmCaspase can also be recruited by NLRP3-ASC

inflammasome to participate the canonical NLRP3 inflammasome

activation (21).
The functions of inflammasome-
associated effectors

Both canonical and noncanonical inflammasome pathways

promote pyroptosis, which have been identified as a critical

inflammasome effector mechanism. In mammals, the members of

gasdermin family proteins, such as GSDMB, GSDMC, GSDMD and

GSDME, are cleaved by inflammatory and apoptotic caspases and

can result in pore formation (81). However only GSDMD has a

pivotal role in inflammasome signaling and pyroptosis, and is the

key effector that leads to pyroptosis (81, 82). In the zebrafish

genome, only two GSDMEa/b isoforms and a DFNB59 are

annotated. Different from GSDMEb, knockdown of GSDMEa

could partially rescue microglia cell death in a temperature
A B

FIGURE 3

Non-canonical inflammasome activation in teleost fish. (A) Non-canonical inflammasome activation in cyprinids. Zebrafish caspy2 binds directly to
LPS, resulting in caspy2 oligomerization, which is critical for cleaving GSDMEb to elicit pyroptosis. The caspy2–GSDMEb axis-mediated neutrophil
pyroptosisgated NET formation, namely noncanonical NETosis, played a critical role in bacterial clearance. (B) Non-canonical inflammasome
activation in other fish species. In the turbot, the inflammatory caspase can directly recognize cytosolic LPS, resulting in the GSDMEb cleavage-
gated pyroptosis and bacterial clearance.
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sensitive puermutant, which harbors a loss-of-function mutation in

the NLRC3-like gene (83). In the zebrafish model of tuberculosis,

knockdown of GSDMEb can inhibit pyroptosis. Furthermore,

zebrafish GSDMEa/b is cleaved by caspy2 for resulting in

pyroptosis (18). However in neutrophils, the caspy2–GSDMEb

axis but not caspy2–GSDMEa contributed to pyroptosis, NETosis

and bacterial clearance (24). Moreover, zebrafish GSDMEa/b also

can be cleaved by apoptotic caspases, including caspase 3a, caspase

3b and caspase 7, at the same sites as inflammatory caspases

recognized (84). All these data suggest that zebrafish GSDME

functions as the equivalent of mammalian GSDMD and GSDME.

In addition to zebrafish, GSDME has been characterized in

other teleosts including tongue sole (Cynoglossus semilaevis) and

turbot. In the marine teleost tongue sole, GSDME is cleaved by

caspases 1, 3, and 7. Among them, caspase-1-cleaved GSDME

induced pyroptosis, whereas caspase-3/7-cleaved GSDME induced

switching of cell death from apoptosis to pyroptosis. The cleavage of

tongue sole GSDME by caspases 1, 3, and 7 can exert bactericidal

activity against E. coli (85). Similar to zebrafish, two GSDME

orthologues were obtained in the turbot. Although both GSDMEa

and GSDMEb can be cleaved by inflammatory caspase, only the

turbot GSDMEb can mediate pyroptosis and bactericidal activity

against E. coli (21). A recent study showed that the turbot GSDMEa

is cleaved by caspase-3/7 and caspase-6. The GSDMEa cleaved by

caspase-3/7 was activate, and was able to induce pyroptosis and

bacterial clearance of Vibrio harveyi in turbot. In contrast, the

turbot GSDMEa or GSDMEb, which are cleaved by caspase-6 or

caspase-8 respectively, were inactivate (86). These findings revealed

a regulatory and functional difference of piscine GSDMEs in

response to different bacterial infection (Figure 4).
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Unexpectedly, GSDMEc was identified in perciformes and some

primitive ray-finned fishes such as European eel (Anguilla anguilla)

and reedfish (Erpetoichthys calabaricus). However different from

GSDMEa and GSDMEb, no obvious caspase recognition site was

observed in the linker region of GSDMEc (87). Whether piscine

GSDMEc functions in triggering pyroptosis and bacterial clearance

remains to be defined.
Functional roles, regulation and
interacting partners of ASC

ASC, which is encoded by the gene PYCARD, is a central

component for a number of inflammasomes such as AIM2, NLRP1

and NLRP3 inflammasomes. The polymerization and speck

formation of ASC provide a signaling platform with multiple

inflammatory caspase binding sites, and the assembly of the ASC

speck is critical for inflammasome signaling. Mammalian NLRC3,

containing an N-terminal CARD, a central NACHT domain and a

C-terminal LRR, could interact with ASC and inhibit the activation

of NALP3 and NLRC4 inflammasomes via disrupting of ASC speck

assembly (88). In mammals, post-translational modifications of

ASC also control inflammasome activity. The kinases Syk or Jnk

induces the phosphorylation of ASC, which is critical for the

formation of ASC specks and inflammasome activity of

NLRP3 and AIM2 inflammasomes (89). Furthermore, the

linear ubiquitination of ASC by LUBAC affects NLRP3/ASC

inflammasome assembly (90). The NLRP3 inflammasome is also

activated by TRAF3-dependent ubiquitination of ASC and USP50-

mediated deubiquitination of ASC (91). The TRAF6-mediated ASC
FIGURE 4

The roles of piscine GSDME in inflammasome signaling, pyroptosis and bacterial clearance. GSDME mediates pyroptosis following cleavage by
inflammatory caspases. In the zebrafish and turbot, GSDMEa and GSDMEb were obtained. Zebrafish caspy2 cleaves GSDMEa/b for resulting in
pyroptosis and bacterial clearance of E. tarda or E. piscicida. Turbot caspase-3/7 cleave GSDMEa for resulting in pyroptosis and bacterial clearance
of V. harveyi. The inflammatory caspase in the turbot cleaves GSDMEb for resulting in pyroptosis and bacterial clearance of E. piscicida. In the
tongue sole, CASP1, CASP3 and CASP7 cleave GSDME for resulting in pyroptosis and bacterial clearance of E. coli.
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polyubiquitination leads to the degradation of ASC by autophagy,

which suppress the NLRP3 inflammasome (92).

In teleost, the ASC has been identified in zebrafish (17), turbot

(93), Japanese flounder (94), goldfish (Carassius auratus L.) (95),

mandarin fish (Siniperca chuatsi) (96), orange-spotted grouper

(Epinephelus coiodes) (97) and Japanese medaka (Oryzias latipes)

(98) so on. In many fish species such as zebrafish, mandarin fish,

Japanese flounder and turbot, there was only a single ASC gene

(99). Several regulatory mechanisms have been revealed for

targeting piscine ASC to modulate activities of inflammasomes.

In the zebrafish, ASC speck formation leaded to pyroptosis via

activation of caspy, and the mutation of PYD in the ASC with the

impaired functional speck formation abolished NLRP3

inflammasome activity induced by nigericin (17, 100).

Homologs of NLRC3 lacking CARD domain or containing other

additional domain(s) are classified into NLRC3-like proteins

(101).The interaction between NLRC3-like and ASC was

confirmed in the goldfish and zebrafish (95, 102). The deficiency

of zebrafish NLRC3-like promoted ASC-mediated inflammasome

activation and the early control of mycobacterial proliferation

(103). Loss of NLRC3-like function resulted in aberrant activation

of inflammasome pathway in an ASC-dependent manner. All

these data suggest that zebrafish NLRC3-like suppresses

activities of inflammasomes by interfering the interactions

between ASC and other inflammasome components (83, 102,

103). Interestingly, the analysis from genomes or transcriptomes

suggest that the NLRC3 or NLRC3-like expansions exist in

different species of fish (15, 101). According to their protein

domain compositions, expansive NLRC3 or NLRC3-like

proteins in teleost fish fall into at least 8 categories: NLRC3

proteins containing CARD-NACHT-LRR, NLRC3-like proteins

containing PYD-FISNA-NACHT-LRR; NLRC3-like proteins

containing FISNA-NACHT-LRR, NLRC3-like proteins

containing FISNA-NACHT-LRR- SPRY_PRY_SNTX, NLRC3-

like proteins containing PYD-FISNA-NACHT; NLRC3-like

proteins containing PYD-NACHT; NLRC3-like proteins

containing DD-FISNA-NACHT, NLRC3-l ike prote ins

containing NACHT-LRR (15, 101). It is not known whether

other expansive NLRC3 or NLRC3-like proteins interfere with

activities of inflammasomes by targeting ASC. Further studies are

required for confirming the roles of those ASC-interacting protein

in the regulation of inflammasome activation, especially for

NLRC3 or NLRC3-like proteins.

In the Japanese medaka, three ASC (ASC1, ASC2 and ASC3)

are tandem replicates on chromosome 16. The large yellow croakers

(Larimichthys crocea) also have tandem replicate ASC genes. Other

fish species such as goldfish and rainbow trout have multiple ASC

genes on different chromosomes or scaffolds (99). Although

previous studies have shown that the deficiency of ASC1 impairs

host defense against Aeromonas hydrophila infection and higher

expressions of ASC2 and ASC3 were observed in the ASC1-KO

medaka than those in the WT, the functional differences between

these three types of ASCs are still unclear (98, 99). How these three

types of ASCs in teleost fish and their post-translational

modifications affect the activation and function of inflammasome

need to be further investigated in the future.
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Other sensors or adaptors
for assembling the
inflammasome complex

In addition to the well-established NLRP1, NLRP3, NLRC4 and

AIM2 inflammasome sensors, many other PRRs or sensors such as

NLRP6, NLRP7, NLRP12 and Pyrin can assemble the inflammasome

complex and regulation of inflammasome activation in mammals

(104, 105). The genes coding for AIM2 and Pyrin are not present in

teleost (106). Although zebrafish are able to sense cytosolic flagellin

and activate an inflammasome complex, the presence of NAIP or

NLRC4 homologue in zebrafish was unclear (22). Likewise, most

human NLRs involved in inflammasomes do not have one-to-one

orthologues in zebrafish. The evolutionary relationship between

piscine and mammalian NLRPs is still not resolved (14, 107). It

remains to be determined the effects of many other NLR sensors in

inflammasome activation in teleost fish.

In addition to the interferon (IFN)-induced AIM2 and Pyrin,

IFN-induced GTPases are also involved in inflammasome activation

in mammals (108, 109). The 65–73 kDa GBPs comprise a family of

highly conserved IFN-induced GTPase family, 7 GBPs in human and

11 GBPs in mouse (110). There are several studies regarding GBPs in

teleost fish. The first characterization of GBPs in fish was described by

Robertsen and colleagues in 2006, who found that trout GBP showed

expression properties similar to mammalian GBPs (111). Interesting,

the loss of GBP genes was observed in the pufferfish (Tetraodon

nigroviridis), fugu (Takifugu rubripes), stickleback (Gasterosteus

aculeatus) and medaka (112). In zebrafish, 8 GBPs have been found,

with the GBP1 and GBP4 being studied. Zebrafish GBP4 has a similar

architecture as GBP1, with an N-terminal GTPase domain, a helical

domain and a C-terminal CARD (113, 114). The GTPase activity of

zebrafish GBP4 is crucial for the activation of inflammatory caspy, and

indispensable for inflammasome activation and bacterial clearance.

Unexpectedly, zebrafish GBP4-dependent clearance of intracellular S.

Typhimurium by neutrophils and caspy activation are dependent on

bacterial flagellin and ASC (114). The roles of other GBPs in

mediating inflammasome activation in response to bacterial

infection are still unclear in teleost fish. Since the numbers of GBP

numbers vary on the different fish species and certain GBPs may not

appear to have a role for inflammasome activation, further studies are

warranted to investigate why certain GBPs can target bacteria to drive

inflammasome activation and others do not?

ASC is a common adaptor protein for most inflammasomes.

However, the Caiap is a new inflammasome adaptor in teleost fish.

Using a PFAM search to identify proteins harboring CARD

domains, the Caiap with an N-terminal CARD and 16 C-terminal

ANK repeats was identified in the zebrafish. The orthologs

of zebrafish Caiap exists in amphibian, reptiles, birds and

marsupials, but not in placental mammals. Caiap functions

downstream of flagellin and interacts with the active caspy via its

ANK repeats but not with ASC. Strikingly, the CARD domain of

zebrafish Caiap allows its self-oligomerization and mediate the

inflammasome-dependent resistance to Salmonella enterica

serovar Typhimurium (115). However whether piscine Caiap

interacts with inflammasome sensors has yet to be identified.
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Inflammasomes in innate
immune responses
Innate immunity mediated by PRRs provides the first line of

defense against invading pathogens. However, some PRRs form

inflammasomes for producing inflammatory cytokines and

inducing pyroptotic cell death (2). Inflammasomes themselves are

also members of the innate immune system, and further regulate

innate immune responses after activation. Macrophages and

neutrophils are critical for innate immune responses. Macrophage

death by pyroptosis due to the activation of the NLRC4/caspase-1

inflammasome prevents the replication of intracellular pathogens,

however bacterial clearance depends on the subsequent activation

of neutrophils in this case (116–119). In the absence of downstream

killing by neutrophils, pyroptosis can increase bacterial

dissemination and cause significant damage to host tissues (118,

119). Furthermore, the NLRP3 and AIM2 inflammasomes can affect

macrophage polarization. The activation of NLRP3 inflammasome

promotes proinflammatory M1 macrophage polarization, whereas

the activation of AIM2 inflammasome reversed the phenotype from

anti-inflammatory M2 to pro-inflammatory M1 (120, 121). In

NLRP3−/− mice, more severe injury and inflammation were

observed in response to dextran sulphate sodium (DSS)-induced

colitis. Functional responses to bacterial MDP was lacking in

macrophages isolated from NLRP3−/− mice, the impaired

chemotaxis and enhanced apoptosis found in neutrophils isolated

from NLRP3−/− mice (122).

The pyroptosis of macrophages and neutrophils can also be

triggered by the noncanonical inflammasome, which confers host

defense against pathogen infection. In response to cytosolic bacteria

such as B. pseudomallei and bacteria that aberrantly enter the

cytosol such as S. typhimurium mutant or Legionella pneumophila

mutant, macrophages activate caspase-11 to initiate pyroptosis

independent of all known canonical inflammasomes, and play

critical roles in limiting these bacterial infection (123). In

response to extracellular pathogens, NETs made by activated

neutrophils degrade virulence factors and kill pathogens (124,

125). Activated caspase-11 cleaves GSDMD and triggers

neutrophil pyroptosis. GSDMD-dependent neutrophil death

evokes the extrusion of antimicrobial NETs, which prevent

bacterial dissemination and also protect neutrophils from

pathogen invasion of cytosolic S. typhimurium mutant DsifA (126).

In teleost, only several studies reveal the roles of piscine

inflammasomes in innate immune responses. Dysregulated

haemolysin of E. piscicida were found to mediate pyroptotic-like

cell death via noncanonical inflammasome signaling, which in turn

enhance host defence for restricting bacterial colonisation in

zebrafish intestine by initiating inflammation (127). During the

infection of hemolysin-overexpressing E. piscicida (EthA+), the

caspy2–GSDMEb axis induced pyroptosis of neutrophils, which

contributed to NETosis and bacterial clearance in vivo (24). In

response to the infection of Lm-pyro L. monocytogenes strain, the

activation of inflammasome similar to the murine NAIP5/NLRC4

inflammasome in zebrafish induces macrophage recruitment to

infection sites. Both macrophages and neutrophils are important
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for bacterial clearance, however only macrophages are essential for

controlling L. monocytogenes infection in the context of

inflammasome activation (22). In summary, emerging data point

to the importance of cellular immune responses to piscine

inflammasome activation in control of invading pathogens.
Conclusions and future perspectives

Although the canonical and non-canonical inflammasome

pathways, as well as the mechanism and role of inflammasome

activation and subsequent pyroptosis have been elucidated in teleost

fish, current research on fish inflammasomes is far from enough,

and most studies only focus on zebrafish model organism.

Compared with the mammals, the inflammasome-dependent

functions of NLRs remain poorly defined. The expansions of

piscine NLRs suggest that inflammasome components may be

much more diverse than thought. However the identified

canonical inflammasomes in fish are mainly NLRP1 and NLRP3.

Future studies are suggested to reveal the role of other NLR

inflammasomes or other NLR sensors in inflammasome

activation. Furthermore, there may be multiple inflammasome

components or inflammasome-associated effectors with different

structures or activities, depending on the fish species selected. In

particular, the structure of inflammatory caspase differs between

most fish and cyprinids. The effects of caspases on GSDMEs

differentiate in different fish species. The specific regulatory

mechanisms of inflammasomes and activation mechanism of

inflammasome-associated effectors remains to be further

investigated in more fish species and in the case of pathogen

infection. A better understanding of the relationship between

inflammasome activation and pathogen clearance in teleost fish

will reveal new molecular targets for treatment of inflammatory and

infectious diseases in aquaculture.
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