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Prediction of celiac disease
associated epitopes and
motifs in a protein

Ritu Tomer †, Sumeet Patiyal †, Anjali Dhall †

and Gajendra P. S. Raghava*

Department of Computational Biology, Indraprastha Institute of Information Technology, New
Delhi, India
Introduction: Celiac disease (CD) is an autoimmune gastrointestinal disorder

causes immune-mediated enteropathy against gluten. Gluten immunogenic

peptides have the potential to trigger immune responses which leads to damage

the small intestine. HLA-DQ2/DQ8 are major alleles that bind to epitope/antigenic

region of gluten and induce celiac disease. There is a need to identify CD

associated epitopes in protein-based foods and therapeutics.

Methods: In this study, computational tools have been developed to predict CD

associated epitopes and motifs. Dataset used for training, testing and evaluation

contain experimentally validated CD associated and non-CD associate peptides.

We perform positional analysis to identify the most significant position of an amino

acid residue in the peptide and checked the frequency of HLA alleles. We also

compute amino acid composition to develop machine learning based models. We

also developed ensemble method that combines motif-based approach and

machine learning based models.

Results and Discussion: Our analysis support existing hypothesis that proline (P)

and glutamine (Q) are highly abundant in CD associated peptides. A model based

on density of P&Q in peptides has been developed for predicting CD associated

peptides which achieve maximum AUROC 0.98 on independent data. We

discovered motifs (e.g., QPF, QPQ, PYP) which occurs specifically in CD

associated peptides. We also developed machine learning based models using

peptide composition and achieved maximum AUROC 0.99. Finally, we developed

ensemble method that combines motif-based approach and machine learning

based models. The ensemble model-predict CD associated motifs with 100%

accuracy on an independent dataset, not used for training. Finally, the best models

and motifs has been integrated in a web server and standalone software package

“CDpred”. We hope this server anticipate the scientific community for the

prediction, designing and scanning of CD associated peptides as well as CD

associated motifs in a protein/peptide sequence (https://webs.iiitd.edu.in/

raghava/cdpred/).
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1 Introduction

Celiac disease (CD) is an auto-immunological disorder which

mainly affects the small intestine of the infected person (1). CD is a

life-long disorder occurred due to the gluten associated foods which is

found in various foods such as wheat, barley, spelt, kamut, and rye (2).

The prevalence rate of CD is around 1.4% worldwide and it may vary

with genetic and environmental factors. The occurrence of disease is

significantly higher in children in comparison to adults (3). Various

studies revealed that celiac disease patients develop inflammatory

immune responses against gluten peptides. The innate immune

responses cause toxic effects by gluten peptides on the intestinal

epithelium due to increased production of cytokines such as

interleukin-15 (4–7). However, the presence of certain class-II

human leukocyte antigens (HLAs) molecules play a crucial role in

the induction and regulation of immunological responses. The

binding of gluten peptides with the HLA-DQ2/DQ8 receptors

activates the adaptive immune responses (8). Whereas, HLA-DQ2

found in almost 94.5% of CD cases and HLA-DQ8 present in 2.7% of

the cases (9). These binders are also linked with other

autoimmunological disorders such as HLA-DQ8 associated with

Type I diabetes (10).

As depicted in Figure 1, the entry of gluten inside the lamina

propria region of small intestine follows transcellular and paracellular

pathways (11). In transcellular pathway, the entry of gluten is

associated with the binding of secretory IgA (sIgA) in the apical

region of intestine (12). However, in the paracellular pathway, the

entry of gluten is associated with the binding of chemokine receptor 3

(CXCR3) present at enterocyte with the release of zonulin protein (13,

14). After entering inside the lamina propria region, a series of events

trigger an inflammatory cascade which leads to the excessive release

of antibodies (anti-tissue transglutaminase, anti-IgA antibodies and

anti-endomysial antibodies) and cytokines (15) and ends with

damage to the intestinal villi.
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Due to auto-inflammatory immune responses several

gastrointestinal disorders like malabsorption, vomiting, bloating,

diarrhoea, abdominal pain and distension occurred (16). Recently, a

number of biological and genetic tests (such as detection of

antibodies, intestinal tissue biopsy, HLA-typing and gluten

challenge test) are available for the disease detection (1). It has been

found in many studies that a-gliadin 33-mer peptide having the

property of resistant to gastrointestinal cleavage and makes it highly

immunogenic peptide (5, 17–19). Despite tremendous understanding

of CD, effective treatment for the disease is life-long gluten free diet.

In order to manage severity of CD effectively, it is important to

identify CD associated epitopes or immunogenic peptides responsible

for CD. Identification of CD associated epitopes/peptides is not only

important for identifying CD free food/therapeutic proteins, it is also

important for designing antigen-based immunotherapy against CD.

In the pilot study, we have developed a computational approach

for the prediction of CD associated peptides. We have extracted the

experimentally validated CD-associated peptides from the IEDB

database. In order to create negative dataset, we have collected CD

non-causing peptides and random peptides from IEDB and Swiss-

Prot, respectively. We have identified highly conserved regions of

disease-causing peptides using motif-based search. In addition, we

have developed prediction models using composition-based features

and machine learning algorithms. In order to facilitate the

community, we have provided the webserver and standalone

package for the prediction and scanning of CD causing protein/

peptides using sequence information.
2 Material and methods

The complete architecture of our study is illustrated in Figure 2.

The detail of each step is described below.
FIGURE 1

Schematic representation of celiac disease pathogenesis and immune response.
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2.1 Dataset collection and pre-processing

In this study, we have collected experimentally validated peptides

from the immune epitope database (IEDB) (20). At first, we extracted

a total of 521 unique celiac disease (CD) associated peptides from

IEDB as a positive dataset. Further, we have selected unique peptides

with a length of 9-20 amino-acid residues and got 503 CD associated

peptides. Secondly, we extracted experimentally validated CD non-

associated peptides from IEDB and random peptides from Swiss-Prot

database (21). The main dataset incorporates 503 CD associated

called positive peptides and 503 random peptides called negative

peptides. The alternate dataset consists of 503 CD associated and 807

non-associated peptides (which can cause autoimmune disorders

other than celiac disease). Finally, we obtained two datasets, i.e., the

main dataset comprises an equal number of positive and negative

peptides and alternate dataset 503 positive and 807 negative peptides.

2.2 Sequence logo

In order to understand the preference of amino-acid residues at a

specific position, we have generated a one sample logo using

WebLogo software (22). This tool needs a fixed length input

sequence vector. Since, the minimum length of peptides in our

datasets is 9 residues, so we have extracted 9-mers from N-terminal

and 9-mers from C-terminal from each peptide. After that, we re-join

both the regions in order to create a fixed length vector of 18 amino

acids. The sequences of 18-residues were generated for all the peptides

of both positive and negative datasets and used for the creation of one

sample logo plots.
2.3 Amino-acid composition

We have used Pfeature (23) software for the computation of

composition-based features. In this current study, we have computed
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amino acid composition based (AAC) features. In the case of AAC,

the composition of each residue is computed in the peptide sequences

and a vector od 20 length is generated using the equation 1.

AACi =
Ri

L
 �   100 ½1�

Where, AACi is amino-acid composition of residue type i, Ri is the

number of residues in i, and L is the length of peptide sequence.
2.4 Machine learning models

We have employed a number of machine learning algorithms for

the classification of CD-causing peptides. Currently, we have used

Scikit-learn (24) python library for the implementation of several

classifiers including Decision Tree (DT), Random Forest (RF),

XGBoost (XGB), Gaussian Naïve Bayes (GNB) Logistic Regression

(LR), ExtraTree classifier (ET), and k-nearest neighbors (KNN).
2.5 Five-fold cross validation

In order to avoid overfitting, we have train, test and validate the

machine learning models by employing five-fold cross validation

technique as implemented in previous studies (25–28). At first, the

complete dataset was divided into 80:20 ratio, where 80% dataset used

for the training and 20% used for the external validation (29, 30). The

five-fold cross-validation process is implemented on the 80% training

dataset. In this process, the entire training dataset was divided into

five equal sets, where each set is used for training and validation

purpose. At first, four sets were used for training and fifth set was used

for the testing, similarly the process is repeated five times so that each

set can be used as testing dataset. Finally, we calculated the average

performance of five sets which resulted after five iterations.
2.6 Model evaluation

In this study, we have used standard parameters for the evaluation

of prediction models. Here, we have calculated both threshold

dependent as well as independent parameters. In the case of

threshold-dependent parameters we have computed, sensitivity

(Sens), specificity (Spec), accuracy (Acc) and Matthews correlation

coefficient (MCC) using the following equations (1-4). In addition, we

have measured the performance of models with a well-established and

threshold-independent parameter Area Under the Receiver Operating

Characteristic (AUROC) curve.

Sensitivity =  
TP

TP + FN
½2�

Specificity =  
TN

TN + FP
½3�

Accuracy =  
TP + TN

TP + TN + FP + FN
½4�
FIGURE 2

Overall architecture of the study.
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F1 − Score =  
2TP

2TP + FP + FN
½5�

MCC =  
TP*TNð Þ − FP*FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ½6�

Where, TP, TN, FP and FN stand for true positive, true negative,

false positive and false negative, respectively.
2.7 Ensemble method

The ensemble method is a hybrid approach in which both motifs

based, and machine learning methods combined to achieve better

performance. In this method, first motif-based approach is used to

identify the disease-causing peptides and then we use machine

learning methods to predict those peptides which are not covered

by the motif-based approach. Finally, we generate an ensemble

method which is a combination of both motif-based approach and

machine learning method.
2.8 Web implementation

We have developed a webserver named “CDpred” for the

prediction of CD associated peptides. The webserver is

implemented by HTML5, JAVA, CSS3 and PHP scripts and

compatible on several devices such as iMac, desktop, tablet and

mobile. The webserver provides five user-friendly modules such as

predict, PQ density, motif scan, protein scan, and design.
3 Results

3.1 Positional conservation analysis

The specific position of a residue is important for specific role and

structure arrangement of a particular peptide or protein. To identify

the most significant position of an amino acid residue in the peptide,

we perform the positional analysis of CD causing peptides and CD

non-causing peptides by using WebLogo (See Figure 3). It is worth
Frontiers in Immunology 04
noting that the first nine locations correspond to peptide N-terminal

residues, whereas the latter nine positions correspond to peptide C-

terminus. Here, we found that the proline (P) and glutamine (Q)

residues are highly prominent at every position while the

Phenylalanine (F) and glutamic acid (E) are also found at

some positions.
3.2 Composition analysis

We compute the amino acid composition for main and alternate

datasets. Figure 4 depicts the average composition of CD inducing

and non-inducing peptides. In CD causing peptides, the average

composition of Proline (P), Glutamine (Q) and Phenylalanine (F) is

higher in comparison with disease non-causing peptides, negative

random and general proteome.
3.3 Frequency of HLA alleles

In the past, a number of studies report that celiac disease occurred

due to the presence of certain HLA molecules such as HLA-DQ2 and

HLA-DQ8 (29, 31, 32). Sallese et al. indicated that, in addition to

HLA-DQ2 and HLA-DQ8, non-HLA variants are also associated to

CD susceptibility (33). As shown in Table 1, we observed that

maximum CD-associated peptides are HLA-DQ2/DQ8 binders,

while some of the CD-associated peptides are linked with other

HLA-alleles. This shows that innate (non-HLA-DQ mediated) and

adaptive (HLA-DQ mediated) immune responses can be caused by

gluten peptides. The complete frequency distribution of HLA-alleles

binders of CD causing and non-causing peptides are given in

Supplementary Table S1.
FIGURE 3

WebLogo of celiac disease-causing peptides.
FIGURE 4

Average amino acid composition of peptides in main dataset and
alternate dataset.
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3.4 Motif-based analysis

Motifs are known as the specific regions of a protein sequence

which helps to identify the amino acid arrangement shared by a

family of protein. The motifs are identified in the CD causing peptide

sequences by MERCI program. The MERCI program helps to identify

the motif regions in a set of sequences. We utilized the MERCI tool to

look for motifs seen only in CD-causing peptides and not in disease

non-causing or random peptides. We also looked for motifs found

only in disease non-causing and random peptides. Here, we found 50

motifs in CD causing peptides of different length in which P and Q

residues are present in abundance in CD causing peptides. We also

checked the common motifs found in disease causing, non-causing

and random negative peptides. The list of motifs and their occurrence

in all the three datasets are given in Table 2.
3.5 PQ density

On performing the compositional and motif analysis, it was found

that (P) and (Q) are the most abundant residues in CD-causing

peptides as compared to non-causing peptides. In order to classify the

peptides based on the PQ density, we have first generated the

overlapping patterns of window size ranging from 3 to 9 for each

peptide, since 9 was the minimum length of the peptides, and

calculated the composition of residues P and Q in each pattern.

Each peptide in the dataset is represented by the maximum value of
Frontiers in Immunology 05
composition for the respective pattern size and found the optimal

composition at which we can classify the peptides with balanced

sensitivity and specificity. To find the optimal pattern size, we have

varied the size from 3 to 9, and found out that window size 5 and 6

performed best among the other sizes for main and alternate datasets,

respectively as shown in Table 3.
3.6 Machine learning based prediction

Various machine learning classifiers such as RF, DT, GNB, XGB,

KNN, ETN, SVCN and LR are used to develop a prediction model.

For this, we have computed the features of disease causing and disease

non-causing peptides using composition-based module of Pfeature.
3.6.1 Performance of AAC based features
Firstly, we have computed features of amino acid composition,

using which we applied different machine learning techniques. As

shown in Table 4, ET achieves maximum performance in comparison

to other models with AUROC 0.991 and 0.995 and accuracy 96.02 and

97.03 on both training and validation dataset with a good balance of

sensitivity and specificity in main data. Similarly, ET achieves

maximum performance in comparison to other models with

AUROC 0.995 and 0.999 and accuracy 97.519 and 98.092 on both

training and validation dataset with a good balance of sensitivity and

specificity in alternate data.
TABLE 1 Distribution of HLA alleles in CD causing and non-causing peptides.

HLA CD causing (Positive) CD non-causing (Negative)

HLA-class I HLA-A 13 0

HLA-class II

HLA-DQ2 263 148

HLA-DQ8 18 110

HLA-DQ2/
DQ8

24 9

HLA-DR 3 402

Other 182 138

Total 503 807
TABLE 2 Abundance of motifs in CD-causing, non-causing and random negative peptides.

Motifs Positive Random Negative Non-CD-causing

QPF 276 0 4

QQPF 170 0 1

PYP 120 0 3

PEQ 56 0 4

QPQ 350 1 0

PQPQ 189 1 0

QQPQ 131 1 0

PQL 84 1 0
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3.6.2 Performance of ensemble model
In ensemble method, first we used the motif-based approach by

identifying the coverage of motifs in the given protein/peptide

sequences. Our motif-based approach achieves 81.71% accuracy in

the independent dataset as shown in Table 5. The rest sequences,

which were not predicted using motif-based approach, were covered

by using the machine learning method. By combining both

approaches we achieve the highest performance of 100% accuracy

on independent dataset. Our ensemble method is the best approach

for predicting the CD associated peptides.
3.7 Services to scientific community

We design a user-friendly prediction web server that incorporates

several modules to determine CD-causing peptides in order to serve

the scientific community. The prediction models used in the study are

implemented in the web server. Based on the prediction models’ score

at a different threshold, users can predict whether a query peptide

causes CD or not. The web server comprises five major modules 1)

Prediction, 2) PQ Density, 3), Motif 4) Scan and 5) Design. The user

can classify CD-causing peptides from disease non-causing peptides

using the ‘Predict’ module. The “PQ Density” module used to

calculate PQ content in a given query sequence based upon the

window size. Users can map or scan CD-causing motifs in the query

sequence using the “Motif” module. We used the MERCI software to

extract themes from CD-causing peptides that had been empirically

confirmed. The “Scan” module was used to scan the amino-acid
Frontiers in Immunology 06
sequence for CD-causing areas. The user can generate all potential

analogs of the input sequence using the “Design” module. The

positive and negative datasets utilized in this work are also available

for download, and the peptide sequence are available in FASTA

format. HTML, JAVA, and PHP scripts were used to create the web

server CDpred https://webs.iiitd.edu.in/raghava/cdpred/. The server

is user-friendly and compatible with a variety of devices, including

computers, Android phones, iPhones, and iPads. In addition, we

provided a standalone package in the form of a Docker container.
4 Case study: Evaluation of CDpred on
external dataset

In this study, we evaluate our model by utilizing a new dataset

(i.e., CD-associated peptide sequences) obtained from AllergenOnline

database (http://www.allergenonline.org) (34) under celiac disease

section (35). A total of 1040 unique experimentally validated CD-

associated peptide were collected from AllergenOnline. We found 265

common sequences with our dataset (used for developing CDpred),

hence we removed those sequences and left with 775 unique CD-

associated new sequences. After that, we evaluate the performance of

CDpred on independent dataset of 775 peptides using default

parameters of “Ensemble module” and achieved 100% accuracy.

Our method predicts all 775 CD-associated peptides correctly,

where 661 peptides were predicted using Motif based approach and

114 using machine learning based approach.
TABLE 3 Performance of the PQ abundance-based method on different window sizes.

Main Data

Window size Threshold Sensitivity Specificity Accuracy AUROC

3 0.670 85.686 98.807 92.247 0.971

4 0.510 91.650 96.620 94.135 0.977

5 0.410 93.837 94.235 94.036 0.978

6 0.340 95.427 92.445 93.936 0.978

7 0.290 96.421 91.650 94.036 0.979

8 0.380 93.241 97.018 95.129 0.981

9 0.340 94.235 96.620 95.427 0.981

Alternate Data

Window size Threshold Sensitivity Specificity Accuracy AUROC

3 0.670 85.686 98.761 93.740 0.970

4 0.510 91.650 97.770 95.420 0.977

5 0.410 93.837 96.159 95.267 0.979

6 0.340 95.427 94.796 95.038 0.980

7 0.290 96.421 94.300 95.115 0.981

8 0.260 97.018 92.937 94.504 0.983

9 0.340 94.235 98.017 96.565 0.982
fron
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5 Discussion and conclusion

Celiac disease is a chronic, genetically predisposed enteropathy

triggered by gluten showing a wide spectrum of clinical

manifestations (5, 29). It can be associated to a number of diseases

such as cirrhosis, autoimmune hepatitis, diabetes mellitus, gluten

ataxia, peripheral neuropathies, etc (36, 37). Moreover, CD is not
Frontiers in Immunology 07
limited to gastrointestinal tract, in fact it is associated with a number

of extra-intestinal manifestations and other autoimmune disorders

(38–41). The origins of the onset and appearance of related diseases

may vary; for example, type 1 diabetes mellitus (T1D), share a

common genetic basis; while others may have similar pathogenic

pathways. Granito et al., also showed a significant correlation between

anti-microfilament IgA and severity of intestinal damage in CD
TABLE 5 The table shows the occurrence of motif in positive sequences with their cumulative coverage.

Motif Occurrence Percentage Cumulative

QPF 276 54.87 54.87

PQQP 41 8.15 63.02

PYP 33 6.56 69.58

QPQQ 28 5.57 75.15

PFP 14 2.78 77.93

PEQ 12 2.39 80.32

FPQP 4 0.8 81.11

FPQQ 2 0.4 81.51

PQLP 1 0.2 81.71

ML Prediction 92 18.29 100
TABLE 4 The performance of machine learning classifiers on AAC based features on main and alternate dataset.

Main dataset

Training Validation

Classifier Sensitivity Specificity Accuracy AUROC Sensitivity Specificity Accuracy AUROC

DT 92.269 92.556 92.413 0.962 97.059 91.000 94.059 0.982

RF 95.262 95.533 95.398 0.989 98.039 97.000 97.525 0.994

LR 96.010 96.030 96.020 0.988 98.039 96.000 97.030 0.990

XGB 95.761 95.782 95.771 0.987 98.039 93.000 95.545 0.995

KNN 95.262 95.285 95.274 0.986 97.059 96.000 96.535 0.991

GNB 93.017 98.263 95.647 0.976 93.137 98.000 95.545 0.990

ET 96.010 96.030 96.020 0.991 98.039 96.000 97.030 0.995

SVC 95.761 95.782 95.771 0.987 97.059 96.000 96.535 0.991

Alternate dataset

Training Validation

DT 92.537 92.570 92.557 0.968 94.059 99.379 97.328 0.990

RF 97.015 97.368 97.233 0.995 98.020 97.516 97.710 0.998

LR 96.269 96.285 96.279 0.990 97.030 96.273 96.565 0.987

XGB 97.015 97.059 97.042 0.992 99.010 93.168 95.420 0.998

KNN 95.771 95.975 95.897 0.992 98.020 95.652 96.565 0.995

GNB 92.537 97.059 95.324 0.977 96.040 96.273 96.183 0.983

ET 97.512 97.523 97.519 0.995 98.020 98.137 98.092 0.999

SVC 97.015 96.904 96.947 0.993 98.020 96.894 97.328 0.996
fron
# DT, Decision tress; RF, Random Forest; LR, Logistic regression; XGB, XGBoost; KNN, k-nearest neighbour; GNB, Gaussian naïve base; ET, Extra tree classifier; SVC, support vector classifier.
tiersin.org

https://doi.org/10.3389/fimmu.2023.1056101
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tomer et al. 10.3389/fimmu.2023.1056101
patients (42). Recent studies reported that, celiac patients have an

elevated risk of getting small bowel cancer and intestinal lymphomas

(43, 44).

Some autoimmune neurological manifestations including

cerebral ataxia, peripheral neuropathy, epilepsy, dementia, and

depression are associated with CD (45–49). Volta et al., found that

there is a significant correlation between anti-ganglioside antibodies

and neurological disorders in CD patients (50). Cervio et al., observed

that antigliadin and anti-tTG antibodies in CD patients are linked to

the development of neurological disorders (51). Moreover, immune-

related diseases are also occurred due to gluten intake for example,

atopy (52). The only effective lifelong treatment of this disease is a

gluten-free diet. Due to increased number of cases in worldwide a

number of gluten-free products are available for celiac susceptible

people (18, 53). Thus, it is essential to identify or eliminate gluten

immunogenic peptides from the food products which can induce the

celiac disease and sensitive to celiac patients.

In this study, we have made a systematic attempt for the

prediction of peptides responsible for causing the disease. We have

collected the dataset from IEDB and Swiss-Prot databases. We have

created two datasets for the analysis and prediction of CD causing

peptides. The positive dataset contain experimentally validated

peptides obtained from IEDB that are responsible for celiac disease.

These peptides are not only gluten peptides (high frequency of P & Q)

but also associated with celiac disease.

In addition, we have created alternate dataset where we have

taken negative set contain peptides which cause diseases other than

celiac disease. This is not necessary that all the gluten peptides are

responsible for the celiac disease. There are few gluten peptides

which showed toxic effect on intestinal epithelium cells and induce

innate immune response (4). L. Maiuri et al. also showed the effect

of gluten peptides on mucosal surface of the celiac patients and

healthy individuals (54, 55). In this study, we observed that amino

acid residues (P and Q) are highly abundant in CD causing peptides

in comparison with negative and random peptides. The similar

findings are supported by the previous studies where they have

shown the abundance of P and Q amino acids in gluten proteins (56,

57). From the motif-based approach we identified certain motifs

(QPQ, QPF, PQPQ, QQPF, QQPQ, PYP), which are highly

conserved in CD causing peptides in comparison with CD non-

causing peptides. So, we performed PQ based analysis where we

calculate the abundance of PQ residues in the CD causing and non-

causing peptides. In addition, we have developed prediction models

using amino-acid composition-based features. We achieved

maximum performance with AUROC of 0.99 on the training and

validation datasets, respectively. We have also developed an

ensemble method by combining both motif-based approach and

machine learning based models. This ensemble approach provides

the 100% accuracy on independent dataset. In addition, we have

developed a webserver named CDpred (https://webs.iiitd.edu.in/

raghava/cdpred/), standalone package (https://webs.iiitd.edu.in/

raghava/cdpred/standalone.php) and GitLab (https://gitlab.com/

raghavalab/cdpred) for the prediction of CD causing peptides.
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