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Background: There is a growing public concern about diabetic kidney disease

(DKD), which poses a severe threat to human health and life. It is important to

discover noninvasive and sensitive immune-associated biomarkers that can be

used to predict DKD development. ScRNA-seq and transcriptome sequencing

were performed here to identify cell types and key genes associated with DKD.

Methods: Here, this study conducted the analysis through five microarray

datasets of DKD (GSE131882, GSE1009, GSE30528, GSE96804, and

GSE104948) from gene expression omnibus (GEO). We performed single-cell

RNA sequencing analysis (GSE131882) by using CellMarker and CellPhoneDB on

public datasets to identify the specific cell types and cell-cell interaction

networks related to DKD. DEGs were identified from four datasets (GSE1009,

GSE30528, GSE96804, and GSE104948). The regulatory relationship between

DKD-related characters and genes was evaluated by using WGCNA analysis.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

datasets were applied to define the enrichment of each term. Subsequently,

immune cell infiltration between DKD and the control group was identified by

using the “pheatmap” package, and the connection Matrix between the core

genes and immune cell or function was illuminated through the “corrplot”

package. Furthermore, RcisTarget and GSEA were conducted on public

datasets for the analysis of the regulation relationship of key genes and it

revealed the correlation between 3 key genes and top the 20 genetic factors

involved in DKD. Finally, the expression of key genes between patients with 35

DKD and 35 healthy controls were examined by ELISA, and the relationship
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between the development of DKD rate and hub gene plasma levels was assessed

in a cohort of 35 DKD patients. In addition, we carried out immunohistochemistry

and western blot to verify the expression of three key genes in the kidney tissue

samples we obtained.

Results: There were 8 cell types between DKD and the control group, and the

number of connections between macrophages and other cells was higher than

that of the other seven cell groups. We identified 356 different expression genes

(DEGs) from the RNA-seq, which are enriched in urogenital system development,

kidney development, platelet alpha granule, and glycosaminoglycan binding

pathways. And WGCNA was conducted to construct 13 gene modules. The

highest correlations module is related to the regulation of cell adhesion, positive

regulation of locomotion, PI3K-Akt, gamma response, epithelial-mesenchymal

transition, and E2F target signaling pathway. Then we overlapped the DEGs,

WGCNA, and scRNA-seq, SLIT3, PDE1A and CFH were screened as the closely

related genes to DKD. In addition, the findings of immunological infiltration

revealed a remarkable positive link between T cells gamma delta, Macrophages

M2, resting mast cells, and the three critical genes SLIT3, PDE1A, and CFH.

Neutrophils were considerably negatively connected with the three key genes.

Comparatively to healthy controls, DKD patients showed high levels of SLIT3,

PDE1A, and CFH. Despite this, higher SLIT3, PDE1A, and CFH were associated

with an end point rate based on a median follow-up of 2.6 years. And with

the gradual deterioration of DKD, the expression of SLIT3, PDE1A, and CFH

gradually increased.

Conclusions: The 3 immune-associated genes could be used as diagnostic

markers and therapeutic targets of DKD. Additionally, we found new

pathogenic mechanisms associated with immune cells in DKD, which might

lead to therapeutic targets against these cells.
KEYWORDS

diabetic kidney disease (DKD), single-cell RNA and transcriptome sequencing, immune
cells, diagnostic markers, WGCNA (weighted gene co- expression network analyses)
1 Introduction

Type I or II diabetes can cause diabetic kidney disease (DKD),

which is regarded as a microvascular complication that poses a

grave threat to human health. Over fifty percent of individuals with

end-stage renal disease (ESRD) caused by DKD who are getting

renal replacement therapy (RRT) in the majority of nations are

affected by diabetes (1). Because of improved diabetes management,

there has been a decline in the incidence of DKD over the past 30

years. However, the risk of renal failure remains high(2–5).

According to a previous study, about 30% of people with type 1

diabetes and 40% of people with type 2 diabetes turn up

microvascular complications (1, 6). DKD occurs in families across

various populations, suggesting a genetic predisposition (7, 8). For

this reason, it is essential to get a more in-depth knowledge of the

pathophysiology of DKD so that novel therapeutic techniques may

be developed to stop, halt, and even reverse the progression of DKD.

DKD, as a multifactorial illness, includes a complicated interaction
02
of hemodynamic and metabolic variables, such as hyperglycemia,

renin-angiotensin-aldosterone system activation, and advanced

glycation end-products (9). DKD can be predicted with low

sensitivity and specificity by microalbuminuria, which is a

biomarker of early diabetes (10). The presence of micro/macro-

albuminuria is not always related to DKD. Many diabetic patients

have decreased renal function when considerable proteinuria is

absent (11). Moreover, DKD is still diagnosed with renal biopsy

(12). However, it is an invasive procedure associated with

complications such as infection and hemorrhage (13).

Additionally, it is impossible to proceed continuously as the

kidney disease progresses, and sampling errors are highly likely.

Hence, in order to predict DKD development, it is essential to

i n v e s t i g a t e n o n i n v a s i v e a n d s e n s i t i v e immun e -

associated biomarkers.

As a result of the “bulk” RNA-seq analyses performed over the

last 20 years, we now have a better understanding of the

transcriptional landscape of kidneys, which only describes the
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average transcriptome in bulk renal tissue or even in high-

resolution compartmentalized kidneys though highly informative,

therefore masking or skewing the signals of the transcriptome (14–

16). It is possible to determine particular disease-causal cells and

genes by Single-cell RNA sequencing(scRNA-seq), which

cooperates with the definition of cell types and the status of gene

expression in given cells. Recent years have significantly improved

scRNA-seq’s sensitivity, accuracy, and efficiency (17). ScRNA-seq

offers advantages over RNA-seq, including dissecting heterogeneity

within cell populations and identifying rare cells related to the

disease by using the single-cell profiles in mixed-cell populations

(18). It is found that there are dynamic changes in gene expression

of experimental diabetic kidney diseases by scRNA-seq of

glomerular cells (19). Xi Lu et al. identified the role of immune

cells and their marker genes as related key pathophysiologic items

in DKD development by scRNA-seq (20). When compared to

DEGs, WGCNA is a systems biology to investigate correlations

between genes across microarray samples. A weighted gene co-

expression network could be displayed with WGCNA, identifying

module-related genes and exploring the relationship between genes

and phenotypes. Disease-related genes could be identified through

rational analysis of these modules (21). It was uncovered that there

are six DKD-related candidate targets by WGCNA and DEG

analysis of DKD datasets in the study of Chen J et al. (22).

Herein, we combined three methods containing scRNA-seq,

DEG, and WGCNA to identify candidate DKD-related gene

targets regulators. By studying the mechanism of DKD

development and identifying potential therapeutic targets, we

aimed to advance our understanding of the disease.
2 Materials and methods

2.1 Data acquisition

National Center for Biotechnology Information (NCBI) creates

and maintains GENE EXPRESSION OMNIBUS (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/info/datasets.html), which is a

gene expression database. Data from international research

institutions has been submitted to the database since 2000. Data

from microarrays, next-generation sequencing, and other high-

throughput sequencing experiments are stored in the GEO

database. We gained GSE131882 from the GEO public database

Series Matrix data file in NCBI, of which annotation platform is

GPL24676. scRNA analysis was conducted through 6 copies

(Control=3, DKD=3) of DKD-related data with complete

expression profiles downloaded. Meanwhile, we download the

Series Matrix File data file of GSE1009 from the GEO public

database, the ontology platform is GPL8300, and 6 copies

(Control=3, DKD=3) of DKD-related data with complete

expression profiles were downloaded for this analysis. The Series

Matrix File data file of GSE30528 was obtained from the GEO

public database in NCBI, and the annotation platform is GPL571,

and 22 (Control=13, DKD=9) DKD-related data with complete

expression profiles were download for this analysis. The Series

Matrix File data file of GSE96804 was gained from the GEO public
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database in NCBI, the annotation platform is GPL17586, and 61

(Control=20, DKD=41) DKD-related data with complete

expression profiles were download for this analysis. The Series

Matrix File data file of GSE104948 was obtained with the same

method, the annotation platform is -GPL22945, and 25

(Control=18, DKD=7) DKD-related data with complete

expression profiles were downloaded for this analysis. The Series

Matrix File data file of GSE104948 could be gotten from the same

public database web, the annotation platform is GPL24120, and 8

(Control=3, DKD=5) DKD-related data with complete expression

profiles were downloaded for this analysis. The workflow of this

study is shown in Figure 1.
2.2 Single cell analysis

In this analysis, the exon, inex and intron results of each sample

were taken as a single sample to get an expression matrix of 373942

cells * 15398 features. We set the parameters min.cells=3 and

min.features=50 to read in the expression spectrum, and got a

single cell object of 111,360 cells. The low-expression cells of this

object were screened by nFeature_RNA > 50 & percent.mt < 5, and

finally a single cell object with 15398 features of 110544 cells was

obtained. The data were standardized by NormalizeData function,

and the 10 genes with the highest standardized variance were

marked. ScaleData and RunPCA are used in turn to standardize

the data and PCA analysis, in which the parameter npcs = 20 is set

in PCA analysis. Then, the best PC value of this analysis is selected

by ElbowPlot and JackStraw results. Selecting the best PC value of

15 and getting the Cluster and tSNE values through FindNeighbors,

FindClusters and RunTSNE in turn. Setting the parameter min.PCT

= 0.25 to get the unique markers gene of each Cluster through

FindAllMarkers, and selected the top 10 gene expression levels of

avg_log2FC in each Cluster for heat map display. At last, we

annotated the Cluster cell subtypes by SingleR with ImmGenData

as the annotation ref file and label.main as labels, and counted the

number of cell sample contained in each subtype. FindAllMarkers

method was used to obtain the differential genes of each cell subtype

for further analysis.
2.3 Ligand-receptor interaction analysis

CellPhoneDB is an open acquired database of curated receptors,

ligands and their interactions. Both ligands and receptors contain

subunit structures that accurately represent heteromeric complexes.

The ligand-receptor database of CellPhoneDB is integrated with

UniProt, Ensembl, PDB, IUPHAR, etc., and stores a total of 978

proteins, which can comprehensively and systematically analyze the

communication molecules between cells and study the mutual

communication and communication between different cell types.

By calling the statistical analysis of the software package

CellphoneDB, a significant analysis of the ligand-receptor

relationship of the features in the single-cell expression profile

was performed. The cluster labels of all cells were set to be

randomized 1000 times to determine the mean of the mean
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expression levels of receptors and ligands in the clusters or

interacting clusters. This yields a null distribution (also known as

Bernoulli, two-point distribution) for each receptor-ligand pair in

each pair comparison between the two cell types. Finally, some

interesting ligand-receptor pairs were selected for the display of

relational pairs.
2.4 WGCNA analysis

We conduct a weighted network to identify co-expressed gene

modules, the core genes of a network, and the connection between

genes and phenotypes. Furthermore, WGCNA-R package was

applied to build the co-expression networks of genes in the gene

set, In this analysis, soft threshold power value was determined for

constructing a scale-free topology network. More specifically, We

used the “sft$powerEstimate” function to perform the analysis of

the network topology and got the relevant values corresponding to

the alternative soft thresholds(shown on Figure 2B). We set the

height to 0.9, and the minimum candidate threshold to reach this

height is 4. Therefore, we chose a soft threshold of 4.

Based on the weighted adjacency matrix, the topological overlap

matrix (TOM) was constructed to perform communication

network, and creating the clustering tree structure of the TOM

matrix was done by applying hierarchical clustering. Each branch of

the cluster tree represents a divers gene module, and each color

displays a different gene module. Each gene is classified into

modules on the basis of the weighted correlation coefficient, and

genes with similar expression patterns are grouped together. The

gene expression patterns of thousands of genes divide them into

variety modules.
Frontiers in Immunology 04
2.5 Gene function enrichment analysis

Analyzing and visualizing the Metascape database

(www.metascape.org) allowed us to get the biological functions

and signal pathways related to disease occurrence and development.

We combined Gene Ontology (GO) analysis with Kyoto

Encyclopedia of Genomes (KEGG) analysis to explore specific

genes. Min overlap≥3 & p ≤ 0.01 is regarded as statistical

significance. In addition, clusterProfiler was used to annotate the

function of the key genes in order to identify their functional

relevance. It was determined that pathways enriched with both p-

and q-values below 0.05 within GO and KEGG were significant.
2.6 Immune cell infiltration analysis

RNA-Seq data from DKD patients and healthy controls were

analyzed using the CIBERSORT algorithm in order to determine

the percentage of immune infiltrating cells in each group, and

perform spearman connection analysis about immune cells and

gene expression.
2.7 GSEA analysis

A GSEA analysis compares gene expression levels in two types

of samples based on a predetermined set of genes, and ranks these

genes based on the level of different expression, the predefined gene

set is tested to see if it is enriched near the top or bottom of the

sequence in the further study. GSEA was utilized in this work to

compare the variations in the KEGG signaling pathway between the
FIGURE 1

Workflow of this study.
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high and low expression groups, and investigate the molecular

mechanisms of the key genes in the two groups based on 1000

substitutions and phenotypic substitutions.
2.8 Gene Set Variation Analysis (GSVA)

Transcriptome sequencing enrichment can be evaluated using

gene set variation analysis (GSVA), which is a non-parametric and

unsupervised approach. As GSVA scores the genes of interest

comprehensively, pathway-level changes are converted into gene-

level changes, and study the biological function. The sample of gene

sets was obtained from the molecular signature database (v7.0), and

a comprehensive score would be assigned to each gene set to

determine whether biological function has changed between

samples using the GSVA algorithm.
2.9 Enrichment of transcription factors
motifs related to the key genes

This study used the R package “RcisTarget” to predict

transcription factors. All calculations performed by RcisTarget

were based on motifs. The normalized enrichment score (NES)

for motifs depended on the motifs amount in the database. In

addition, the motifs annotated by annotation files, which were

inferred further based on motif similarity and gene sequence. The

first step in estimating the overexpression of each motif on a gene

set was to compute the area under the curve (AUC) of the motif-

motif set pair. This was calculated from the recovery curves of the

gene sets for motif ordering. The NES for each motif was estimated

according to the AUC distribution of all motifs in the gene set. The
Frontiers in Immunology 05
rcistarget.hg19.motifdb.cisbpont.500bp was used for the Gene-

motif rankings database.
2.10 The clinical prospective cohort design
and sample collection

We recruited 35 patients with DKD and 35 healthy controls

between 2019 and 2021 at the People’s Hospital of the Xinjiang

Uygur Autonomous Region. In a cohort of 35 patients with DKD,

All patients met the following diagnostic criteria:(1)Patients aged

≥30 years who underwent clinical kidney biopsy;(2)patients had a

pathological diagnosis with DKD as the only kidney disease

diagnosis;(3)patients who had an eGFR ≥60 mL/min/1.73 m2.

The outcome of interest was development of DKD defined as a

composite of new onset ESKD (dialysis, kidney transplantation or

death from renal cause), a doubling of serum creatinine or a

decrease of eGFR by ≥50%. The occurrence of DKD development

was ascertained by the medical records (23). Based on 2.6-year

median follow-up data, key genes were examined in relation to

DKD development. Patient informed consent was obtained, and the

study was approved by an institutional ethical committee at the

People’s Hospital of Xinjiang Uygur Autonomous Region(Number

KY 2019062614). Blood samples were collected after subjects fasted

for at least 12 hours before blood was drawn. Information from

relevant medical records was recorded and coded. The participants

provided a blood sample of 3 mL, which was collected in Eppendorf

tubes without anticoagulants and allowed to stand for one hour at 4°

C. The supernatant containing the serum proteins was aliquoted

into 0.5 mL aliquots and kept at 80°C in a refrigerator for future use

after centrifugation at 3000 rpm at 4°C for 15 minutes (24). At the

same time, we obtained the renal tissue samples of these
B C
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FIGURE 2

A coexpression module has been constructed by analyzing WGCNA and Metascape functional enrichment scores for MEblue genes. (A) Clustering of
module hub genes in a hierarchical manner that summarizes the modules that were identified in the clustering analysis. (B) The scale independence
plot, mean connectivity plot, and scale-free topology plots, 4 was an appropriate soft-power. (C) The cluster dendrogram shows the modules that
make up the co-expression network. (D) Analysis of connection of the modules with immune scores. (E) GO and KEGG analysis of the model genes.
(F) Differential pathway enrichment between DKD and control.
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participants, which were obtained by percutaneous renal puncture.

The remaining samples after clinical diagnosis were kept for

our research.
2.11 ELISA Validation

The collection of kidney tissue samples followed conventional

hospital protocol.

Samples of kidney tissue were kept at -80°C. The levels of SLIT3,

PDE1A, and CFH were measured using an enzyme linked

immunosorbent assay method in accordance with the

manufacturer’s instructions (Keweinuo Systems, Inc., Xiuyuan,

Jiangsu, China, the batch numbers are: KWN-162079, ZY-

PDE1A-Hu and JL11886).For the quantitative measurement of

SLIT3,PDE1A, and CFH concentrations, the manufacturer-

recommended quantitative sandwich enzyme immunoassay

method was used. On a microplate, a monoclonal antibody

specific for SLIT3, PDE1A, and CFH were coated beforehand.

Pipetted into the wells were standards and samples, and any

SLIT3, PDE1A, and CFH present was bound by the immobilized

antibody. After removing any unattached compounds, an anti-

SLIT3, anti-PDE1A and anti-CFH enzyme-linked polyclonal

antibody were applied to the wells. After removing any unbound

antibody-enzyme reagent with a wash, a substrate solution was

added to the wells, and color developed in proportion to the

quantity of SLIT3, PDE1A, and CFH bounds in the first stage.

The color development was halted, and the color’s intensity was

assessed. The standards of recombinant human SLIT3, PDE1A, and

CFH were measured to create a standard curve. Results were

reported in mg/L units (25).
2.12 Immunohistochemistry (IHC)

After signing the consent of participants, the right lower renal

pole renal biopsy was performed under the guidance of ultrasound.

Take the prone position, after anaesthetizeing participants. Taking

the No.20 puncture trocar, and pierced the skin along the local

anesthesia point, and gradually penetrated into the renal capsule

under the detection of ultrasound, carefully broke through the renal

capsule, and instructed the patient to hold his breath, pulled the

trigger, and pulled out the needle. Using the remaining samples

after diagnosis, fixed them overnight, dehydrated them with 30%

sucrose for one day (or the samples sank to the bottom), and sliced

them immediately. Then we cleaned the cut slides with TBS, and

stored in TBS for 4 degrees for a short time and incubated with 1 ml

of 0.5% Triton X-100 for 1 hour subsequently. Our samples were

sealed with serum at RT, pH7.4 for 2h. Tissue sections were

incubated overnight at 4 °C with rabbit monoclonal antibodies

against SLIT3 (1:200), PDE1A (1:500) and CFH (1:2000)

(Keweinuo Systems, Inc., Xiuyuan, Jiangsu, China; the batch

numbers are: abx317205, abs138818 and abx124187). After

rewarming at room temperature for 30 minutes, the slices were

washed with PBS for at least 3 times. Then it was incubated with

goat anti-rabbit immunoglobulin G (IgG) (1:2000) for 20 minutes at
Frontiers in Immunology 06
37 °C, followed by three times PBS washes. The chips were dyed

with hematoxylin (PT001, Zhenjiang Xiuyuan Biotechnology Co.,

Ltd., Zhenjiang, China) for 1 minute, then turned blue in 1%

ammonia water and washed with water. After dehydration with

ethanol series, the slices were washed in xylene and sealed with

neutral glue. We performed quantitative analysis of IHC results

using imageJ software, a free software developed by the NIH that is

widely used in biomedical applications.
2.13 Western blot

Kidney tissues were added into 1 mL cell lysis solution for cell

lysis. protein sample was mixed with 10% SDS gel loading buffer at 4

°C for 4 minutes, and boiled at 100 °C for 10 minutes. After that,

protein was separated by electrophoresis and transferred to

nitrocellulose membrane. After being blocked overnight with 5%

skim milk at 4 °C, the membrane was mixed with rabbit anti-SLIT3

(1∶2000), anti-PDE1A(1∶1000), anti-CFH(1∶2000) and GAPDH

(1∶10) (Keweinuo Systems, Inc., Xiuyuan, Jiangsu, China; the batch

numbers are: abx317205, abs138818,abx124187 and H00002597-

PW2), and then with goat anti-rabbit IgG labeled with horseradish

peroxidase (1:10,000) at 37 °C. After washing with PBS buffer for 3

times at room temperature for 10 minutes each time, the film was

immersed in the enhanced chemiluminescence reaction solution for

5 minutes at room temperature and exposed to GAPDH as the

internal reference. The ratio of the gray value of the target band to

the gray value of the internal reference band was regarded as the

relative expression level of protein.
2.14 Statistical analysis

In this analysis, R language (version 4.0) was used. A compared

t-test was used to determine whether there was a statistical

difference between the normalized expressions of the genes

screened. ANOVA was used to explain the differences between

different groups of IHC score. Using the Kaplan-Meier method,

DKD development curves for different genes expression levels were

generated using graphpad (version 9.0), and log-rank tests were

used to compare them. During the median follow-up time of 2.6

years from diagnosis to endpoint, we investigated the influence of

hub gene expression levels on kidney function development among

DKD patients. It was regarded statistically remarkable at p<0.05 in

all tests that were two-sided. Spearman method was used to study

the linear relationship between protein expression for ELISA and

IHC score.
3 Results

3.1 Preprocessing of single-cell expression
profiling data

In this analysis, the expression profile was used to include 6

samples, including 3 healthy kidney tissue samples and 3 kidney
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tissue samples from patients with DKD, and the expression level of

a total of 111,360 cells was detected (Figures S1A, S1B). Feature

expression profiles of 110,544 cells with number of the features of

RNA more than 50 and percent.mt below 5 in the expression profile

were selected and included for subsequent analysis. The level of

gene set was displayed and the top 10 genes were marked

(Figure S1C).
3.2 Single-cell sample subtype
clustering analysis

PCA dimensionality reduction analysis was performed and it

was found that they have different score values in different

dimensions (Figures 3A, B). However, PCA dimensionality

reduction analysis between samples revealed that the overall

differences between samples were not significant (Figure S2). The

optimal number of pcs was observed by ElbowPlot: 15 (Figure 3C),

and finally 29 subtypes were obtained by TSNE (Figure 3D). We

found a large number of genes with significant differences in

expression levels between these subtypes. Last but not least, we

showed the expression levels of 10 genes that differed the most

between subtypes (Figure 3E).
3.3 Annotation of cluster subtypes

ImmGenData was used as the annotation data to annotate each

subtype through the R package SingleR, and 29 clusters were

annotated to 8 cell categories: Stromal cells, Endothelial cells,

NKT, B cells, Epithelial cells, Neutrophils, DC and Macrophages

middle (Figure 4A). Although the amount of detected cells in the
Frontiers in Immunology 07
DKD and control groups was not 1:1 in each cell subtype, both

DKD and control samples were included in different cell types

(Figure 4B). For example, B cells and NKT subtypes contain more

cells from healthy tissues. Finally, a total of 1,193 cell subtype

Marker genes were extracted (Supplement table 1) from single-cell

expression profiles by FindAllMarkers.
3.4 Analysis of receptor-ligand
relationship pairs

The software package CellphoneDB was applied for analyzing

the ligand-receptor relationship of the features in the single-cell

expression profile. Finally, some ligand-receptor pairs were selected

for display (Figure 5A). It was found that Macrophages|

Neutrophils, Macrophages|Epithelial cells had high interaction

scores for their interactions with COL4A3_a1b1 complex,

COL4A4_a2b1 complex. It was also found that the number of

potential ligand-receptor pairs between cells such as Macrophages

and other cells is extremely high (Figure 5B). Finally, the number of

ligand-receptor gene pairs corresponding to p value < 0.05 in each

cell group was counted and it was found that macrophages and

Endothelial cells have more potential interactions with other cell

subtypes, especially macrophages (Figure 5C).
3.5 Analysis of differential expression by
RNA-seq

The five GEO datasets, namely GSE1009, GSE30528,

GSE96804, GSE104948 (GPL22945), and GSE104948 (GPL24120)

were combined to the expression profiles of 122 samples through
B C

D E

A

FIGURE 3

Cluster analysis of single cell sample subtypes. (A) Reduced maintenance number of main genes of PC1, PC2, PC3 and PC4. (B) The scores of cell
genes on PC1, PC2, PC3 and PC4. (C) Elbowplot for identifying the optimal PCs. (D) TSNE dimensionality reduction of 20 genes in the samples.
(E) Heat map of gene expression.
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ComBat (control group: 57 cases; DKD group: 65 cases)

(Figures 6A, B). After that, the limma package was used to count

the differential genes between patients and normal samples. The

differential gene screening conditions were: adj.P.Val<0.05 and

|logFC| > 0.585 (26), and finally 178 up-regulated genes and 178

down-regulated genes were screened out (Figure 6C). The

functional analysis on these 356 differential genes was performed

and it was found that they were enriched in urogenital system

development, kidney development, platelet alpha granule and

glycosaminoglycan binding pathways (Figures 6D, E).
3.6 Co-expression modules of DKD and
functional enrichment of modular genes

To perform the co-expression network of marker genes in the

DKD sample, WGCNA analysis was carried out. The disease state was

taken as a clinical trait and further used to construct a WGCNA

network to screened biomarkers in the process of DKD. The soft

threshold b, which was calculated by the function “sft$powerEstimate”,

was set to 4 (Figures 2A, B). Hierarchical clustering trees (average-

linked hierarchical clustering) were constructed from weighted

correlation coefficients (TOM matrix) between genes, with different

branches of the clustering trees being genes with similar patterns,

representing different gene modules. Gene clusters that were not

assigned to a specific module were defined as gray modules, 13 gene

modules were identified in the analysis, including turquoise (n=2104),

blue (n=1808), brown (n=1124), green (n=777), turquoise yellow

(n=776), black (n=204), pink (n=177), magenta (n=138), purple

(n=111), green-yellow (n=91), salmon (n=60), tan(n=65) and grey

(n=8) modules (Figure 2C). The modules and traits were further

analyzed and it was found that ME-blue modules had the most

significant correlation with the sample traits (Figure 2D). Metascape

functional enrichment analysis on genes in MEblue module was

performed. Our results proved that GO and KEGG analysis mainly

enriched signaling mechanisms concluding positive regulation of

locomotion, regulation of PI3K-Akt signaling pathway and cell

adhesion. The above pathways are closely related (Figure 2E).
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Through GSVA pathway analysis, it was found that many pathways

enriched by these genes were significant between groups, such as

INTERFERON GAMMA RESPONSE , EP ITHEL IAL

MESENCHYMAL TRANSITION, E2F TARGETS and other

pathways (Figure 2F).
3.7 Screening and verification of key genes.

It was found that only 3 genes in the ME-blue module had

significant differences between groups in RNA-seq level and scRNA

level expression, namely SLIT3, PDE1A and CFH (Figure 7A),

where the between-group significance of Figures 7B–E was analyzed

by wilcoxon test.
3.8 Assessment of immune
infiltration levels

Immune microenvironment consist of inflammatory factors,

immune cells, special physical and chemical characteristics,

extracellular matrix, various growth factors, immune-related

fibroblasts, and the diseased cells themselves. Diagnoses and

survival of major diseases are greatly affected by the immune

microenvironment. Analyzing key gene functions in major

diseases and immune infiltration, a further investigation was

conducted to determine the mechanisms and key genes associated

with DKD. First , a significant study on the immune

microenvironment score between the disease and the normal

group found that immune microenvironment factors consist of B

cells naive, B cells memory, T cells gamma delta, Macrophages M1,

Macrophages M2, and Dendritic cells resting were remarkably

higher in the group (Figures 8A, B). At the same time, it was

found that there were multiple significant correlation pairs between

the immune factors through correlation analysis (Figure 8C). We

also supplemented the GO analysis of three genes as shown in

Figure 8D, and the analysis results showed that SLIT3 and CFH

were also involved in the immune response.
BA

FIGURE 4

Annotation of cluster subtypes (A) 29 clusters were annotated to 8 cell categories: Stromal cells, Endothelial cells, NKT, B cells, Epithelial cells,
Neutrophils, DC and Macrophages middle. (B) Samples in each cell subtype.
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3.9 Analysis of the correlation between key
genes and immune infiltration

The Interaction between key genes and immune cells was further

explored, and it was found that there were positive interactions between

3 core genes (SLIT3, PDE1A, and CFH) and immune cell infiltration,

such as T cells gamma delta, Mast cells resting, Macrophages M2.

However, B cells naive and Neutrophils were apparently negatively

correlated with SLIT3, PDE1A, and CFH (Figure 9A). The correlations

of the 3 key genes with various immune factors from the TISIDB

database were further obtained, consist of chemokines, cellular

receptors, and immune modulators (Figure 9B). Next the specific

signaling pathways enriched by the three key genes and the potential

molecular mechanisms of the core genes related to the development of
Frontiers in Immunology 09
DKDwere investigated. Subsequently, we implemented the connection

between 3 key genes and chemokine-related genes, immunoinhibitory-

related genes, immunostimilator-genes, receptor-related genes, MHC-

related genes using cibersort method. The results showed that the 3 key

genes we obtained had closely relationship with chemokine-related

genes, immunoinhibitory-related genes, immunostimilator-genes,

receptor-related genes, MHC-related genes (Figure 9C).
3.10 GSEA analysis of key genes

A further study was conducted to explore the specific signaling

pathways that are enriched by the three key genes, as well as the

molecular mechanisms underlying their effects on DKD
B C

A

FIGURE 5

Analysis of receptor-ligand relationship pairs. (A) Receptor-ligand trafficking and intracellular signaling. (B) Interaction numbers between cell groups.
(C) The number of ligand-receptor gene pairs corresponding to each cell group.
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development. Pathways with high significance were selected and

displayed separately. The CFH gene GO enriched pathways

included PEROXISOMAL TRANSPORT, PEROXISOME

ORGANIZATION and other pathways, and KEGG enriched
Frontiers in Immunology 10
p a t hw a y s i n c l u d e d FOCAL ADHES ION , LY S INE

DEGRADATION and other pathways (Figure 10A). The PDE1A

gene enriched pathways included HEMATOPOIETIC STEM CELL

PROL I F ERAT ION , I NTRACE L LULAR PROTE IN
B C
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A

FIGURE 7

Screening and verification of key genes. (A) The Venn diagram displays the overlap genes obtained by three methods. (B) Box plots of the level of
SLIT3, PDE1A and CFH in DKD and control samples. (C) The expression distribution of marker genes. (D) Violin plots showing the level of SLIT3,
PDE1A and CFH in different identity. (E) Dot plot displaying the normalized mean level of markers. **P<0.01; ****P<0.0001.
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FIGURE 6

Functional analysis of different expression genes in RNA-sequencing. (A) Five GEO data sets were combined into expression profiles of 122 samples
by ComBat. (B) Combat PCA for combined expression profile. (C) Volcano plot displaying differential expressed genes (DEGs) between DKD patients
and healthy control for combined expression profile. (D) Gene Ontology plots of over-expressed and under-expressed terms. (E) Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis.
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TRANSMEMBRANE TRANSPORT and other pathways. KEGG

enriched pathways included FOCAL ADHESION, LYSINE

DEGRADATION and other pathways (Figure 10B). SLIT3 gene

GO enriched pathways included ENDODERM DEVELOPMENT,

MITOTIC SPINDLE ORGANIZATION and other pathways. The

pathways enriched by KEGG included ECM RECEPTOR

INTERACT ION , FOCAL ADHE S ION a n d o t h e r

pathways (Figure 10C).
3.11 Regulatory network analysis of
key genes

Using these three key genes for the gene set, and analyzing their

regulation using multiple transcription factors, it was discovered

that they are regulated by a common mechanism. Therefore,

Cumulative recovery curves were used to enrich these

transcription factors (Figures 11A, B). The analysis results

illustrated that the Motif with the highest normalized enrichment

score (NES: 5.75) was annotated as cisbp:M6441. It was found that

three genes, CFH, PDE1A, and SLIT3, were enriched in the motif.

Transcriptional factors of the core genes were identified in all

enriched motifs (Figure 11C).
3.12 The study of disease gene
expression levels

A total of 3,421 DKD-related disease genes were obtained from

the GeneCards database (https://www.genecards.org/). The levels of

genes (Figure 12A) were analyzed, and it was discovered that the

expression levels of key genes were remarkably related to the

expression levels of multiple disease-related genes (Figure 12B).
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3.13 Verification of key genes in
clinical population

The plasma levels of CFH, PDE1A, and SLIT3 were evaluated

using ELISA. Compared to healthy controls, DKD patients had higher

expression of hub genes (Figure 13A). Aims to identify the genes

associated with DKD development and analyze their association. We

found higher CFH, PDE1A, and SLIT3 levels are related to worse DKD

development, according to Kaplan-Meier estimations and log-rank

tests (CFH: p =0.038; PDE1A: p = 0.025; SLIT3: p = 0.013, Figure 13B).

Furthermore, the immunohistochemical (IHC) results of kidney tissue

showed that compared with the control group, participants with DKD

had significant statistical differences in the expression of three key

genes, and with the gradual deterioration of DKD, the expression of

SLIT3, PDE1A and CFH gradually increased (Figures 14A, B). At the

same time, we also carried out western blot on the kidney tissue

samples, and the results showed the same trend. There were significant

statistical differences in the expression of SILT3, PDE1A and CFH

between the control group and DKD group (Figure 14C). We studied

the correlation between ELISA and IHC score using spearmanmethod.

The results showed that IHC had a good linear correlation with ELISA

(Figure S3).
4 Discussion

We identified high-variability genes through scRNA-seq

strongly influence cell differentiation across homogeneous

populations (27). Using cell type identification, scRNA-seq data

can be interpreted and cellular heterogeneity can be resolved based

on transcriptional and phenotypic interactions (28). By mapping

scRNA-seq profiles, we could identify specific types of cells and

their marker genes in DKD. There are 8 cell types underwent
B
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FIGURE 8

Distribution and visualization of immune cell infiltration. (A) The relative percentage of 22 types of immune cells. (B) Box plots demonstrating 22
immune cell subtypes between DKD and healthy controls. Blue represents normal and yellow represents DKD samples. (C) The heat map
demonstrated the interaction of 21 kinds of immune cells. Red showed the positive relation and blue displayed the negative relation, The correlation
parameter was shown with the number. (D) GO analysis of three genes. *P<0.05; **P<0.01; ***P<0.0001.
frontiersin.org

https://www.genecards.org/
https://doi.org/10.3389/fimmu.2023.1030198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1030198
phenotypic transformation, including Stromal cells, Endothelial

cells, NKT, B cells, Epithelial cells, Neutrophils, DC and

Macrophages. Among them, macrophages are the most

important. Furthermore, we identified 356 different expression

genes (DEGs) from the RNA-seq, which are enriched in

urogenital system development, kidney development, platelet

alpha granule and glycosaminoglycan binding pathways. A

weighted gene co-expression network, gene module detection, as
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well as phenotypic relationships between modules and genes were

performed by WGCNA. The highest correlations module is related

to regulation of cell adhesion, positive regulation of locomotion,

PI3K-Akt, gamma response, epithelial-mesenchymal transition and

E2F target signaling pathway. Then we overlapped the DEGs,

WGCNA and scRNA-seq, the screened three key genes may be

closely related to DKD, which include SLIT3, PDE1A and CFH.

Besides, the results of immune infiltration showed that T cells

gamma delta, Mast cells resting and Macrophages M2 were

positively correlated with the three key genes named SLIT3,

PDE1A and CFH, and B cells naive, Neutrophils were negatively

correlated with the three key genes. Finally, the three genes SLIT3,

PDE1A, and CFH were highly expressed in DKD patients during

clinical validation, and low DKD development rates are associated

with the high expression of these three genes.

As a result of integrating four datasets, we identified eight cell

groups. This was partly similar to the previous research results. A

study used GSE131882 dataset for analysis and got the conclusion

that in diabetic kidney specimens and controls, 10 cell types were

aggregated, including tubular cells, endothelium, parietal epithelial

cells, podocytes, collecting duct, mesangial cells, immune cells,

distal convoluted tubule, the thick ascending limb, and proximal

tubule (20). In our results, macrophages had much stronger

intercellular communication than other cells. A significant role is

played by macrophages in the development of DKD, causing

irreversible changes to the glomeruli and kidney tissue stromal

hyperplasia (29). Predominantly M1-containing macrophages

characterize diabetes-related kidney injury. In mice lacking the

cyclooxygenase-2 gene (Cox-2), M1 was shown to be crucial for

the development of DKD. A higher degree of M1 polarization is

associated with a higher degree of renal injury in these mice (30).

Other publications claimed that the escalating levels of TGF- and

galectin-3 in the kidneys of streptozotocin-induced DKD rats

indicate a predominate M2 cell type (31). A streptozotocin-

induced type 1 diabetic mouse was adoptively transferred with

M2 and the reduction of renal damage along with the infiltration of

macrophages into the kidney decreased, consisting of interstitial

expansion, glomerular hypertrophy and tubular atrophy (32). It has

been shown that proxies that promoted M2 polarization, such as

Pentraxin-3, can significantly reduce kidney injury in patients with

DKD by stimulating the differentiation of M2 macrophages (33). A

recent study by Zhang et al. found that inhibiting the activation of

M1 macrophages and promoting the transformation of M2

macrophages prevented podocyte damage (34) . In a

microenvironment mimicking diabetic kidneys, Sirt6 activated

M2 and protected podocytes from injury (35). Diabetes

pathogenesis is mainly dependent on macrophages, as evidenced

by these studies.

Herein, we identified 3 overlap genes of scRNA-seq, DEGs and

WGCNA between DKD and control. It has been shown that Slit3 is

secreted by M2-like macrophages which are found in adipose tissue

and that it stimulates norepinephrine release from sympathetic

neurons, which is necessary to adapt to cold environments (36). The

osteoprotective role of SLIT3 has been demonstrated in a number of

previous studies, indicating that the protein could be underlying

targets for therapy in the treatment of metabolic bone disease (37,
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FIGURE 9

Correlation analysis of key genes and immune infiltration.(A)
Interaction between core genes and immune cells. (B) Interaction
between the level of core genes and immune cells abundance.
(C) Connection between core genes and immunomodulators,
chemokines and cell receptors. *P<0.05; **P<0.01; ***P<0.0001.
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38). However, few research illuminated the relationship between

Slit3 and DKD. To our knowledge, we are the first team to propose

that Slit3 could activate the ECM receptor interaction and focal

adhesion pathways. It was deduced that LMWF could reduce ECM

expression and inhibite the PI3K/AKT and JAK-STAT pathways,

finally improving abnormal human renal mesangial cells (HRMCs)

induced by AGEs in DKD (39). Focal adhesion is a crucial factor in

maintaining the structural integrity of podocytes (40). Our result

indicated that SLIT3 could regulate the ECM receptor interaction

and focal adhesion pathways to Influence the pathogenesis of DKD.

Strong PDE1A expression was seen in the kidney, suggesting their

possible involvement in kidney diseases (41).We found that PDE1A

was a key gene of DKD, which is related to focal adhesion and lysine

degradation pathways. There are 20 short census repeat domains in

the CFH glycoprotein, which binds to chromosome 1q32 and
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encodes factor H protein, an important inhibitor r of the

alternate pathway of complement in the fluid phase of a cell’s

surface and in the liquid phase (42). Bonomo et al. (42) indicated

that CFH-associated types of mesangial proli ferative

glomerulonephritis were seen in end-stage kidney disease caused

by hypertension or glomerulosclerosis, and fosinopril with CFH

demonstrated preferred binding activity. Thus, CFH might be a

target for the treatment of mesangial cells associated with DKD

(43). Further results of GO and KEGG indicated that the gene is

enriched in peroxisome, focal adhesion and lysine degradation

pathways. According to Wang, YQ et al., succinate generated by

peroxisomes accumulates lipids and ROS in the kidney, causing

oxidative stress, and treating DKD and associated metabolic

problems by precisely targeting peroxisomal beta-oxidation might

be successful. We hypothesized that CFH might cause the
B CA

FIGURE 10

Discussion on the specific signaling mechanism of key genes. (A) GO and KEGG analysis of CFH gene using GSEA method. (B) GO and KEGG
analysis of PDE1A gene using GSEA method. (C) GO and KEGG analysis of SLIT3 gene using GSEA method.
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FIGURE 11

Analysis of regulatory network of key genes. (A) Motif-TF annotation based on normalized enrichment score. (B) Optimal gene based on motif
enrichment. (C) Motif enrichment and its annotation information.
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peroxisome-generated succinate to be produced, which would lead

to DKD and other metabolic diseases. In light of the above evidence,

it is clear that there is a close relationship between these three genes

and DKD. This hypothesis was also confirmed by our finding that
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these three genes were not only highly expressed in DKD, but also

were closely correlated with renal function development. To

confirm the results in a more robust manner, the research sample

size must be increased.
B

A

FIGURE 12

Connection between the level of key genes and several DKD-related genes. (A) Box plots displaying the expression of the expression of the top 20
genes related to DKD. (B) Interaction between the level of key genes and the expression of several DKD-related genes. *P<0.05; ***P<0.0001;
****P<0.0001.
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FIGURE 13

Verification of key genes in clinical population. (A) Expression levels of key genes in plasma samples of DKD patients and healthy control. (B) Kaplan-
Meier chart to display the association between the key genes and DKD development rate of different expression level of the 3 genes.
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In addition, the database used in this work is commonly utilized

in other bioinformatics studies. Some scholars have identified

VEGFA, NPHs1, WT1, CTGF, SYNPO and POD XL as

promising biomarkers to diagnose DKD using GSE30528 and

GSE1009 databases (44). Others used GSE30528 database and

WGCNA method to identify six key genes related to DKD (22).

Using the GSE96804 database, research determined that THBS2,

COL1A2, COL6A3, and CD44 might be potential biomarkers and

treatment prospects for DKD (45). Finally, about GSE104948,

scientists used this database for bioinformatics analysis and

experimental verification identified three novel DKD-specific

genes (46).

It is found in further studies that T cells gamma delta, neutrophils, B

cells naive, mast cells resting, and macrophages M2 may be interrelated

cell groups with three key genes in common. It is being investigated

whether T-lymphocytes are activated in DKD (47–50). The activation of

T-lymphocytes is dependent on two primary signals: the presentation of

MHC antigens, and the connection between co-stimulatory molecules

B7-1 and CD28, resulting in T lymphocyte activation or repression.

There are a variety of ways in which T-lymphocyte activation can occur

in DN, including systemic reactions or local reactions due to MHC class

II influenced by podocytes (51), mediated by B7-1, which is responsible

for the injury of podocytes in DKD (47, 52). It is important in the early

stages of DN to activate TNF-a signaling pathways and to activate T-

lymphocyte immunity. A moderate albuminuria is initiated by both

pathways, and it is likely that both pathways affect the development of

moderate albuminuria as well as the impairment of renal function. The
Frontiers in Immunology 15
T-lymphocyte immune markers sCTLA-4 and CD28 involved in the

pathogenesis and advancement of DN (50). M2 macrophages play a

controversial role in kidney tissue fibrosis, since they can partake in the

restoration and remodeling, differentiate into fibroblasts, as well as

stimulate myofibroblast proliferation and promote of DN kidney injury

through phagocytosis, restraining the toxic effects of T cells,

downregulation of inflammatory cytokines and chemokines, and

recovery from shock (53). Researchers have discovered that M1

macrophages have an early stage of renal damage and an M2

phenotype when the kidney is in the repair stage. Furthermore, M1

macrophages can eventually becomeM2macrophages(2011). DN could

be treated by stimulating M2 macrophages and inhibiting M1

macrophage numbers. Neutrophils are the main cause of acute

kidney injury, according to current research (54), and their role in

DKDwas revealed byWang, YJ (55). The result conducted byWang, YJ

showed that resting mast cells, macrophages M1/M2, infiltrated

immune cells and T cells CD8, were significantly related to DKD

(55), which was consistent with ours. Li, T et al. proposed that regulation

B cells are significantly reduced in DKD sample compared with diabetic

controls and healthy, thus supporting the conjecture that regulatory B

cells has an impact on the disease (56). This conclusion agree with those

of a study that performed reduced numbers of regulatory B cells in

patients with primary glomerulonephritis (57). Herein, we are the first

team to propose the hypothesis that naive B cells are negatively related

to three key genes.

To explain the involvement of the core genes in DKD patients to

further clarify the regulatory relations. We found the PTF1A was
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FIGURE 14

Verification of key genes in clinical participants. (A) Immunohistochemistry for control and different stages of DKD participants. (B) Quantitative
results of immunohistochemistry. (C) Western blotting for control and DKD participants.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1030198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1030198
annotated to the most significantly enriched motifs for the 3 key

genes. There are several helix-loop-helix (bHLH) proteins that are

specifically expressed in the brain, spinal cord, retina, pancreas, and

enteric nervous system, including transcription factor Ptf1a.

Assembling Ptf1a with an E protein and RBPJ (or RBPJl) results

in a transcription trimeric complex PTF1. The function of Ptf1a in

pancreatic development is to regulate multipotent progenitor cell

proliferation and acinar cell maintenance (58). Exome sequences

reveal a mutation in PTF1A in a family with multiform cases of

early-onset diabetes (59, 60). According to Olcay et al., a

homozygous PTF1A enhancer mutation caused an isolated

pancreas agenesis in two neonatal diabetes patients (61). In early

neonatal periods, patients with PTF1A distal enhancer mutations

present with IUGR, indicating in utero insulin deficiency (62; 61,

63–66). It indicated that different mutations in enhancers may show

genotype-phenotype correlations (63). It indicated that PTF1A has

an impact on DKD. In spite of this, it remains unclear how identical

mutations at the distal enhancer affect PTF1A function.

Additionally, since there is no experimental verification of the

DKD key genes, the results are probably inaccurate, Therefore,

bioinformatics analysis needs to be combined with GeneCards

database information regarding human DKD. It is displayed that

the level of key genes is significantly correlated to the expression

level of several DKD related genes. Especially, SLIT3 and PDE1A

were strongly associated with INSR and HNF1B, respectively.

Insulin receptor encoded by INSR interacts between extracellular

and intracellular signaling pathways, and is necessary to insulin

action. Diabetes type 2 may be associated with INSR, which

involved in adipogenesis and beta-cell insulin secretion (67, 68).

Further, INSR expression changes in the kidney during diabetes

(69), indicating that it contributes to DKD of type 2. Diabetes

secondary to mutations in HNF1B was first showed in a Japanese

family in 1997 (70), increasing documentation of the phenotype

associated with this mutation has been published since then. There

has been evidence that changes in the HNF1B gene contribute to a

slight predisposition to type 2 diabetes, Possibly caused by

mutations in the HNFB1 gene that create a protein that is

incapable of binding DNA or fails to transactivate DNA following

binding (71). It is clear from these evidences that key genes are

important in the pathogenesis of DKD, as well as potential

diagnostic and therapeutic targets (44, 72, 73).

Our research has some limitations. First, there were too few

PBMC data sets of DKD. At present, only GSE185011 and

GSE142153 were found, among which GSE185011 samples were

too few. Therefore, we can’t verify the expression of three key genes

in other data sets. We look forward to the publication of a larger

data set to further verify the expression of the three key genes we

have obtained. A second limitation is that the relationship between

the genes and cell types studied thus far has not been verified

through other functional studies or in vitro studies, which will be

the focus of our future research. The third shortcoming is that in

order to get more differential genes, we set the threshold to 0.585,

which seemed to be a bit low, but can get more differential genes,

and might exaggerate the role of some genes in the disease. Finally,

Due to ethical problems, we couldn’t obtain completely normal
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renal tissue samples. In order to further set up the control group, we

could only choose subjects with relatively healthy kidney

participants. These subjects might have slight abnormalities, but

there was no overlap with the DKD studied in terms of mechanism.

Because the mechanisms did not coincide and there was no clinical

correlation, we thought the results were still reliable. Of course, this

is also a project that we will carry out in the future. We will further

obtain tissue samples of healthy kidneys from paracancerous tissue

of patients with renal cancer for further.
5 Conclusion

As a result of our innovative single-cell and transcriptome

analyses, we discovered relations between three genes and DKD, as

well as identified transcriptional regulators and intercellular pathways

involved. Our next step was to clarify the effect of macrophages on

DKD. Three new targets have been identified for future translational

studies on DKD based on our novel mechanism of DKD.
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