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Preparing for the next
pandemic: Simulation-based
deep reinforcement learning to
discover and test multimodal
control of systemic
inflammation using repurposed
immunomodulatory agents

Chase Cockrell , Dale Larie and Gary An*

Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, United States
Background: Preparation to address the critical gap in a future pandemic

between non-pharmacological measures and the deployment of new drugs/

vaccines requires addressing two factors: 1) finding virus/pathogen-agnostic

pathophysiological targets to mitigate disease severity and 2) finding a more

rational approach to repurposing existing drugs. It is increasingly recognized

that acute viral disease severity is heavily driven by the immune response to the

infection (“cytokine storm” or “cytokine release syndrome”). There exist

numerous clinically available biologics that suppress various pro-

inflammatory cytokines/mediators, but it is extremely difficult to identify

clinically effective treatment regimens with these agents. We propose that

this is a complex control problem that resists standard methods of developing

treatment regimens and accomplishing this goal requires the application of

simulation-based, model-free deep reinforcement learning (DRL) in a fashion

akin to training successful game-playing artificial intelligences (AIs). This proof-

of-concept study determines if simulated sepsis (e.g. infection-driven cytokine

storm) can be controlled in the absence of effective antimicrobial agents by

targeting cytokines for which FDA-approved biologics currently exist.

Methods: We use a previously validated agent-based model, the Innate

Immune Response Agent-based Model (IIRABM), for control discovery using

DRL. DRL training used a Deep Deterministic Policy Gradient (DDPG) approach

with a clinically plausible control interval of 6 hours with manipulation of six

cytokines for which there are existing drugs: Tumor Necrosis Factor (TNF),

Interleukin-1 (IL-1), Interleukin-4 (IL-4), Interleukin-8 (IL-8), Interleukin-12 (IL-

12) and Interferon-g(IFNg).

Results: DRL trained an AI policy that could improve outcomes from a baseline

Recovered Rate of 61% to one with a Recovered Rate of 90% over ~21 days

simulated time. This DRL policy was then tested on four different
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parameterizations not seen in training representing a range of host and

microbe characteristics, demonstrating a range of improvement in

Recovered Rate by +33% to +56%

Discussion: The current proof-of-concept study demonstrates that significant

disease severity mitigation can potentially be accomplished with existing anti-

mediator drugs, but only through a multi-modal, adaptive treatment policy

requiring implementation with an AI. While the actual clinical implementation

of this approach is a projection for the future, the current goal of this work is to

inspire the development of a research ecosystem that marries what is needed

to improve the simulation models with the development of the sensing/assay

technologies to collect the data needed to iteratively refine those models.
KEYWORDS

drug repurposing, machine learning and AI, sepsis, multiscale modeling and simulation,
agent - based modeling, cytokine storm, COVID - 19, deep reinforcement learning
1 Introduction

A striking feature of the COVID-19 pandemic in its early phases

was that medical resources, particularly those in critical care units,

were overwhelmed. This issue arose primarily because of the inability

to affect the underlying biological processes that drove the course of

disease; once the disease manifested the only option was supportive

care until the disease ran its course. Given the challenges in

developing specific antiviral agents and the mandatory time

required to bring novel drugs or new vaccines to clinical

deployment, preparation for the next pandemic should include the

development of measures that canmore effectively and efficiently use

existing drugs to reduce and mitigate disease severity. Specifically,

with respect to COVID-19, there was an early recognition that severe

disease was associated with “cytokine storm” (1–6) or “cytokine

release syndrome” (7–10), namely that the body’s inflammatory/

immune response was producing unintended and detrimental

collateral damage in response to the viral infection. There is a

suggestion that based on the pathophysiological time courses of

acute viral infections (1–10) disease manifestation occurs subsequent

to the peak(s) of viremia; it is exactly this host-response driven

pathophysiological phase that significantly contributes to utilization

of in-hospital and critical care resources. As a result, there was a great

deal of interest in repurposing immunomodulatory agents to

attempt to mitigate disease severity in COVID (11–13), but to

date, with the exception of the use of steroids for severe disease

(14), none of these approaches have been unambiguously proven to

be effective in the treatment of infection-generated cytokine storm/

cytokine release syndrome.

This should not come as a surprise. The phenomenon of

collateral tissue damage arising from dysregulated inflammation

described as “cytokine storm/cytokine release syndrome” is exactly
02
the process that drives disease severity and multiple organ failure in

bacterial sepsis, for which no immunomodulatory interventions

have been shown to be reliably effective (15). In fact, the current set

of immunotherapies for chronic inflammatory diseases, exactly

those proposed for repurposed use in COVID, were themselves

repurposed from agents that initially failed in sepsis trials. We have

previously reported on the challenges present in attempting to

control sepsis using anti-cytokine/anti-mediator therapies,

primarily stemming from the failures to recognize the dynamic

complexity of the mechanistic processes ostensibly being targeted

(16) and that in order to be effective the treatment of sepsis should

be considered a complex control problem (17). In previous work we

have shown that sepsis is potentially controllable by discovering

multi-modal control strategies using different types of machine

learning (ML) methods trained on a complex agent-based model of

acute systemic inflammation (the Innate Immune Response Agent-

based Model, or IIRABM (18)) (19–21). Specifically, the latter

projects described in Refs (20, 21) utilized the method, Deep

Reinforcement Learning (DRL), employed by ML/Artificial

Intelligence (AI) systems to successfully play and win a series of

games against human experts (22–24). We term this approach

simulation-based DRL, and in prior work applied to method where

we treated the attempt to control sepsis as a “game” to be played

using the IIRABM, where potential cytokine interventions

represented the “moves” implemented by the AI agent (20, 21).

The recognized heterogeneity seen in clinical cytokine time

series data for infection-induced cytokine storm/cytokine release

syndrome [for example, as seen in the data from COVID-19

patients (25–30) or those with influenza (31–35)] suggests that

individual patients have quite different cytokine profiles at

different times, different profiles that may represent different

immunological states that may call for different sets of
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modulators. Differentiation between immunological states is

particularly difficult if one is trying to identify that state for an

individual patient: for instance, in all the papers regarding time

series cytokines in COVID (25–30), while there may be statistical

discrimination across the mean population cytokine trajectories

there is considerable overlap between individual profiles/values

across the range of disease severity classes. This makes it nearly

impossible to profile an individual patient, which is what is

necessary to select among different treatments to decide which

particular one should be given. However, different responses to

those modulators between otherwise ostensibly similar immune

profiles can provide further discrimination of the functional

immune responsiveness of an individual, and this response-

information can lead to further refinement of what treatment/

modulation is called for. All these factors suggest that an

adaptive control approach, which simulation-based DRL

produces, is called for. We also note that other modeling

approaches that utilize differential equations (36–42) have

addressed the issue of heterogeneity using purely deterministic

methods. Our particular approach is distinct in that data

variance arises from both biological stochasticity as well as

differential dynamics due to microbial mechanism and

host responsiveness.

In the context of developing capabilities to mitigate the

disruption of a future potential pandemic, particularly in its

early phases where there should be concurrent efforts at

developing vaccines and other specific anti-viral agents, we

make the following assertions:
Fron
1. Dysregulated and detrimental systemic inflammation is a

primary source of disease severity in acute viral illness;

2. There is a critical need to have virus-agnostic disease

mitigation therapies in the early phases of a pandemic.

3. There is proven inefficacy of standard approaches to

applying immunomodulation in the face of cytokine

storm/cytokine release syndrome/sepsis; and

4. There is a need to increase the efficiency and efficacy of

repurposing existing immunomodulatory agents to

provide virus-agnostic disease mitigation options.
We propose that simulation-based control discovery using

DRL can provide useful insights and potentially critical

capabilities for designing effective multi-modal and adaptive

immunomodulatory therapies for infections for which no

effective anti-microbial agents exist, as might be expected for a

potential pandemic due to a novel infectious agent. This

approach requires the generation of synthetic data upon which

the DRL can operate. There exist several mechanism-based

computational models of the host response is COVID-19 that

could theoretically be re-purposed to represent a hypothetical,

novel infectious agent; these models are mostly equation-based

differential equation models (36–42), with some cases of agent/
tiers in Immunology 03
individual-based models (43) and hybrid models (44). Our work

uses the IIRABM for this purpose, and our hope is that our work

will prompt other investigators to utilize the presented methods

on their models.

We have previously demonstrated in a proof-of-concept

report that such a control policy can be discovered with DRL

when manipulating up to 11 different mediators and soluble

factors every 6 minutes (21). We now extend that study to

evaluate whether DRL can train an artificial neural network

(ANN) to discover a treatment policy utilizing existing anti-

cytokine drugs to improve the outcomes to simulated infection

in the absence of anti-microbial treatment. We wish to

emphasize that the current investigation is not a simulation

specifically of COVID-19, but rather a generic infection able to

generate an inflammatory response.
2 Methods

2.1 Background and rationale for
current investigation

The current work is the most recent investigation in a

decades-long research program that uses mechanism-based

agent-based modeling to address the challenge of controlling

infection-induced pathogenic acute systemic inflammation (i.e.

sepsis/cytokine storm/cytokine release syndrome); we believe

that relaying the path from the initial investigations to the

current one will aid in placing the current project in context

and help point to future directions. One of the earliest uses of the

IIRABM was to perform in silico clinical trials of existing (single

agent) and hypothetical (including combination therapy) anti-

cytokine interventions (18). This work demonstrated that single

and simple combination therapy would not work but did not

provide a path forward as to what might work; we could not

provide guidance as to what might be successful. Over the

subsequent decade, with no cytokine manipulating therapies

with success in clinical trials, there was concern that it may not

actually be possible to control sepsis with mediator

manipulation. Therefore, we considered that a more complex

multi-modal and potentially variable mediator manipulation

might be necessary and used genetic algorithms (GA) to

search across all potential combination therapies possible

within the IIRABM to determine whether the system could be

controlled at all (19). The key findings of this work were that the

system was theoretically controllable when using a complex

multimodal policy, but differential responsiveness in terms of

cytokine trajectories amongst the in silico cohort could cause the

policy to fail for a subset of individuals. As such, by accounting

for the known heterogeneity of inflammatory/cytokine/mediator

trajectories our simulations demonstrated an inherent limitation

to GA-based optimization. To address this, we attempted to
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discover “personalized” therapeutic policies using DRL, which is

a strategy that inherently accounts for differential paths to

similar configurations of the system and optimizes actions to

provide the highest probability of the desired outcome. We

recognized that this work was at a ‘proof of concept’ stage,

and to demonstrate feasibility we allowed full observation and

control in order, again, to determine if satisfactory control was

even possible (20, 21). In the current work in this paper, we take

a step towards clinical relevance by limiting the observation and

action space to existing drugs as well as limiting the timing of

system measurements and actions in an interval clinically

plausible in a critical care environment (e.g. every 6 hours).

This is done recognizing that currently the desired assays do not

exist; however, we believe that the conceptual demonstration of

what might be possible should these sensing technologies exist

may help direct advances in sensing technologies, which are a

critical piece of the larger puzzle of developing personalizable/

adaptable and generalizable therapeutic strategies.
2.2 Description of IIRABM

The simulation model used for DRL ANN training is a

previously validated agent-based model of sepsis, the IIRABM

(16, 18). We have previously used the IIRABM as a surrogate/

proxy system for the investigation of potential control strategies

(45) for sepsis, both using genetic algorithms (19) and DRL (20,

21). A detailed description of the IIRABM can be found in Ref
Frontiers in Immunology 04
(18); here we present a brief overview to provide enough

background to describe the control discovery work that is the

subject of this paper.

The IIRABM is a two-dimensional abstract representation of

the human endothelial-blood interface with the modeling

assumption that the endothelial-blood interface is the

initiation site for acute inflammation. The closed nature of the

circulatory surface can be represented as a torus, and the two-

dimensional surface of the IIRABM therefore represents the

sum-total of the capillary beds in the body. The spatial scale of

the real-world system is not directly mapped using this scheme.

The IIRABM simulates the cellular inflammatory signaling

network response to injury/infection and reproduces all the

overall clinical trajectories of sepsis (18) and clinically

plausible mediator trajectories associated with acute systemic

inflammation in response to infection (16, 18, 19). The IIRABM

incorporates multiple cell types and their interactions:

endothelial cells, macrophages, neutrophils, TH0, TH1, and

TH2 cells as well as their associated precursor immune cells. A

schematic of the components and interactions in the IIRABM

can be seen in Figure 1.

The content of the IIRABM is not intended to be a

comprehensive list of all the cellular subtypes present in the

immune system, but rather represents the minimally sufficient

set of cell populations able to represent every necessary function

in the innate response to infection. System mortality of the

IIRABM is defined when the aggregate endothelial cell damage,

represented by the model variable “Oxy-deficit”, exceeds 80% of
FIGURE 1

Schematic of cell types, mediator and connections in the Innate Immune Response Agent-based Model (IIRABM). IL1 , Interleukin-1; IL4 ,
Interleukin-4; IL8 , Interleukin-8; IL10 , Interleukin-10; IL12 , Interleukin-12; TNF , Tumor Necrosis Factor; GCSF , Granulocyte Colony
Stimulation Factor; IFNg , Interferon-gamma; TNFr , Tumor necrosis factor receptor; sTNFr , soluble Tumor Necrosis Factor Receptor; IL1r ,
Interleukin-1 receptor; IL1ra , Interleukin-1 receptor antagonist; pTH1 , pro-Type 1 Helper T-cell state; pTH2 , pro-Type 2 Helper T-Cell state.
For full details of the IIRABM see Ref (18). Figure reprinted from Ref (19) under the Creative Commons License.1058478308 (11108).
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the total baseline health of the system; this threshold represents

the ability of current medical technologies to keep patients alive

(i.e., through organ support machines) in conditions that

previously would have been lethal.

The IIRABM is a stochastic model, and there are 3 primary

sources of “noise” in the IIRABM: 1. The initial spatial distribution

of cells across the world grid at initialization (not an unreasonable

assumption given that in a particular tissue such variation would be

expected to occur) 2. Semi-Brownian movement of cells prior to

them encountering a chemotactic gradient (also we believe a not

unreasonable assumption) and 3. In the inflection point between

competing pathways manifest at the individual cellular level, e.g. the

inflammatory state of a macrophage as a weighted ratio of the pro-

and anti-inflammatory mediators in the cell’s immediate milieu

(also we believe this is not unreasonable). The inclusion of

randomness in these three areas is able to generate heterogeneity

across a set of simulation runs that mimics the variation seen in

clinical populations (16, 18), and allows us to generate virtual

populations with defined recovery/mortality rates.

Simulated infections in the IIRABM are initiated using 5

parameters representing the size and nature of the injury/

infection as well as a metric of the host’s resilience:
Fron
1. Host Resilience: This represents the rate at which a

damaged cell recovers its “health”. A higher value means

that the host/patient can more rapidly recover from

cellular damage/dysfunction.

2. Microbe Invasiveness: This represents the degree to

which the microbe can infect surrounding cells. A

higher value means that the microbe can more readily

infect surrounding cells.

3. Toxigenesis: This represents the degree to which a

microbe can damage and eventually kill an infected

cell. A higher value means that the microbe can more

rapidly kill an infected cell.

4. Environmental Toxicity: This represents the degree of

environmental contamination that can lead to

nosocomial/hospital acquired infection. This function

was not included in the current set of simulation

experiments.

5. Initial Infection Size: This represents the amount of the

initial inoculum of the microbe.
These 5 parameters represent factors that clearly affect the

lethality of a potential infection, but are not functionally

extractable or measurable in any reliable fashion. Previous

work (16) identified the boundary conditions for these

parameters in terms of generating clinically realistic behavior,

but for any particular individual these parameters are essentially

unquantifiable except in terms of the mortality rate generated

within a simulated population. We note that for the current

investigations we set the Environmental Toxicity parameter to 0

in order to not confound the simulation experiments by
tiers in Immunology 05
including secondary bacterial infections. Therefore,

parameterizations of the IIRABM for these simulation

experiments used the parameters (host resilience, microbial

invasiveness, microbial toxicity, initial infection size). To set

up the DRL training environment, we selected a parameter set

that would produce a Recovered Rate of approximately 60% (=

40% mortality), a disease severity roughly approximating that of

severe sepsis or viral induced cytokine storm/cytokine

release syndrome.
2.3 Deep reinforcement learning

Deep Deterministic Policy Gradient (DDPG) (46) was used

to discover a control algorithm that is able to heal in silico

patients by either augmenting or diminishing the concentration

of cytokine signaling molecules in the simulation. DDPG is a

powerful reinforcement learning (RL) algorithm able to use off-

policy data and the Bellman equation (Equation 1) to learn a

value function, or Q-function, to determine the most valuable

action to take given any state of the simulation.

Q∗(s, a) = E
s 0∼P

½r(s, a) + gmax
a 0

Q∗(s 0, a 0 )� (1)

Equation 1: The Bellman Equation.

Value Q is a function of the current state and action (s, a),

and is equal to the reward r from the current state and chosen

action (s, a) summed with the discounted value of the next state

(discount factor = g) and action (s’, a’) where the next state is

sampled from a probability distribution (s’ ~ P).

The Q-function is discovered through trial and error and

allowing an RL agent to optimize the Q-function based on

observed rewards from chosen actions. DDPG can be thought

of as an extension of the Q-learning algorithm (47), where it is

able to choose from a continuous action space. In Q-learning,

the next action is chosen from a set of discrete actions that can be

taken based on the output of the Q-function. The best action to

take from the current state is identified by finding which action

will return the highest value from the Q-function. Q-learning is

an off-policy algorithm, which means that in the training phase,

the RL agent is sometimes able to choose actions that are not the

ones chosen by the Q-function. This allows the agent to explore

and potentially discover actions that can lead to a greater reward

than continuing from an already discovered policy. Q-learning

has proven to be very powerful at solving control problems in

discrete space and has proven on benchmark RL problems that

the discovered control algorithm can be very robust (46).

DDPG extends Q-learning to a continuous action space. It is

too computationally expensive to exhaustively search the action

space for the optimal action during the learning phase since the

action space is continuous. Because of this, DDPG uses an

“actor” neural network to choose an action based on the

current state. The chosen action is used for the simulation,
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and a new state and reward is returned by the RL environment.

The reward then updates the Q-function to more closely

approximate the true value function for the environment, and

the updated Q-function is used to perform gradient descent on

the actor network to improve its decision making in the future.

Because updates to the actor network are made based on an

approximation, DDPG is sometimes susceptible to variations in

starting conditions, and is sometimes unstable as it learns.

Because of this, learning rates for the actor network and the

Q-function approximation are usually slow. Additionally, to

help stability, DDPG uses what is called an “Experience Replay

Buffer” to sample a batch of states and actions the agent has

taken in the past, instead of relying only on the current state and

action for network updates.

2.3.1 Training environment
The goal of this work is to determine if an effective

immunomodulatory strategy utilizing a set of existing anti-

cytokine drugs could balance the need for an effective immune

response to contain an infection in the absence of anti-

microbials while preventing system death due to cytokine

storm. We wanted to mimic a clinically relevant population

and therefore chose parameter values and initial conditions to

provide an overall mortality of ~40%. Using our previously

identified method of finding relevant parameter sets within

bioplausible parameter space (16) we chose the following

parameters and initial infection level in order to identify the

baseline conditions of the IIRABM that would subsequently be

used for DRL:
Fron
• Host Resilience [oxyheal] = 0.08: This represents the rate

at which the baseline endothelial cells recover their oxy

level, back to a baseline of 100.

• Invasiveness [infectSpread] = 2: This represents the

number of adjacent grid spaces the infection spreads

to after it has reaches the carrying capacity on an

individual grid.

• Environmental Toxicity [numRecurInj] = 0: This

represents the number of grid spaces are randomly

reinfected every 24 hours, reflecting environmental

contamination. In these set of simulation experiments

this function was not included.

• Toxigenesis [numInfectRep] = 2: This represents the

amount of damage produced by a microbe on the grid

space it occupies.

• Initial Infection Amount [inj_number] = 20: This

represents the radius in number of grid spaces of a

circular inoculation of the infection
With these parameters the IIRABM had a Recovered Rate of

61% (= 39% Mortality) at the end of simulated 21 days. We note

that the process of DRL requires choosing a single parameter set
tiers in Immunology 06
for training and internal testing; we then evaluated the

generalizability of the learned treatment policy by testing it on

a series of additional parameterizations.
2.3.1.1 Initial and termination conditions

A training episode begins 12 hours after the application of

the initial infection; this is to reflect the minimal necessary

incubation time between exposure and initiation of any

treatment. The episode ends when either the simulated patient

completely heals, dies, or if 500 time steps (= 21 simulated days)

have passed without meeting stopping conditions.

2.3.1.2 Observation space

The IIRABM states exists over a discrete, 2-dimensional

101 x 101 grid. The IIRABM includes 9 cytokines, 2 soluble

cytokine receptors (essentially inhibitors of their respective

cytokines), and population levels of 5 different cell types. The

IIRABM also reports the total amount of infection in the system

and the total amount of damage present in the system (as

reflected by the variable “Oxy-deficit”; but for purposes of this

paper this term will be called “Total System Damage” for

enhanced clarity). Since the IIRABM utilizes an abstract

spatial representation, the individual discrete grid cells are not

directly translatable to any potential spatial measurement. The

aggregated system levels are considered equivalent to values

potentially sampled in the blood, and therefore represent the

accessible information for any potential sensor or lab assay. As

this work attempts to approximate what might eventually be

available clinically, we assume that any circulating cytokine/

soluble receptor can be measured and returned every 6 hours:

this gives the system state as reflected in 11-dimensions (e.g. 9

cytokines + 2 soluble receptors represented in the IIRABM,

hereafter termed “mediators”). Alternatively, since in the

clinically setting there is a distinction between infectious

particles in the tissue and those that spill over into the blood,

we do not consider the total system infection a clinically feasible

observable and this value is not included in the observation space

for the DRL. Similarly, since the total amount of damage in the

system is not actually a quantifiable or observable metric in the

clinical patient, this value is not included in the observations

used to train the DRL; this is in contrast to our prior use of DRL

trained on the IIRABM (20). As such, the current DRL agent is

being trained on partially-observable states of the IIRABM.

2.3.1.3 Action space

In prior work we have examined whether acute systemic

infection due to an infectious agent for which no effective

antimicrobials exist is control lable at al l through

immunomodulation (21). That work, intended to determine if such

control was feasible at all, used the most extreme observation and

control space possible given the resolution of the IIRABM: every

mediator in the IIRABM could be manipulated up or down every 6
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minutes. The findings from this paper (21) suggested that it was

possible to reduce mortality from 85% to 10.4%. The current work

represents a step towards greater clinical plausibility, and restricts the

action space both in terms of interval and number of mediators

manipulated. Therefore, the current actions taken by the DRL agent

can either be augmentation or inhibition of six mediators present in

the IIRABM for which there are existing FDA-approved

pharmacological agents: Tumor Necrosis Factor-alpha (TNF),

Interleukin-1 (IL-1), Interleukin-2 (IL-2), Interleukin-4 (IL-4),

Interleukin-8 (IL-8), Interleukin-12 (IL-12) and Interferon-gamma

(IFNg). As this study is a proof-of-concept for potential clinical

plausibility, we choose a hypothetical yet clinically plausible time

frame in which a potential blood mediatory assay would be run and

used to inform the administration of a drug/set of drugs of 6 hours;

therefore, for the DRL action space interval, any or all of these

mediators could be manipulated every 6 hours. For this proof-of-

concept study and given our experience that controlling infection-

induced acute systemic inflammation is a complex control problem

this restriction of the observation and control space represents a step

towards a more potentially clinically-relevant simulation experiment.

As a simplifying approximation of clinical pharmacological effect the

duration of the effect of each intervention was simulated to last for 6

hours. An augmentation action takes the form of the addition of a

continuous value from 1 to 10 to the value of a particular mediator.

Inhibition takes the form of the multiplication of the existing

mediator value by 0.001 to 1; this approach is done to avoid

negative (or exploding, in the case of pathway augmentation)

values and is consistent with the dynamics of mediator inhibition.

These are reflected in the code thusly: if action_mag > 0, action =

(action_mag) +1⇒ addmediator between 1 and 10; if action_mag<0,

action = action_mag + 1.001 ⇒ multiply mediator between 0.001

and 1.

The ability to manipulate any combination of mediators

present is meant to simulate the potential use of combinations

of interventions, which our prior work has suggested is necessary

to effectively control sepsis (19–21); the DRL approach is intended

to assist in addressing the exponential/combinatorial issues

associated with multi-drug therapy and the additional challenge

needing to modify a particular treatment application to account

for the temporal heterogeneity among individuals with regards to

their disease trajectories.
2.3.1.4 Reward function

The current DRL strategy includes two types of reward

functions. The first are terminal rewards: these are evaluated at

the end of an episode and are analogous to either winning or

losing the game. The current work has a positive terminal reward

if the system heals: r=0.999step*1000, whereas the negative

terminal rewards if the system dies is: r=0.999step-1000. The

incorporation of the step at which the terminating condition is

met is intended to reward quicker healing, penalize faster death,

and not penalize prolongation of life (albeit in a diseased state).
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rewards; these are reinforcing conditions to aid in learning

during the course of the episode run. The intermediate reward

function is:

ODt−1 − ODt −oi aij j (2)

where ODt indicates the total system damage at time t, and ai is

the value for the action taken on mediator i. The intermediate

reward calculation rewards systems that reduce their damage per

time step and are able to do so with a minimal amount of

intervention. The latter goal is consistent with the concept of

minimizing necessary interventions and avoiding potential side

effects that may not be reflected in the resolution of the

simulation. Note that while we do not include the total system

damage as an observable that can be used to determine actions,

we believe it is valid to include it in terms of the reward function

since this is a property of the simulation-based training and not

intended to reflect a clinically-accessible metric.

2.3.1.5 Training procedure

For training a batch of 20 DDPG agents were created using

the stable_baselines3 package and trained simultaneously using

MPI on the IIRABM environment. The environment is set up

such that the agent selects an action, and that action is held for 6

hours, then the agent is free to select a new action based on its

observation. The simulation ends when oxygen deficit (a

measure of total system damage in the IIRABM) either reaches

a value below 100 (indicating a fully healed run) or above 8160

(indicating damage so great that the run is considered dead). If

the simulation does not reach a terminal conclusion by 5000

simulation steps (~21 days of simulated time), the episode is cut

off and a new one is started. The reward at each step is the

change in oxygen deficit compared to the previous step, with a

decreasing value returning a positive reward. A terminal reward

of 1000 is given for a run ending with a successful heal, and a

penalty of -1000 is given for a run ending with a death. Each

agent was allowed to take 432,000 actions during the learning

period, which equates to at least 6000 episodes, with that amount

increasing slightly depending on how many episodes end before

the time limit of 4200 simulation steps.

The code for the DRL environment (which includes the

IIRABM and the DRL training code) can be found at https://

github.com/An-Cockrell/DRL_Control
3 Results

There were three possible outcomes from the simulations

under control conditions: 1) Complete healing, where the Total

System Damage goes to 0; 2) System Death, where the Total

System Damage reaches 80% of baseline health (arbitrarily set and

consistently used since initial paper on the IIRABM in 2004 (18));
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and 3) “TimeOut”where the system achieves neither condition #1

or #2. We note that the Time Out condition is not present in the

baseline uncontrolled case, where simulated individuals either

Recovered (61%) or Died (39%) by the end of the simulation run

(5,000 steps = ~21 days). The Time Out result arises from the

application of the control policy to the simulation such that the

control provides “life support” that prolongs the duration of a

system run that would likely otherwise “die”. We identified that

below a threshold of Total System Damage of 600 the system

would invariably heal, and therefore aggregated our outcomes into

two groups; “Recovered” which includes completely healed and

those with Total System Damage< 600 at the end of 21 days

simulated time, and “Non-recovered” for those simulations that

met Death criterial (Total System Damage > 80%) or Total System

Damage > 600 at the end of 21 days. Incidentally, this baseline

mortality rate is approximately that of COVID-19 in the pre-

pharmacological treatment era.

DRL training proceeded for 6000 episodes and converged to a

policy that had a Post-Control Recovered Rate = 90% with a Non-

recovered Rate of 10% (N=100). These results were a significant

improvement over the uncontrolled base condition, which had a

Recovered Rate = 61% (Non-recovered rate of 39%). Figure 2A

shows the Total System Damage Trajectories between simulated

patients that Recover (Green) and those that do not (Red). Panels

2B and 2C show the total level of cytokines/mediators present in

the system in both the Recovered (Figure 2B) and Non-Recovered

(Figure 2C) groups. It is evident that worse outcome was

associated with sustained levels of pathway activation, which

corresponds to the hypothesis that hyperactivation of

inflammation is a significant driver of disease severity.

The control policy was also able to completely eradicate the

initial infection without the aid of antimicrobials by augmenting

the immune clearance capability (Figure 3). Note that the

infection is essentially eradicated by ~ 6 days.

The discovered policy manipulated each of the six targeted

mediators in some fashion (either augmentation or inhibition)
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every six hours in a variable fashion. Successful control

outcomes in the Recovered group are seen in Figures 4A-F.

These actions can be broadly divided into three classes: constant

inhibition, constant augmentation, and balance/optimization.

Panels A and B show the cytokines whose protein synthesis

pathways are constantly inhibited, IL1 and IL8; Panels C, D, and

E show the (near) constant augmentation of protein synthesis

pathways for IL4, IL12 and IFNg; Panel F demonstrates the

algorithm “balancing” the appropriate level of TNF in order to

optimize the outcome. We note that the (near) constant

augmentation actions contain very few and very brief periods

of inhibition. Given that excess inflammation can lead to

additional tissue damage or runaway inflammation, we

speculate that these rare and brief periods of inhibition are the

algorithm attempting to “pump the brakes” on the inflammatory

process and maintain sufficient inflammation to heal infection

and prevent further nosocomial infections while preventing the

inflammation from progressing to a state in which it is

uncontrollable. TNF is distinct in that the actions contain both

augmentation and inhibition throughout the duration of the

controlled simulation. This is a more extreme example of the

logic outlined above – additional pro-inflammatory stimulus

(i.e., TNF) is needed to successfully heal the system, but too

much will lead to a negative outcome.

To aid in visualizing how the implementation of a control

policy addresses variability/heterogeneity in cytokine dynamics

seen between individuals, the following graphs show the specific

control trajectories for three specific simulated individuals who

were successfully treated (Figure 5).

In this figure, the balancing behavior of the TNF control is

especially apparent. We note that the action magnitude lies just

below the neutral line for the majority of the duration of the

simulation, interrupted by brief periods of augmentation near

the terminus of the simulation, which is needed to completely

resolve the initial insult. Similar behavior is shown for the IL1

control, however instead of augmentation near the end of the
A B C

FIGURE 2

Differences between Recovered and Non-recovered Groups in terms of Total System Damage and Levels of Total Cytokines/Mediators present
in the system. Simulations run for 21 days. (A) Total System Damage Trajectories with DRL control policy. N = 100, Recovered (Green) = 90,
Non-Recovered (Red) = 10. (B) Trajectories of Total Cytokines/Mediators under control policy for the Recovered Group (N = 90). (C)
Trajectories of Total Cytokines/Mediators under control policy for the Non-recovered Group (N = 10). Comparing Panels B and C it is evident
that worse outcome was associated with sustained activation of the system’s pathways, lending intuitive support for treatment policies that
focus on mediator inhibition.
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simulation, it lessens the magnitude of inhibition. While these

alterations of actions were likely not necessary for the system to

heal in general, they did optimize the outcome – they healed the

system quicker than if no action were taken. Additionally,

because these augmentations (or decreased inhibitions)

occurred when the system configuration was in a less

inflammatory state (i.e., the serum cytokine concentration of

pro-inflammatory molecules was significantly less after some

healing had occurred), the danger of augmentation leading to

runaway inflammation was ameliorated.

Lastly, in order to test whether the learned control policy was

applicable to other IIRABM parameterizations we tested the

efficacy of the control policy for 4 additional conditions:
Fron
• Test 1: Host Resilience = 0.1: Invasiveness = 1:Toxigenesis

= 3: Initial Injury = 20. Notation Label (0.1, 1, 3, 20).

Test 1 Parameters generated a Baseline Recovered Rate

= 25%. This parameterization represents a group with

higher health resilience (corresponding to better

baseline health status), but exposed to a microbe that

more rapidly kills infected cells.

• Test 2: Host Resilience = 0.12: Invasiveness = 1:

Toxigenesis = 1: Initial Injury = 32. Notation Label

(0.12, 1, 1, 32). Test 2 Parameters generated a Baseline

Recovered Rate = 16%. This parameterization represents

a group with even higher baseline health, but is exposed

to a much larger initial inoculum (demonstrating dose-

dependent disease severity).

• Test 3: Host Resilience = 0.08: Invasiveness = 2:

Toxigenesis = 1: Initial Injury = 23. Notation Label

(0.08, 2, 1, 23). Test 3 Parameters generated a Baseline
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Recovered Rate = 19%. This parameterization represents

a group with the same baseline health status as the

training set, but was exposed to a microbe that more

readily infects surrounding cells.

• Test 4: Host Resilience = 0.12: Invasiveness = 2:

Toxigenesis = 1: Initial Injury = 28. Notation Label

(0.12, 2, 1, 28). Test 4 Parameters generated a Baseline

Recovered Rate = 37%. This parameterization represents

a group with higher baseline health, but was exposed to a

microbe that more readily infects surrounding cells.
The results of applying the previously trained DRL-policy is

shown in Table 1. We found that the learned policy is broadly

generalizable across a suite of microbial insults with a range of

inherent microbial properties (e.g., degree of invasiveness,

toxicity effects), with improvements in Recovered Rate ranging

from +33% to +56%.
4 Discussion

Future pandemics are an inevitability, and while many

preparations for future pandemics focus on somehow

enhancing novel drug/anti-viral/vaccine development

(important as they are), there are certain points that are

worth noting:
1. Pathogen-agnostic disease mitigation is a critical

capability in terms of readiness for future viral

pandemics. While there is a certain appeal to

developing viral-species specific interventions, such as
FIGURE 3

Clearance of initial infection via controlled immune functions. In all circumstances the initial infection was controlled by modulating the 6
targeted mediators, with infection essentially eradicated by ~Day 6.
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anti-viral agents and vaccines, these agents have a

mandatory lag-time in terms of their development;

despite the impressive and unprecedented success and

rapidity of COVID-19 vaccine development, it is

difficult to imagine how such modalities could be

made available is less than a year. Alternatively, there

is a highly conserved mechanism of disease pathogenesis

arising from the host inflammatory response, a shared

feature of many viral infections (1–6). Developing

effective strategies to control this process, while

maintaining host capability to eradicate the infection,

would provide a crucial capability in the early phases of

any future pandemic.

2. However, the need to balance effective inflammatory/

immune antimicrobial responses while mitigating the

detrimental effects excessive inflammation is a highly
tiers in Immunology 10
complex task. Sepsis has been known to involve

disordered and “excessive” inflammation for half a

century (48). However, attempts to modulate the

inflammatory response in the face of acute infection

ever since have failed to effectively translate into the

clinical arena (16). COVID-19 resurrected this interest

(49), with what should have been expected undecisive

results. The general failure of immunomodulation in the

face of acute infection suggests that future approaches

should consider this problem as complex control

problem, and apply methods appropriate to solving

complex control problems (17).

3. Drug repurposing is not as simple as extrapolating the

putative mechanism of a drug and assuming that such a

mechanism would be efficacious in a completely

different context. The urgency of COVID-19 prompted
A B

D

E F

C

FIGURE 4

(A–F). Control Actions taken in Recovered Group (N = 90). (A, B) show control actions that always inhibit IL1 and IL8. Panels (C–E) show control
actions that primarily augment IL4, IL12 and IFNg; (F) shows control actions that can vary from augmentation to inhibition for TNF. Note Y-axis
is log scale.
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the initiation of multiple potential therapies and trials

based on bioplausibility; but it should be noted that

every failed clinical trial presupposes that same

bioplausibility. The same Translational Dilemma

present in the development of new therapeutics (50) is

also in play with the drug repurposing task, and requires

the same readjustment of how to accomplish that task.

Notably, the nature of the Translational Dilemma, i.e.,

the need to dynamically mechanistically-evaluate

putative mechanistic bioplausibility, means that

correlative approaches that utilize AI/traditional
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computat ional approaches do not provide a

scient ifical ly sound path that addresses the

fundamental step in the drug evaluation process

because they rely on correlative methods and the

extrapolation of mechanistic-effect that has been

demonstrated to be ineffective (51–53).
We have previously proposed that the integration of

advanced forms of ML (specifically DRL) and high-fidelity

mechanism-based simulations provides a scientifically sound

path forward (17, 20, 54). As noted in the section
TABLE 1 Therapeutic model generalizability.

Parameterization Uncontrolled Recovery Rate Controlled Recovery Rate Improvement

Test 1: (0.1,1,3,20) 25% 81% 56%

Test 2: (0.12,1,1,32) 16% 56% 40%

Test 3: (0.08,2,1,23) 19% 52% 33%

Test 4: (0.12,2,1,28) 37% 83% 46%
The baseline and controlled mortality rates (MR) for IIRABM parameterizations upon which the DRL algorithm was not trained are presented here. Parameterizations are defined as (host
resilience, microbial invasiveness, microbial toxigenesis and initial injury size).
A B

DC

FIGURE 5

Plots of three representative individual controlled simulated patients, all of which recover, showing control actions (A, C) and targeted mediators
being controlled (B, D). (A, B) show the control actions on TNF and the resulting trajectories of TNF, respectively. Panels C and D show the
control actions on IL1 and the resulting trajectories of IL1. The different dynamics between the three patients can be seen in the variation
between their individual control actions and targeted mediators. Note that each of these simulated patients recovers at a different time point
(vertical dashed lines), at which time their respective simulations terminate. Also note that Y-axis is plotted using absolute values (not log scale
as seen in Figure 4).
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“Background and Rationale for the Current Investigation” the

trajectory of our preceding work started from an attempt to

address the lack of clinical success in effectively controlling sepsis

by attempting to answer the question: “Is sepsis controllable?”

Having demonstrated through a series of proof-of-concept

methodological studies that controlling sepsis is conceptually

possible, we now move in the direction of using those methods

to identify more clinically translatable findings. This current

study takes the first steps in that direction by limiting the control

space to clinically available drugs within a clinically plausible

interval, and suggests that this is also conceptually feasible.

However, we recognize that even the intervention policy

proposed herein may not be completely necessary, and

therefore future studies will involve modifying and evolving

our methods to identify minimally-sufficient control policies,

such as fewer combinations of drugs and less frequent assay-

treatment intervals, that would be more translationally tractable.

The intent of this approach is to provide a systematic framework

that can aid in directing the development of future sensor and

assay technology by identifying boundary conditions for their

capabilities and identifying new classes of drugs/targets while

utilizing those compounds that already exist.

Another potential benefit of the use of simulation-based

DRL is that the existence of the mechanism/knowledge-based

simulation model provides a degree of interpretability for an

artificial intelligence. The ability to examine the control policy in

reference to the mechanistic target of the control and the affected

behavior of the simulation model (see Figures 4, 5) provide a

means of positing why a particular strategy works and can

potentially help overcome concerns regarding the “black box”

nature of most modern AI systems.

A clear and critical challenge moving forward is developing

more detailed and trustworthy simulation models that can be used

for training AI-controllers that can be clinically deployed. We

recognize that there are multiple directions in which the IIRABM

can be enhanced, and we are actively exploring refinements such

as adding in additional T-cell subtypes (including TH17 cells),

other aspects of the adaptive immune response, representing local

physical processes such as the development of tissue edema, and

integrating with physiological models able to generate systemic

phenomena such as cardiovascular metrics (such as blood

pressure and cardiac output) and pulmonary measurements

(such as oxygenation/gas exchange). Achieving the goal of

developing more trustworthy simulation models includes

technical challenges that include not only being able to

represent the biology in sufficient detail, but developing

methods for calibrating and parameterizing such models that

take into account the inherent incompleteness of biological

knowledge and the considerable heterogeneity seen in biological

behavior (55, 56). Inherent to this process is also identifying

appropriately complex in vivo models in which conceptually

effective control strategies can be tested in a real-world system;

we believe this capability would require finding collaborators with
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expertise with large-animal “ICU” models able to implement the

cycle of sense/control/sense suggested by the DRL. Our hope is

that the dissemination of this work will aid in this process.

The need to deal with a perpetual and inevitable

incompleteness of mechanistic knowledge is a key point that

also needs to be recognized and dealt with: it cannot be that we

must wait to know “everything” about how the biology works

before we can hope to engineer interventions. Rather, we must

recognize the need to develop paths forward that can provide

some clinical utility while building in the capabilities to

perpetually and iteratively improve and refine our simulation

models. An example of this structure can be seen in the evolution

of weather modeling and prediction: when the importance of

being able to predict hurricane behavior was identified in the

1950s it was well-recognized that the existing mathematical

models were insufficient for the task. But rather than saying

this extremely difficult task was not worth pursuing, a model-

driven data collection ecosystem was developed with the explicit

goal of both providing some then-present-day benefit (limited

though that may have been), as well as, more importantly,

identifying and collecting the type of data needed to improve

the models. In this case, the modeling proposed was not limited

by what sort of data could be collected; rather, the types/scale/

complexity of the models needed to solve the problem were

specified, and data collection strategies and capabilities were

developed to allow the construction of the necessary models.

This is the inflection point that biomedical community faces

today in terms of fully leveraging the potential of mechanism-

based, algorithmic simulation models (54, 57). We hope that the

proof-of-concept demonstration presented in this manuscript

will provide additional stimulus at the potential for the role of

mechanistic algorithmic simulation models and how those

models can be integrated with cutting edge ML and AI

methods. We hope that this work will prompt additional

investigations to improve and advance this methodology, and,

critically, help drive the corresponding developments in real-

time mediator/cytokine sensing and administration such that we

will be better prepared to face the next inevitable pandemic.
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