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REVIEWED BY

Jose Artur Chies,
Federal University of Rio Grande do
Sul, Brazil
Nathalie C. Lambert,
INSERM U1097 Arthrites Autoimmunes
AA, France

*CORRESPONDENCE

Hong Zeng
minizenghong@126.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Immunological Tolerance
and Regulation,
a section of the journal
Frontiers in Immunology

RECEIVED 07 July 2022
ACCEPTED 14 November 2022

PUBLISHED 01 December 2022

CITATION

Hu L, He D and Zeng H (2022)
Association of parental HLA-G
polymorphisms with soluble HLA-G
expressions and their roles on
recurrent implantation failure: A
systematic review and meta-analysis.
Front. Immunol. 13:988370.
doi: 10.3389/fimmu.2022.988370

COPYRIGHT

© 2022 Hu, He and Zeng. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Systematic Review
PUBLISHED 01 December 2022

DOI 10.3389/fimmu.2022.988370
Association of parental HLA-G
polymorphisms with soluble
HLA-G expressions and their
roles on recurrent implantation
failure: A systematic review and
meta-analysis

Lian Hu1†, Dongmei He2† and Hong Zeng3,4*

1Department of Gynecology and Obstetrics, The Fourth Changsha Hospital, Changsha, China,
2Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen
University, Guangzhou, China, 3Department of Reproductive Medicine Center, Foshan Maternal and
Child Health Care Hospital, Southern Medical University, Guangzhou, China, 4Department of
Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
Introduction: HLA-G plays a central role in immune tolerance at the maternal-

fetal interface. The HLA-G gene is characterized by low allelic polymorphism

and restricted tissue expression compared with classical HLA genes. HLA-G

polymorphism is associated with HLA-G expression and linked to pregnancy

complications. However, the association of parental HLA-G polymorphisms

with soluble HLA-G (sHLA-G) expression and their roles in recurrent

implantation failure (RIF) is unclear. The study aims to systematically review

the association of HLA-G polymorphisms with RIF, the association of sHLA-G

expression with RIF, and the association of HLA-G polymorphisms with sHLA-G

expressions in patients attending in-vitro fertilization (IVF) treatment.

Methods: Studies that evaluated the association of HLA-G polymorphisms with

RIF, the association between sHLA-G expression with RIF, and the association

between HLA-G polymorphisms with sHLA-G expressions in patients attending

IVF treatment were included. Meta-analysis was performed by random-effect

models. Sensitivity analysis was performed by excluding one study each time.

Subgroup analysis was performed based on ethnicity.

Results: HLA-G 14bp ins variant is associated with a lower expression of sHLA-

G in seminal or blood plasma of couples attending IVF treatment. The maternal

HLA-G*010101 and paternal HLA-G*010102 alleles are associated with RIF risk

compared to other alleles. However, single maternal HLA-G 14bp ins/del

polymorphism, HLA-G -725 C>G/T polymorphism, or circulating sHLA-G

concentration was not significantly associated with RIF in the general

population. HLA-G 14bp ins/ins homozygous genotype or ins variant was

associated with a higher risk of RIF in the Caucasian population.
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Discussion: Specific HLA-G alleles or HLA-G polymorphisms are associated

with sHLA-G expression in couples attending IVF treatment. Several HLA-G

polymorphisms may be related to RIF, considering different ethnic

backgrounds. A combined genetic effect should be considered in future

studies to confirm the association of HLA-G polymorphisms and sHLA-G

expressions in relation to RIF.
KEYWORDS
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Introduction

Human leukocyte antigen (HLA)-G is a non-classical HLA

class Ib molecule that plays a vital role in the maternal

acceptance of the semi-allogenic fetus. The HLA-G gene,

locates on chromosome 6p21.3, consists of seven introns and

eight exons. Alternative splicing of HLA-G mRNA generates

seven HLA-G isoforms, including four membrane isoforms

(G1-G4) and three soluble isoforms (G5-G7) (1). In addition,

soluble HLA-G (sHLA-G) can be generated by shedding or

proteolytic cleavage of membrane-anchored HLA-G through

matrix metalloproteinases (MMPs) activity, such as shed HLA-

G1 (2, 3). HLA-G gene is characterized by low allelic

polymorphism and restricted tissue expression compared

with highly polymorphic classical HLA Ia genes (HLA-A, B,

C). HLA-G’s expression is mainly restricted to the maternal-

fetal interface and immune tissues. HLA-G is detectable in

body fluids as secreted soluble molecules despite the restricted

tissue expression (4–6). Essential functions of HLA-G at the

fetal-maternal interface include the inhibition of natural killer

(NK) cells mediated cytolysis, enrichment of regulatory T

(Treg) cells, and promotion of a shift from a T-helper (Th)1

to a Th2 cytokine profile (7). HLA-G polymorphisms are

associated with abnormal HLA-G levels and linked to

reproductive disorders such as implantation failure, recurrent

miscarriage, preeclampsia, and placental abruption (8–14).

One of the most studied HLA-G polymorphisms is the 14bp

insertion/deletion (ins/del) polymorphism located on exon

eight at the 3’ untranslated region (3’UTR). HLA-G 14bp

ins/del affects the stability of HLA-G mRNA and leads to

abnormal HLA-G expression (15, 16), which is associated

with recurrent miscarr iage (11) . HLA-G -725C>G

polymorphism located at the 5’upstream regulator region

(5’URR) or promoter region is reported to change the

methylation profile of CpG dinucleotide, resulting in a

modification of HLA-G expression and also linked to

miscarriage (17). Besides, the other HLA-G polymorphism

such as HLA-G -964G>A at 5’ URR, HLA-G allele variation
02
at exon 2, 3, 4, intron 2, and specific HLA-G haplotypes/

diplotypes are associated with sHLA-G expression and may be

linked to reproductive outcomes (8, 18–21). However, the role

of HLA-G polymorphism on RIF has been investigated in only

a few studies with contradictory results.

Recurrent implantation failure (RIF) is a complication

following in-vitro fertilization and embryo transfer (IVF-ET),

with an incidence rate of approximately 10~15%. RIF is defined

as good-quality embryos repeatedly failing to implant. It is

generally diagnosed based on the number of unsuccessful ET

cycles, the number of transferred embryos, female age, or a

combination of these factors (22). The causes of RIF include

decreased quality of gametes or embryos, decreased endometrial

receptivity, uterine anomalies, immune diseases, thrombophilia

conditions, endocrine disorders, metabolic disorders, and

genetic abnormalities (22). Genetic factors contribute to RIF

susceptibility as several genetic polymorphisms have been

reported to be associated with RIF (23–26). Investigating the

role of genetic polymorphisms on RIF susceptibility can help to

promote our understanding of the pathogenesis underlying RIF

and contributes to the prediction and prevention of RIF.

Increasing evidence underlines the essential role of immune

factors on embryo implantation as pregnancy remains an

immune challenge for the uterus. The key to successful

implantation and pregnancy maintenance is the immune

tolerance of the uterus to the semi-allogeneic fetus (27). HLA-

G plays a central role in immune tolerance at the maternal-fetal

interface. Interactions between sHLA-G and uterine

lymphocytes induce maternal immune tolerance for the

invading extravillous trophoblasts, which is the critical factor

affecting embryo implantation. Soluble HLA-G is essential for

embryo implantation. The embryo-secreted sHLA-G in the

culture medium served as a promising predictor for a

successful pregnancy (28–32). However, the role of parental

sHLA-G expression before pregnancy is less studied. The sHLA-

G expression in circulating blood is significantly increased in

pregnant women compared to that of unpregnant women.

sHLA-G level is dynamically changed during pregnancy.
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Recent studies indicate that HLA-G may be involved in

preparing for an immune environment before embryo

implantation because sHLA-G can be detected in the genital

tract, endometrium, and circulating blood of unpregnant women

and is also present in male semen. Though maternal sHLA-G

levels before pregnancy have been measured, their relationship

with RIF has not yet been well established. Therefore, the current

study aims to investigate the association of HLA-G

polymorphisms with RIF, the association of sHLA-G

expression with RIF, and the association of HLA-G

polymorphisms with sHLA-G expression in patients attending

IVF treatment.
Materials and methods

The authors performed this meta-analysis following the

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) guideline (33).
Searching strategy

We searched EMBASE, Pubmed, and CNKI (China National

Knowledge Infrastructure) for related studies from their

inception to 19 September 2022. The grey literature was

searched in OpenGrey (http://www.opengrey.eu/). The

references of the included studies were also hand-searched.

For searching studies that evaluate the association between

HLA-G polymorphism with RIF, the searching syntax in

PubMed involves the following text words: “HLA-G” or

“HLAG” or “human leukocyte antigen G” in combination with

“polymorphism” or “mutation” or “allele” or “genotype” or

“genetic” or “variant” or “haplotype” or “diplotype” and in

combination with “implantation” or “in vitro fertilization” or

“IVF” or “ICSI” or “Intracytoplasmic sperm injection” or

“embryo transfer”. For searching studies that evaluate the

association between sHLA-G expression with RIF, the

searching syntax in Pubmed involves the following text words:

“HLA-G” or “HLAG” or “human leukocyte antigen G” or

“sHLA-G” or “sHLAG” in combination with “expression” or

“level” or “concentration” and in combination with

“implantation” or “in vitro fertilization” or “IVF” or “ICSI” or

“Intracytoplasmic sperm injection” or “embryo transfer”. For

searching studies that evaluate the association between HLA-G

polymorphism with sHLA-G expression in patients attending

IVF treatment, the searching syntax in Pubmed involves the

following text words: “HLA-G” or “HLAG” or “human leukocyte

antigen G” or “sHLA-G” or “sHLAG” in combination with

“expression” or “level” or “concentration” and in combination

with “implantation” or “in vitro fertilization” or “IVF” or “ICSI”

or “Intracytoplasmic sperm injection” or “embryo transfer” in
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combination with “polymorphism” or “mutation” or “allele” or

“genotype” or “genetic” or “variant” or “haplotype” or

“diplotype” The detailed searching strategies and searching

results in Pubmed, Embase, and CNKI were listed in the

Supplementary Material.
Inclusion criteria and exclusion criteria

For evaluating the associat ion between HLA-G

polymorphism with RIF or the association between sHLA-G

expression with RIF, the inclusion criteria were: (1) case-control

studies; (2) the cases were RIF patients; (3) the control patients

were fertile women with ≥1 normal pregnancy and lived birth or

infertile women with ≥1 normal pregnancy following IVF; (4)

genotype frequencies or HLA-G concentrations are eligible for

calculation. The exclusion criteria were: (1) non-case-control

studies (cohort studies, reviews, case reports, or meta-analyses);

(2) the case group was not RIF patients. For evaluating the

association between HLA-G polymorphism with sHLA-G

expression, the inclusion criteria were: (1) case-control studies

or cohort studies; (2) the study population was patients

attending IVF treatment; (3) sHLA-G expression was

compared in each HLA-G genetic group. The exclusion

criteria were: (1) non-case-control or non-cohort studies

(reviews, case reports, or meta-analysis); (2) the study

population was not patients attending IVF treatment; (3)

patients with pregnancy complications (recurrent miscarriage,

pre-eclampsia) or other immune diseases. Studies in all

languages were included. Conference literature was included if

the data was eligible for analysis and did not overlap with the

published papers. Two authors (Lian Hu and Dongmei He)

independently performed the study selection. A meta-analysis

was performed for each HLA-G polymorphism with two or

more published studies.
Data collection and quality assessment

Two authors (Lian Hu and Dongmei He) independently

extracted the data from each study. We extracted the following

information from studies that evaluate associations between

HLA-G polymorphism or sHLA-G expression with RIF: first

author, publication year, country, ethnicity, age of cases and

controls, number of cases and controls, sample origin,

genotyping method, and the definition of RIF and control. We

extracted the following information from studies that evaluate

the association between HLA-G polymorphism with sHLA-G

expression in patients attending IVF treatment: first author,

publication year, country, ethnicity, study population, number

of patients tested, the sample tested, the timing of sample
frontiersin.org
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collection, type of assay, sHLA-G isoform, detection limit, and

result. We evaluated study quality following the modified

Newcastle-Ottawa scale (NOS). The scores of NOS ranged

from 0 points (worst) to 9 points (best). We defined scores ≥ 7

as high quality. All the other scores indicate low quality. Two

authors (Lian Hu and Dongmei He) assessed the study quality

independently. Disagreement in study selection, data extraction,

and quality assessment was dependent on the third author

(Hong Zeng).
Statistical analysis

We performed the meta-analysis using the random-effects

model due to each study’s heterogenous definition of RIF. The

odds ratios (ORs) with 95% confidence intervals (CIs) or

standardized difference in means (SMD) with 95% CIs were

reported to evaluate the associations. The heterogeneity of the

included studies was analyzed using the Q test and quantified

using the I2 test. I2<25%, I2 = 25-50%, I2 = 50-75%, and I2>75%

indicated no, moderate, large, and extreme heterogeneity,

respectively. We examined the Hardy-Weinberg equilibrium

(HWE) in the control group by the “GWASExactHW” R

pa c k a g e ( h t t p s : / / CRAN .R - p r o j e c t . o r g / p a c k a g e=

GWASExactHW). Deviation from HWE was confirmed if the

p-value<0.05. We assessed the publication bias using Begg’s test

and Egger’s test. Publication bias was confirmed if the p-value of

Begg’s or Eggers’ test was < 0.05. We performed subgroup

analysis based on ethnicity. We performed sensitivity analysis

by excluding one study each time. Though we only reported the

result of the random-effect model in the manuscript, both the

fixed-effects model and the random-effect model were

performed in each meta-analysis with the results listed in the

Supplementary Materials. All statistical analyses were performed

using the R software (The R Foundation for Statistical

Computing, version 4.1.1, https://www.r-project.org). A p-

value < 0.05 was considered statistically significant.
Results

Study characteristics

To investigate the association of HLA-G polymorphism with

RIF, 287 records were identified through literature searching.

We excluded 59 duplicates and excluded 205 records after

browsing titles or abstracts. 23 articles were assessed for

eligibility (8, 9, 18–21, 34–50). 12 articles were excluded from

systematic review and meta-analysis [two are reviews (38, 40),

one is a meta-analysis (9), five cases are not RIF patients (18, 21,
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34, 48, 49), and four are conference abstracts whose data overlap

with published articles (44–47)]. 11 articles were included for

systematic review. However, three articles were excluded from

the quantitative meta-analysis for reasons [two articles’ data are

not available to extract for synthesis (41, 43), one study reported

the polymorphisms only in their research thus could not be

synthesized (36)]. Finally, eight studies were included in the

quantitative analysis (8, 19, 20, 35, 37, 39, 42, 50). To investigate

the association of sHLA-G expression with RIF, 473 records

were identified through literature searching. We excluded 138

duplicates and excluded 307 records after browsing titles or

abstracts. 28 articles were assessed for eligibility (8, 19, 35, 38, 39,

41, 42, 50–70). 21 articles were excluded from systematic review

and meta-analysis [nine are reviews (38, 51–58), nine cases are

not RIF patients (59–67), and three studies did not measure the

sHLA-G levels (39, 42, 50)]. Four studies are excluded from

quantitative analysis for reasons [three articles’ data are not

available to extract for synthesis (8, 68, 69), one study measured

sHLA-G levels in the endometrium by semi-quantitative method

(41)]. Three articles were included in the quantitative synthesis

(19, 35, 70). To investigate the association of HLA-G

polymorphism with sHLA-G expression in patients attending

IVF treatment, 188 records were identified through literature

searching. We excluded 38 duplicates and excluded 132 records

after browsing titles or abstracts. 18 articles were assessed for

eligibility. Eight articles were excluded from the systematic

review [five were reviews (57, 58, 71–73), two were conference

abstracts without data (74), and cases in one study were not IVF

patients (59)]. Six studies were excluded from the quantitative

meta-analysis [three studies’ data are not available to extract for

synthesis (19, 41, 75), three articles reported the polymorphism

in only one study thus cannot be synthesized (8, 70, 76)]. Finally,

four studies were included in the quantitative meta-analysis (35,

77–79). The flow diagram of selecting studies for systematic

review and meta-analysis is shown in Figure 1.

There are several HLA-G polymorphisms reported in

different studies. Meta-analysis is performed if at least two

studies evaluate the same HLA-G polymorphism with RIF,

and the data can be extracted. Table 1 summarizes the

different HLA-G polymorphisms that have been reported in

RIF. Association of HLA-G 14bp ins/del polymorphism, HLA-G

-725 C>G polymorphism, HLA-G alleles distribution at exon2-4

(HLAG*0 10 1 0 1 , HLAG*01 0 1 0 2 , HLAG*0 1 01 0 3 ,

H LAG * 0 1 0 1 0 6 , H LAG * 0 1 0 1 0 7 , H LAG * 0 1 0 1 0 8 ,

HLAG*010401, HLAG*010403, HLAG*010404, HLAG*0106,

HLAG*0105N) were reported in more than two studies;

therefore, meta-analyses were performed in these HLA-G

polymorphisms. Meta-analysis is also performed based on

three studies that evaluated the association between sHLA-G

levels and RIF. The characteristics of included studies in the
frontiersin.org
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meta-analysis that evaluate the association between HLA-G

polymorphism with RIF or the association between sHLA-G

expression with RIF are presented in Table 2. The studies were

conducted in Poland, Denmark, Brazil, Iran, and the

Netherlands. The HLA-G 14bp ins/del genotype frequency in

the control group has deviated from HWE in Hviid’s study (p-

value=0.042) (39). The other studies’ HLA-G 14bp ins/del

genotype frequencies did not deviate from HWE. The HLA-G

-725C>G genotype frequencies in the included studies did not

deviate from HWE.

Ten studies are included in the systematic review to evaluate

the associations between HLA-G polymorphism with sHLA-G

expressions in patients attending IVF treatment. Characteristics

of the ten studies are shown in Table 3. Four of the ten studies

that reported the same HLA-G polymorphism with sHLA-G

expression were subjected to meta-analysis. In summary, the

studies were performed in Denmark, Poland, the Netherlands,

and Brazil. Most of the study’s ethnicity is Caucasian. Seven

studies reported the association of parental HLA-G

polymorphism with peripheral blood plasma or serum sHLA-

G expressions. Three studies reported the association of paternal

HLA-G polymorphisms with seminal plasma sHLA-G

expressions (77–79). One study detected the sHLA-G

expression in the endometrium by IH (41). The other studies

detected the sHLA-G expression in body fluid by ELISA with the

detection limit range from 0.6U/ml to 3.9U/ml. Most studies

detect sHLA-G isoforms of HLA-G1 and HLA-G5 by ELISA,

except for one study that detected the sHLA-G isoforms of HLA-

G5 and HLA-G6 (41). The quality assessment of all 11 studies

for meta-analysis is listed in Table 4. Ten of the studies were

assessed as high-quality, and one study assessed 6 points was

defined as low-quality.
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Meta-analysis of association between
HLA-G 14bp ins/del polymorphism
and RIF

A total of six studies comprising 416 RIF cases and 669

controls were included (8, 35, 37, 39, 42, 50). Results showed that

HLA-G 14bp ins/del polymorphism was not significantly

associated with RIF in the general population under all genetic

models (allele model: OR 1.16, 95%CI 0.67-1.99, p-value=0.599;

dominant model: OR 1.66, 95%CI 0.58-4.79, p-value=0.344;

recessive model: OR 0.96, 95%CI 0.38-2.41, p-value=0.925;

homozygotic model: OR 1.53, 95%CI 0.33-7.05, p-value=0.584;

heterozygotic model: OR 1.66, 95%CI 0.61-4.52, p-value=0.318)

(Figure 2 and Supplementary Table 1). Begg’s and Eggers’ tests

showed no significant publication bias (Supplementary Table 2).

Considering the effect of different genetic backgrounds on the

results, we performed a subgroup meta-analysis based on

different ethnicities. The subgroup analysis showed that HLA-

G 14bp ins/del polymorphism was significantly associated with

RIF in the Caucasian population under the allele model (OR

1.41, 95%CI 1.04-1.90, p-value=0.028) and the homozygotic

model (OR 2.48, 95%CI 1.09-5.62, p-value=0.030) (Figure 3

and Supplementary Table 3). Sensitivity analysis was performed

by excluding one study each time; results of the sensitivity

analysis showed that the result changed from non-significant

to significant under the allele model (OR 1.41, 95%CI 1.04-1.90,

p-value=0.028) and the homozygotic model (OR 2.48, 95%CI

1.09-5.62, p-value=0.030) after excluding Nardi’s study

conducted in 2016 (Figure 3). It is worth noting that the study

population in Nardi’s study conducted in 2016 was mixed

ethnicity, while the population included in the other studies is

Caucasian ethnicity. The subgroup analysis and sensitivity
FIGURE 1

Flow chart of study selection.
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TABLE 1 Summary of the HLA-G polymorphisms that have been reported in RIF patients.

HLA-G polymorphisms Location No. studies Publication Included in meta-analysis

HLA-G genotypes

HLA-G 14-bp ins/del (rs66554220/rs371194629) 3′UTR 6 Hviid 2004 (39)
Sipak-Szmigie 2009 (42)
Enghelabifar 2014 (37)
Lashley 2014 (50)
Nardi 2016 (35)
Nowak 2019 (8)

Yes

HLA-G -725 C>G(T) (rs1233334) 5′URR 2 Sipak-Szmigie 2009 (42)
Nowak 2019 (8)

Yes

HLA-G -964G>A (rs1632947) 5′URR 1 Nowak 2019 No

HLA-G haplotypes

Haplotypes of rs1632947-rs1233334-rs371194629 – 1 Nowak 2019 (8) No

Haplotypes of HLA-G alleles and rs371194629 – 1 Nardi 2012b (36) No

HLA-G diplotypes

Diplotypes of rs1632947–rs1233334–rs371194629 – 1 Nowak 2019 (8) No

HLA-G allele distribution

HLA-G*010101 Exon2-4 3 Kuroshli 2015 (20)
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

HLA-G*01010106 Exon2-4 1 Kuroshli 2015 (20) No

HLA-G*010102 Exon2-4 3 Kuroshli 2015 (20)
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

HLA-G*010103 Exon2-4 3 Kuroshli 2015 (20)
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

HLA-G*010105 Exon2-4 1 Kuroshli 2015 (20) No

HLA-G*010106 Exon2-4 3 Kuroshli 2015 (20)
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

HLA-G*010107 Exon2-4 2 Kuroshli 2015 (20)
Nardi 2012a (19)

Yes

HLA-G*010108 Exon2-4 3 Kuroshli 2015
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

HLA-G*010109 Exon2-4 1 Sipak-Szmigie 2009 (42) No

HLA-G*010112 Exon2-4 1 Nardi 2012a (19) No

HLA-G*010114 Exon2-4 1 Nardi 2012a (19) No

HLA-G*010120 Exon2-4 1 Nardi 2012a (19) No

HLA-G*0103 Exon2-4 1 Kuroshli 2015 (19) No

HLA-G*010301 Exon2-4 1 Nardi 2012a (19) No

HLA-G*010401 Exon2-4 3 Kuroshli 2015 (20)
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

HLA-G*010403 Exon2-4 2 Kuroshli 2015 (20)
Nardi 2012a (19)

Yes

HLA-G*010404 Exon2-4 2 Kuroshli 2015
Nardi 2012a (19)

Yes

HLA-G*0106 Exon2-4 3 Kuroshli 2015 (20)
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

HLA-G*01:05N Exon2-4 3 Kuroshli 2015 (20)
Nardi 2012a (19)
Sipak-Szmigie 2009 (42)

Yes

(Continued)
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analysis consistently indicate that ethnic background plays an

essential role in genetic susceptibility to RIF.
Meta-analysis of association between
HLA-G -725 C>G(T) polymorphism
and RIF

Two studies reported the association of HLA-G -725C>G(T)

polymorphism and RIF (8, 42). The results showed that single

HLA-G -725C>G(T) polymorphism was not significantly

associated with RIF under all genetic models (allele model: OR

0.83, 95%CI 0.63-1.09, p-value=0.183; dominant model: OR

0.80, 95%CI 0.58-1.09, p-value=0.155; recessive model:

OR 0.95, 95%CI 0.38-2.40, p-value=0.920; homozygotic model:

OR 0.89, 95%CI 0.35-2.26, p-value=0.813; heterozygotic

model: OR 0.79, 95%CI 0.57-1.10, p-value=0.163) (Figure 4

and Supplementary Table 4). Publication bias and sensitivity

analysis were not performed due to the small number of

included studies. Therefore, the results should be explained

with caution because only two studies evaluated HLA-G -725

C>G(T) polymorphism and RIF, and the sample size is small.
Meta-analysis of association between
HLA-G alleles variants and RIF

Three studies reported the association of HLA-G alleles

distribution at exon 2-4 (HLA-G*010101, HLA-G*010102,

HLA-G*010103, HLA-G*010106, HLA-G*010107, HLA-

G*010108, HLA-G*010401, HLA-G*010403, HLA-G*010404,

HLA-G*0106, and HLA-G*0105N) with RIF were included for

meta-analysis. Results showed that the maternal HLA-G*010101

allele is associated with a lower risk of RIF (OR 0.67, 95%CI 0.49-

0.90, p-value=0.008), maternal HLA-G*0105N tends to increase

the risk of RIF though without statistical significance (OR 2.86,
Frontiers in Immunology 07
95%CI 0.87-9.42, p-value=0.083). The paternal HLA-G*010102

allele is associated with a higher risk of RIF in their female

partner (OR 1.65, 95%CI 1.13-2.41, p-value=0.010) (Figure 5

and Supplementary Table 5).
Meta-analysis of association between
maternal circulating sHLA-G
concentration and RIF

Three studies investigated the association of maternal

circulating sHLA-G concentration with RIF (19, 35, 70). Meta-

analysis showed that maternal circulating sHLA-G

concentration was not significantly associated with RIF (SMD

-0.81, 95%CI -2.84~-1.21, p-value=0.432) with extremely

significant heterogeneity (I2 = 95.4%, p-value<0.01) (Figure 6

and Supplementary Table 6). The results should be explained

cautiously due to the considerable heterogeneity and the small

number of included studies.
Meta-analysis of association between
HLA-G polymorphism and sHLA-G
expression in patients attending
IVF treatment

Three studies reported the association of paternal HLA-G

polymorphisms with seminal plasma sHLA-G expression (77–

79), and two studies reported the association of maternal HLA-G

polymorphisms with blood plasma sHLA-G expression (35, 78)

were included for meta-analysis, respectively. Results showed

that the paternal HLA-G 14bp ins variant is associated with a

lower seminal sHLA-G expression in all comparisons (ins/ins vs

del/del: SMD -0.88, 95%CI -1.23~-0.54, p-value<0.0001; ins/ins

vs ins/del: SMD -0.51, 95%CI -0.84~-0.18, p-value=0.002; ins/del

vs del/del: SMD -0.35, 95%CI -0.62~-0.08, p-value=0.010; ins/ins
TABLE 1 Continued

HLA-G polymorphisms Location No. studies Publication Included in meta-analysis

HLA-G +482T/C Intron2 1 Kuroshli 2015 (20) No

HLA-G +485G/T Intron2 1 Kuroshli 2015 (20) No

HLA-G +494A/C Intron2 1 Kuroshli 2015 (20) No

HLA-G +505/+506 -/CC Intron2 1 Kuroshli 2015 (20) No

HLA-G +506 -/C Intron2 1 Kuroshli 2015 (20) No

HLA-G +615 A/- Intron2 1 Kuroshli 2015 (20) No

HLA-G +636C/T Intron2 1 Kuroshli 2015 (20) No

HLA-G +644G/T Intron2 1 Kuroshli 2015 (20) No

HLA-G +685G/A Intron2 1 Kuroshli 2015 (20) No
3’UTR, 3 prime untranslated region; 5’URR, 5 prime upstream regulatory region.
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vs ins/del+del/del: SMD -0.62, 95%CI -0.92~-0.32, p-

value<0.0001; ins/ins+ins/del vs del/del: SMD -0.52, 95%CI

-0.77~-0.27, p-value<0.0001) (Figure 7A-E and Supplementary

Table 7). Maternal HLA-G 14bp ins/ins genotype is associated

with a lower blood plasma sHLA-G level than ins/del and del/del

genotypes (SMD -0.54, 95%CI -1.06~-0.03, p-value=0.038)

(Figure 7F and Supplementary Table 8). Due to incomplete

data, we cannot conduct a meta-analysis based on other

maternal 14bp genotype comparisons.
Frontiers in Immunology 08
Discussion

Summary of this study

RIF is a multi-factorial complication following embryo transfer.

In addition to the embryo factor, immune dysfunction is one of the

leading factors contributing to implantation failure, which has been

a focus of interest. HLA-G plays a central role in inducing immune

tolerance through interactions between HLA-G and its receptors,
TABLE 2 Characteristics of studies included in the meta-analysis that reported the associations between HLA-G polymorphisms or sHLA-G
expressions with RIF.

Study
(year)

Period Country Race N
Case/
Ctr

Age
of

Case/Ctr

Sample Item
analyzed

HWE
(P-

value)

Definition
of RIF

Definition of
control

Hviid
(2004) (39)

NR Denmark Caucasian 14/108 NR Blood HLA-G 14-bp ins/
del

0.042 Patients with ≥3 or
more unsuccessful
IVF treatments

Women with twin
pregnancies after the
first IVF treatment and
fertile women with ≥2
uncomplicated
pregnancies and births.

Sipak-
Szmigiel
(2007) (70)

NR Poland Caucasian 20/20 NR Blood HLA-G
concentration

– Patients with ≥3 or
more unsuccessful
IVF treatments.

Fertile women with ≥2
uncomplicated
pregnancies and births.

Sipak
Szmigiel
(2009) (42)

NR Poland Caucasian 50/71 NR Blood HLA-G 14-bp ins/
del
HLA-G -725 C>G
(T)
HLA-G allele
distribution

0.449
0.520
-

Patients with ≥3 or
more unsuccessful
IVF treatments.

Fertile women with ≥2
uncomplicated
pregnancies and births.

Nardi
(2012) (19)

NR Brazil Mixed 41/60 31.6 ± 5.6/44.2 ±
11.7

Blood HLA-G
concentration
HLA-G allele
distribution

– Patients with ≥2 or
more unsuccessful
IVF treatments.

Fertile women with ≥2
normal pregnancies.

Enghelabifar
(2014) (37)

NR Iran Caucasian 40/40 NR Blood HLA-G 14-bp ins/
del

0.752 Women with at
least two failed
IVF-embryo
transfers, using at
least 6 appropriate
cleaved embryos.

Women with pregnancy
following IVF

Lashley
(2014) (50)

2005-
2009

Netherlands Caucasian 24/96 35 (26–40)/33
(25–38)

Blood HLA-G 14-bp ins/
del

0.667 Patients with ≥3 or
more unsuccessful
IVF treatments
with high quality
embryos
transferred.

Women with live birth
after one IVF/ICSI
treatment and fertile
women with ≥1
uncomplicated
pregnancies and births.

Kuroshli
(2015) (20)

NR Iran Caucasian 100/50 32.3/NR Blood HLA-G alleles
distribution

– Patients with ≥2
unsuccessful IVF
treatments

Healthy unrelated
Iranian individuals

Nardi
(2016) (35)

NR Brazil Mixed 49/34 36.04 ± 0.5/36.1
± 1

Blood HLA-G 14-bp ins/
del
HLA-G
concentration

0.471
-

Patients with ≥2 or
more unsuccessful
IVF treatments.

Fertile women with ≥2
pregnancies.

Nowak
(2020) (8)

NR Poland Caucasian 239/
437

34.63 ± 4/31.97 ±
3.63

Blood HLA-G 14-bp ins/
del
HLA-G -725 C>G
(T)
HLA-G
concentration

0.843
0.616
-

Patients with ≥3 or
more unsuccessful
IVF treatments
with good quality
embryos
transferred.

Women with live birth
after one IVF/ICSI
treatment and fertile
women with ≥1
uncomplicated
pregnancies and births.
NR, not reported; HWE, Hardy-Weinberg equilibrium; RIF, recurrent implantation failure; PCR, polymerase chain reaction; hCG, human chorionic gonadotrophin; ctr, control.
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TABLE 3 Summary of the studies that reported the association of HLA-G polymorphisms with sHLA-G expression in patients attending IVF treatment.

Study Country Ethnicity Study
population

Number
of

patients
tested

Sample
tested

Timing
of sample
collection

Type
of

assay

sHLA-
G

isoform

Detection
limit

Result Included
in meta-
analysis

Papúchová
2022 (41)

Denmark Caucasian Women
attending IVF
treatment

121 Endometrium the day
equivalent
to embryo
transfer

IH HLA-G5
and HLA-
G6

NR No
significant
differences
were
observed in
sHLA-G
expression
between the
different
HLA-G
genotypes

No

Piekarska
2021 (76)

Poland Caucasian Men
attending IVF
treatment

183 Seminal
plasma

2-7 days of
sexual
abstinence

ELISA HLA-G1
and HLA-
G5

0.6 IU/ml Certain
HLA-G
haplotypes
and
diplotypes of
rs1632947-
rs1233334-
rs371194629
are
associated
with seminal
sHLA-G
expression

No

Nilsson
2020 (79)

Denmark Caucasian Couples
attending IVF
treatment

127 couples
and 4
single
women

Periphery
blood plasma
and seminal
plasma

NR ELISA HLA-G1
and HLA-
G5

0.6 IU/ml HLA-G 14bp
genotype or
HLA-G
3’UTR
diplotype is
significantly
associated
with seminal
sHLA-G
levels, while
is not
significantly
associated
with female
blood
plasma
sHLA-G
levels

Yes

Nowak
2020 (8)

Poland Caucasian Women
attending IVF

234 before
IVF-ET
and 185
after IVF-

ET

Periphery
blood plasma

Before and
after IVF-
ET

ELISA HLA-G1
and HLA-
G5

0.6 IU/ml Certain
HLA-G
haplotypes
of
rs1632947-
rs1233334-
rs371194629
are
associated
with sHLA-
G expression
in blood
plasma
before IVF-
ET; whereas
such
observations

No

(Continued)
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TABLE 3 Continued

Study Country Ethnicity Study
population

Number
of

patients
tested

Sample
tested

Timing
of sample
collection

Type
of

assay

sHLA-
G

isoform

Detection
limit

Result Included
in meta-
analysis

were not
detected
after ET

Craenmehr
2019 (77)

Netherlands Caucasian Men
attending IVF
treatment

156 Seminal
plasma

NR ELISA HLA-G1
and HLA-
G5

0.6 IU/ml Seminal
plasma
sHLA-G
levels are
associated
with HLA-G
SNPs (HLA-
G 14 bp ins/
del, +3003
C/T, +3010
C/G, +3142
C/G, +3187
A/G, +3196
C/G, +3496
A/G and +
3509 G/T)
and
haplotypes at
the 3’UTR

Yes

Nardi 2016
(35)

Brazil Mixed RIF and
control
patients

58 Periphery
blood serum

NR ELISA HLA-G1
and HLA-
G5

0.25ng/ml HLA-G 14bp
del variant is
associated
with higher
sHLA-G
levels

Yes

Dahl 2014
(78)

Denmark Caucasian Couples
attending IVF
treatment

43 men for
seminal
test; 53

women and
47 men for
blood test

Seminal
plasma and
periphery
blood plasma

NR ELISA HLA-G1
and HLA-
G5

0.6 IU/ml Male HLA-G
14bp del/del
genotype is
associated
with higher
sHLA-G
levels in
seminal
plasma

Yes

Nardi 2012
(19)

Brazil Mixed RIF and
control
patients

41 RIF
women and
60 controls

Periphery
blood serum

NR ELISA HLA-G1
and HLA-
G5

3.9U/ml HLA-G
allele
distribution
in exon 2,3,4
is not
associated
with serum
sHLA-G
levels

No

Sipak-
Szmigiel
2007 (70)

Poland Caucasian Women
attending IVF
treatment

80 Periphery
blood plasma

NR ELISA NR 2U/ml Allele HLA-
G10101,
10102, and
10108 was
related to
higher
plasma
sHLA-G
levels than
other alleles

No

(Continued)
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including CD8, ILT-2/LILRB1/CD85j, ILT-4/LILRB2/CD85d,

KIR2DL4, and NKG2A/CD94 (58, 80). Besides inducing immune

tolerance, HLA-G controls trophoblast invasion, regulates vascular

remodeling, and facilitates fetal growth, allowing for successful

embryo implantation and pregnancy maintenance (81–85). HLA-

G is predominantly produced by the extravillous trophoblasts

(EVTs). The embryo-secreted sHLA-G increases during embryo

development, from a relative 35% in the cleavage stage to 100% in

the morula or blastocyst stage (86). The sHLA-G level in the

embryo culture medium is a promising predictor of pregnancy

outcome (28–32). Besides, immune cells in the endometrium and

maternal peripheral antigen-presenting cells (APC) can be a source

of sHLA-G (87). Decidualization by progesterone and cAMP can

increase HLA-G expression (88). Immunohistochemistry (IH)

experiments validated that sHLA-G is located in the endometrial

stroma and glandular epithelium of pre-implantation and peri-

implantation endometrium. sHLA-G expression is correlated with

CD56+ uNK cell abundance and associated with pregnancy

outcomes (41, 63). Several studies reported that abnormal sHLA-

G expression is associated with pregnancy complications such as

preeclampsia, recurrent miscarriage (RM), and recurrent

implantation failure (RIF), and may be further linked to HLA-G

polymorphisms (89, 90). Some meta-analyses have confirmed the

association between HLA-G polymorphisms with susceptibility to

preeclampsia (91, 92) and recurrent miscarriage (RM) (93, 94). The

current systematic review and meta-analysis focused on the

implication of the genetic variants responsible for altered HLA-

G expression in relation to RIF. Our study indicates that specific

HLA-G alleles or HLA-G polymorphisms are associated with

sHLA-G expression in couples attending IVF treatment. Parental

HLA-G*010101 and HLA-G*010102 alleles distribution is

associated with RIF risk. However, single maternal HLA-G 14bp

ins/del polymorphism, HLA-G -725 C>G/T polymorphism, or

circulating sHLA-G concentration is not significantly associated

with RIF in the general population. Whereas the HLA-G 14bp

insertion variant is associated with RIF under a homozygotic

genetic model in the Caucasian population.
Frontiers in Immunology 11
HLA-G 14bp ins/del polymorphism with
reproductive disorders

HLA-G 14bp ins/del is the most commonly studied

polymorphism of HLA-G. Although maternal HLA-G 14bp

ins/del polymorphism was not significantly associated with

RIF in the general population, the sensitivity analysis and the

subgroup analysis consistently suggested that HLA-G 14bp ins/

del polymorphism was significantly associated with RIF in the

Caucasian population under the allele and homozygotic models.

The subgroup analyses should be explained cautiously due to the

small number of studies in the subgroup. Consistent with our

study, a meta-analysis in 2017 reported similar results that the

HLA-G 14bp ins/del polymorphism is related to RIF in

Caucasian patients (9). However, compared to Fan’s meta-

analysis in 2017, which only assessed the association between

HLA-G 14bp ins/del polymorphism with RIF, our meta-analysis

adds the associations between other HLA-G polymorphisms

(including HLA-G -725C>G/T, multiple allele distributions at

HLA-G exon2~4, specific haplotypes and diplotypes of HLA-G)

with RIF. It adds the association between HLA-G polymorphism

with sHLA-G expression as well as the association between

sHLA-G expression with RIF susceptibility. Besides, the

sample size in this systematic review and meta-analysis is the

largest so far. Further studies are needed to confirm whether an

association exists between HLA-G 14bp ins/del polymorphism

with RIF in patients of other ethnicities. In addition to RIF,

maternal HLA-G 14bp ins/del polymorphism is also reported to

be associated with preeclampsia (95), gestational diabetes

mellitus (96), and recurrent miscarriage (97–99). Almeida

et al. combined implantation failure, preeclampsia, recurrent

miscarriage, and spontaneous miscarriage as reproductive

disorders and performed a meta-analysis; they found that the

HLA-G 14bp ins variant is associated with reproductive

disorders (92). Moreover, the HLA-G 14bp ins/ins genotype is

associated with insulin resistance (100), birth weight, and

placental weight (101). Nevertheless, other studies have
TABLE 3 Continued

Study Country Ethnicity Study
population

Number
of

patients
tested

Sample
tested

Timing
of sample
collection

Type
of

assay

sHLA-
G

isoform

Detection
limit

Result Included
in meta-
analysis

Hviid 2004
(75)

Denmark Caucasian Couples
attending IVF
treatment

43 women
and 42
male

partners

Periphery
blood serum

Before
pregnancy

ELISA HLA-G1
and HLA-
G5

1ng/ml Detectable
sHLA-G in
serum is
restricted to
HLA-G
genotypes
with the
14bp del

No
fro
IH, Immunohistochemical staining; ELISA, enzyme-linked immunosorbent assay; IVF, in vitro fertilization; ET, embryo transfer; 3’UTR, 3’ untranslated region; 5’ URR, 5’ upstream
regulatory region; NR, not reported.
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TABLE 4 Newcastle-Ottawa Scale assessment of studies included in the meta-analysis.

Study Selection Comparability Exposure Total
Score

Quality

ion
rols

Adjustment
for age

Adjustment for
other factors

Ascertainment
of exposure

Uniform method of
ascertainment

Non-
response

rate

– – * * * 7 High

– – * * * 7 High

– * * * * 8 High

– – * * – 6 Low

– – * * * 7 High

– * * * * 8 High

– – * * * 7 High

– – * * * 7 High

– – * * * 7 High

– – * * * 7 High

– – * * * 7 High

H
u
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.9
8
8
3
70

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

12
(year)
Case

definition
adequate

Representativeness
of the cases

Selection of
controls

Defini
of cont

Hviid (2004) * * * *

Szmigiel
(2007)

* * * *

Szmigiel
(2009)

* * * *

Nardi (2012) * * * *

Enghelabifar
(2014)

* * * *

Lashley
(2014)

* * * *

Dahl (2014) * * * *

Nardi (2016) * * * *

Craenmehr
(2019)

* * * *

Nowak
(2020)

* * * *

Nilsson
(2020)

* * * *

*denotes one score.
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observed contrary results (102–104). The contradictory findings

may be explained by differences in ethnic background, sample

size, and genotyping methodology.
HLA-G -725 polymorphism with
reproductive disorders

HLA-G -725C>G/T polymorphism at the promoter region is

reported to change the methylation profile of CpG dinucleotide

resulting in a modification of HLA-G expression (17). HLA-G
Frontiers in Immunology 13
-725C>G/T polymorphism is reported to be associated with

male fertility (76), endometriosis progression (105), and

miscarriage (17). Our study found no significant association of

HLA-G -725C>G/T polymorphism with RIF under all genetic

models. Sipak et al. reported that HLA-G 725 C>G/T

polymorphism is not associated with pregnancy complications,

including antiphospholipid syndrome, preeclampsia,

intrauterine growth restriction, and recurrent spontaneous

abortion (106). In summary, an association of HLA-G

-725C>G/T polymorphism with pregnancy-re lated

complications or pregnancy outcomes could not be confirmed.
FIGURE 2

Forest plot showing the association of HLA-G 14bp ins/del polymorphism with RIF under 5 genetic models.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.988370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2022.988370
Other HLA-G polymorphisms or HLA-G
haplotypes or diplotypes with
reproductive disorders

Other HLA-G polymorphisms include HLA-G -964G>A

(rs1632947), HLA-G haplotype of rs1632947–rs1233334–

rs371194629, diplotypes of rs1632947–rs1233334–rs371194629,

and HLA-G alleles distribution at exon2-4 and intron2 are

potentially associated with RIF or reproductive outcomes

following IVF-ET. HLA-G polymorphisms such as -716 G/T

rs2249863 (107) and 3142C/G rs1063320 (108) have been

reported to play a role in spontaneous abortion but have not

been reported in RIF. Our results showed that the maternal

HLA-G*010101 allele is associated with a lower RIF risk than
Frontiers in Immunology 14
other HLA-G alleles, whereas the paternal HLA-G*010102 allele is

associated with a higher RIF risk. HLA-G*010101 and HLA-

G*010102 are the most prevalent alleles compared to other HLA-

G alleles and are associated with sHLA-G expressions. Whereas

Warner et al. reported that the HLA-G*01011 allele has a

statistically significant association with an enhanced chance of

reproductive success following IVF-ET in Caucasian women

(109). The HLA-G*0105N null-allele contains a deletion in exon

3, which leads to a frameshift, and no functional full-length HLA-

G1 and -G5 protein can be expressed (110). Our meta-analysis

observed a tendency that the HLA-G*0105N allele increased the

RIF risk, while without statistical significance, possible because the

sample size is too small to reach significance. Nonetheless, HLA-G1

and HLA-G5 are reported to be not essential for fetal survival,
frontiersin.org
FIGURE 3

Forest plot showing subgroup analyses based on ethnicity and sensitivity analysis by omitting one study each time.

https://doi.org/10.3389/fimmu.2022.988370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2022.988370
indicating that other HLA-G isoforms or other HLAmolecules may

compensate for the lack of HLA-G1 and HLA-G5 in

immune modulation.
Soluble HLA-G expression with
reproductive disorders

Soluble HLA-G can be secreted into circulating blood,

amniotic fluid, umbilical cord blood, and semen; it can be

detected in non-pregnant/pregnant women, men, embryo/

fetus, and the maternal-fetal interface. It is well-studied that

the embryo-secreted sHLA-G level in the culture medium is a

promising predictor for embryo implantation (28–31). However,

the role of maternal sHLA-G expression on embryo

implantation was less studied. The sHLA-G expression is

different before pregnancy or during pregnancy. The blood

sHLA-G level is higher in pregnant women than in non-

pregnant women, and the sHLA-G level is higher in the first

trimester of pregnancy than in the second and third trimesters

(60, 111–113). It is reported that lower serum sHLA-G levels at

the pre-ovulatory stage increase the risk of early miscarriage

(61). A reduced frequency of HLA-G expressing CD4+T and

CD8+ T cells in the peripheral blood is associated with RM and

RIF (69). However, results concerning whether the maternal
Frontiers in Immunology 15
sHLA-G expression is associated with RIF are conflicting. This

meta-analysis showed that single maternal sHLA-G expression

was not significantly associated with RIF, while the heterogeneity

is extremely significant (I2 = 98%, p-value<0.01). The

considerable heterogeneity may be caused by: (1) Each clinic

applied a different ELISA system for detecting sHLA-G with

different detection sensitivity or limits (114); (2) The timing of

measurement during preimplantation development could be

critical. Because sHLA-G expression before or after ET is

different (8), it dynamically changes over the pregnancy weeks.

Therefore, the timing of sHLA-G measurement may

significantly affect the result; (3) Maternal circulating sHLA-G

concentration might not be correlated with sHLA-G levels at the

fetal-maternal interface. Whether maternal circulating sHLA-G

levels are associated with fetal circulating sHLA-G levels is

conflicting (111, 115); (4) Other pathological conditions or

diseases also affect sHLA-G levels. Crohn’s disease, Behçet’s

disease, multiple sclerosis, or organ transplant are associated

with sHLA-G expression (116–119); (5) IVF factors such as

maternal age, cycle type (frozen cycles or fresh cycles), or

exogenous hormone supplementation may change sHLA-G

levels (8). It is reported that HLA-G expression was positively

associated with progesterone supplementation but negatively

with estradiol (120) and maternal age; (6) The detection of

sHLA-G level in most cases is limited to sHLA-G1/HLA-G5
FIGURE 4

Forest plot showing the association of HLA-G -725C>G/T polymorphism with RIF under 5 genetic models.
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isotype measured by ELISA due to restriction in antibodies.

Whereas the expression pattern of the other isoforms is rarely

analyzed. Different HLA-G isoforms may interact differently

with the receptors; for example, ILT-2 only binds b2m-

associated HLA-G1/G5 isotypes, while ILT-4 preferably binds

b2m-free isoforms. How these isoforms of the HLA-G protein

differ in function is poorly understood. A recent study detected

endometrium sHLA-G5 and sHLA-G6 isotypes by IH; they

found that endometrial sHLA-G5 and sHLA-G6 levels are

higher in RIF patients compared to controls (41). Besides,
Frontiers in Immunology 16
sHLA-G levels are reported to be associated with oocyte

competence (121, 122), endometriosis progression (123),

pregnancy-related conditions such as SGA neonates (124),

GDM (125), advanced labor (126), preterm premature rupture

of membranes (127), intrauterine growth retardation (IUGR)

(112), and preeclampsia (113, 128–130). Moreover, maternal

circulating sHLA-G levels in the second trimester were

significantly lower in pregnant women with 18-trisomy fetuses

(T18) and significantly higher in those with 21-trisomy fetuses

(T21) compared to the normal controls (131), and it is inversely
FIGURE 5

Forest plot showing the association of parental HLA-G allele distribution with RIF.
FIGURE 6

Forest plot showing the association of circulating sHLA-G concentration with RIF.
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correlated with fetal microchimerism levels (132). Also, there are

contrary results that the HLA-G expression is similar between

samples of normal and abnormal karyotypes, and there is no

association between the HLA-G polymorphisms and altered

expression in reduced abortion and miscarriage groups (133).

Schallmoser et al. reported no association of sHLA-G expression

with female reproductive outcomes following IVF-ET (134).

More evidence is needed to determine whether maternal

circulating sHLA-G expression is a predictor for RIF and

whether a combination of maternal-, paternal- and embryo-
Frontiers in Immunology 17
derived sHLA-G levels have more clinical significance than

single detection.
Association of HLA-G polymorphism
with sHLA-G expression

Multiple HLA-G polymorphisms are reported to be

associated with sHLA-G expression. HLA-G 14bp ins/del

polymorphism is the most commonly reported to be related to
E

A

B

D

F

C

FIGURE 7

Forest plot showing the association of parental HLA-G 14bp ins/del polymorphism with sHLA-G expression in seminal plasma or in blood
plasma. (A) Meta-analysis of sHLA-G expression in male seminal plasma in comparison of ins/ins genotype versus del/del genotype. (B) Meta-
analysis of sHLA-G expression in male seminal plasma in comparison of ins/ins genotype versus ins/del genotype. (C) Meta-analysis of sHLA-G
expression in male seminal plasma in comparison of ins/del genotype versus del/del genotype. (D) Meta-analysis of sHLA-G expression in male
seminal plasma in comparison of ins/ins genotype versus ins/del+del/del genotype. (E) Meta-analysis of sHLA-G expression in male seminal
plasma in comparison of ins/ins+ins/del genotype versus de/del genotype. (F) Meta-analysis of sHLA-G expression in female blood plasma in
comparison of ins/ins genotype versus ins/del+del/del genotype.
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sHLA-G levels. Most studies indicate a significant association

between HLA-G 14bp ins variant and reduced sHLA-G levels in

maternal circulating blood or paternal semen (35, 75, 77, 78, 96,

104, 135–139). HLA-G 14bp del/del genotype is also associated

with higher HLA-G on the trophoblast membrane (101).

However, there are different results; two studies report that the

HLA-G 14bp ins variant is associated with higher circulating

sHLA-G levels (140, 141). The contradictory observations may

have the following explanations: the correlation of sHLA-G

expression and HLA-G polymorphism is affected by genetic

backgrounds, pregnancy state, and diverse pathophysiologies or

diseases. The expression pattern of HLA-G is different under

various complications. Therefore, in this study, we review the

associations of HLA-G polymorphism with sHLA-G expression

in patients attending IVF treatment. Our meta-analyses

observed that the parental HLA-G 14bp ins variant is

associated with lower sHLA-G expression in female blood and

male semen. The result indicates that parental HLA-G

polymorphism may affect sHLA-G expressions in body fluid.

However, further studies must confirm whether sHLA-G levels

in parental body fluid affect pregnancy outcomes.

HLA-G -725C>G/T polymorphism is reported to be

associated with sHLA-G levels in an in-vitro study, which

found that JEG-3 cells with HLA-G -725G allele produces

higher levels of sHLA-G compared to HLA-G -725C/T allele

(142). Specific HLA-G allele distribution at exon2-4 is also

reported to be associated with sHLA-G levels; for example, the

HLA-G10101 allele is reported to be associated with higher

sHLA-G levels in circulating blood (59, 70), while the HLA-

G*01013 allele, HLA-G*0105N allele, or 1597DC null allele is

associated with lower sHLA-G levels (143, 144). Three other

SNPs in the 3’UTR are associated with HLA-G mRNA stability

and sHLA-G levels: +3142 (rs1063320) substituting a C to a G,

+3187 (rs9380142) substituting an A to a G, and +3196

(rs1610696) substituting a C to a G (15, 57, 145). Moreover,

some polymorphisms in the 3’UTR can act as targets for

miRNAs and control HLA-G mRNA stability and expression

levels (146). Unfortunately, we cannot perform a meta-analysis

based on those HLA-G polymorphisms in patients attending

IVF treatment because of insufficient studies. Whether there is a

combined effect of multiple HLA-G polymorphisms on sHLA-G

expressions needs further investigation.
Interaction of HLA-G with other HLA Ia
and Ib genes in relation to
reproductive disorders

We speculate that single maternal HLA-G polymorphism or

circulating sHLA-G concentration is not a single major cause of

implantation failure. Whereas combined genetic effect would

have been more potent than a single polymorphism analysis
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(147). The association of HLA-G with RIF is more likely to

depend on the combined HLA-G genetic effect rather than single

polymorphisms in the 3’-UTR, 5’URR, or coding regions. The

14bp ins, in combination with the +3187A/A and +3142G/G

SNP, plays a significant role in HLA-G mRNA regulation in

human endometrial stromal cells (148). One single maternal

genetic polymorphism or circulating sHLA-G level could not

become an adequate independent cause of RIF because: (1) The

mechanisms regulating maternal-fetal tolerance are complex.

There are many immune mechanisms and other compensatory

processes of maternal-fetal tolerance; (2) More than two HLA-G

genotypic effects (maternal, paternal, and embryo) may

participate in immune regulation during embryo implantation.

Therefore, a single maternal or paternal HLA-G genotype

cannot wholly reflect the immune state at the maternal-fetal

interface; (3) The influence of clinical variables such as maternal

age, gestational age, embryo factors, other diseases, or

pathophysiological conditions were not controlled in the

previous studies and can cause bias; (4) One gene has a variety

of polymorphisms. The interaction of different polymorphisms

of the same gene, the interaction of various genetic

polymorphisms, and their combined effects on gene expression

and molecular functions are not entirely understood. Except for

HLA-G 14bp polymorphism, the other HLA-G genotypes/

haplotypes/diplotypes at the 3’UTR, 5’URR, and exon regions,

HLA-C polymorphism, HLA-F polymorphism, or HLA

molecule receptor polymorphism as KIR is also associated

with RIF (41, 149–151). Certain HLA-G variations are in

linkage disequilibrium with three HLA-F locus SNPs that

influence reproduction (152). HLA-G expression and function

are under the control of miRNA via the miRNA binding site at

HLA-G genes (146). Other cytokines such as IF-10, IFN-g, LIF,
PIF, and Galectin-1 can induce the production of HLA-G (88,

153–155). Rizzo et al. found that endometrium and uterine

flushing fluid with high LIF, HB-EGF, Glycodelin-A, MCP1,

IP10, HLA-G, and HLA-E, but lowMUC-1 expression presented

a higher permittivity to embryo implantation by an endometrial

3D in vitro model (156). In summary, multiple genetic factors,

non-coding molecules, and cytokines together generate a pro-

tolerance milieu network to regulate embryo implantation.

Considering all of these factors, it is doubtful that one single

molecule (sHLA-G) or a small genetic region could be uniquely

associated with reproductive outcomes. At least a single HLA-G

gene mutation, while it may contribute, is not a significant

independent cause of RIF. The present challenge is to find the

correct combination of genetic factors that define the

susceptibility of RIF. More studies involving a careful selection

of strictly-defined RIF patients and control patients, good-

quality embryo transfers, and other essential molecules

involved in embryo implantation (such as VEGFA, PAI-1, and

MTHFR), studies controlling confounding factors are needed to

determine whether the presence of HLA-G polymorphism have
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a crucial role in an immune imbalance during embryo

implantation. And to what extent this could affect maternal-

fetal tolerance and be linked to RIF.
Limitations

As far as we know, this is the first systematic review and

meta-analysis to investigate the association of HLA-G

polymorphisms and sHLA-G expression in relation to RIF.

The following potential limitations should be considered: (1)

The validity of the meta-analysis depends on the internal validity

of the included studies. We could only use the information

provided at the study level. We could not analyze the

unmeasured or unreported factors of the patient, such as

maternal age, underlying causes of infertility, varying infertility

treatment, or exogenous hormone supplementation; (2) The

generalizability of our result is another limitation. Patients

included in this study were mainly Caucasian. ‘RIF’ is a broad

term, including heterogeneous causes and diagnoses; (3) HLA-G

expression is multifactorial and can be influenced by many other

factors such as splice variants, DNA methylation, miRNA-

mediated post-transcriptional regulation, etc., which were not

explored in this study.
Future expectations and conclusions

The immuno-genetics of infertility is complex and might

depend on different genes involved in embryo implantation. A

better understanding of HLA-G allele structure and how the genetic

diversity at regulatory sites shared by different alleles and haplotypes

could affect its expression might shed further light on the

comprehension of immuno-genetics mechanisms acting at the

feto-maternal interface. The primary source of sHLA-G at the

maternal-fetal interface is the embryo-derived trophoblasts. In

contrast, most studies assessing the role of HLA-G in pregnant

diseases have considered only the maternal genotype and ignored

the contribution of the fetus and paternal partner. Ideally, mother-

father-fetus genotypes should be tested. The significant association

between HLA-G 14bp ins/del polymorphism, HLA-G -725 C>G/T

polymorphism, or circulating sHLA-G concentration with RIF

could not be confirmed in the general population. However, if

and to what extent the use of the multiple polymorphisms

combined with the sHLA-G test from parental body fluid and the

culture medium might increase accuracy in the RIF prediction

remains to be elucidated. In the future, testing multiple genetic
Frontiers in Immunology 19
variances or biomarkers at a time by a high-throughput method

combined with machine learning may screen the best predictive

model for RIF. Animal studies have shown that recombinant

sHLA-G or synthetic HLA-G may have a therapeutic effect on

arthritis disease or prolong the acceptance of skin grafts (157, 158).

Whether recombinant sHLA-G or synthetic HLA-G can be used to

treat reproductive disorders needs far more studies.

In conclusion, our study indicates that specific HLA-G

alleles or HLA-G polymorphisms are associated with sHLA-G

expression in couples attending IVF treatment. Several HLA-G

polymorphisms may be associated with RIF, considering

different ethnic backgrounds. A combined genetic effect should

be considered in future studies to confirm the association of

HLA-G polymorphisms and sHLA-G expressions in relation to

RIF. Our findings will hopefully stimulate further research to

identify whether multiple HLA-G genetics combined with the

sHLA-G test of parental body fluid and the culture medium is of

clinical relevance to implantation success.
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M, et al. The association of HLA-G gene polymorphism and its soluble form with
Male infert i l i ty . Front Immunol (2021) 12:791399. doi : 10.3389/
fimmu.2021.791399

77. Craenmehr MHC, Haasnoot GW, Drabbels JJM, Spruyt-Gerritse MJ, Cao
M, van der Keur C, et al. Soluble HLA-G levels in seminal plasma are associated
with HLA-G 3'UTR genotypes and haplotypes. Hla (2019) 94(4):339–46.
doi: 10.1111/tan.13628

78. Dahl M, Perin TL, Djurisic S, Rasmussen M, Ohlsson J, Buus S, et al. Soluble
human leukocyte antigen-G in seminal plasma is associated with HLA-G genotype:
possible implications for fertility success. Am J Reprod Immunol (2014) 72(1):89–
105. doi: 10.1111/aji.12251

79. Nilsson LL, Hornstrup MB, Perin TL, Lindhard A, Funck T, Bjerrum PJ,
et al. Soluble HLA-G and TGF-b in couples attending assisted reproduction - a
possible role of TGF-b isoforms in semen? J Reprod Immunol (2020) 137:102857.
doi: 10.1016/j.jri.2019.102857

80. Hò GT, Celik AA, Huyton T, Hiemisch W, Blasczyk R, Simper GS, et al.
NKG2A/CD94 is a new immune receptor for HLA-G and distinguishes amino acid
differences in the HLA-G heavy chain. Int J Mol Sci (2020) 21(12):4362.
doi: 10.3390/ijms21124362

81. Guo Y, Lee CL, So KH, Gao J, Yeung WS, Yao Y, et al. Soluble human
leukocyte antigen-g5 activates extracellular signal-regulated protein kinase
signaling and stimulates trophoblast invasion. PloS One (2013) 8(10):e76023.
doi: 10.1371/journal.pone.0076023

82. Rajagopalan S. HLA-g-mediated NK cell senescence promotes vascular
remodeling: implications for reproduction. Cell Mol Immunol (2014) 11(5):460–
6. doi: 10.1038/cmi.2014.53

83. Lee CL, Guo Y, So KH, Vijayan M, Guo Y, Wong VH, et al. Soluble human
leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual
macrophage-like phenotype. Hum Reprod (2015) 30(10):2263–74. doi: 10.1093/
humrep/dev196

84. Fu B, Zhou Y, Ni X, Tong X, Xu X, Dong Z, et al. Natural killer cells promote
fetal development through the secretion of growth-promoting factors. Immunity
(2017) 47(6):1100–1113.e1106. doi: 10.1016/j.immuni.2017.11.018

85. Xu X, Zhou Y, Wei H. Roles of HLA-G in the maternal-fetal immune
microenvironment. Front Immunol (2020) 11:592010. doi: 10.3389/
fimmu.2020.592010

86. Yao YQ, Barlow DH, Sargent IL. Differential expression of alternatively
spliced transcripts of HLA-G in human preimplantation embryos and inner cell
masses. J Immunol (2005) 175(12):8379–85. doi: 10.4049/jimmunol.175.12.8379

87. Alegre E, Diaz-Lagares A, Lemaoult J, Lopez-Moratalla N, Carosella ED,
Gonzalez A. Maternal antigen presenting cells are a source of plasmatic HLA-G
during pregnancy: longitudinal study during pregnancy. Hum Immunol (2007) 68
(8):661–7. doi: 10.1016/j.humimm.2007.04.007

88. Blanco O, Tirado I, Muñoz-Fernández R, Abadıá-Molina AC, Garcıá-
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