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Germany, 6Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province,
School of Medicine, Hunan Normal University, Changsha, China, 7Reproductive and Genetic
Hospital of China International Trust and Investment Corporation (CITIC)-Xiangya, Changsha,
China, 8Institute of Medical Diagnostics (IMD), Berlin, Germany, 9Department of Rheumatology and
Immunology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital,
Jinan University, Shenzhen, China, 10Guangzhou Enttxs Medical Products Co., Ltd, Guangzhou,
Guangzhou, China
Introduction: Systemic lupus erythematosus (SLE) is a chronic autoimmune

disease for which there is no cure. Effective diagnosis and precise assessment

of disease exacerbation remains a major challenge.

Methods: We performed peripheral blood mononuclear cell (PBMC) proteomics

of a discovery cohort, including patients with active SLE and inactive SLE, patients

with rheumatoid arthritis (RA), and healthy controls (HC). Then, we performed a

machine learning pipeline to identify biomarker combinations. The biomarker

combinations were further validated using enzyme-linked immunosorbent assays

(ELISAs) in another cohort. Single-cell RNA sequencing (scRNA-seq) data from

active SLE, inactive SLE, and HC PBMC samples further elucidated the potential

immune cellular sources of each of these PBMC biomarkers.

Results: Screening of the PBMC proteome identified 1023, 168, and 124 proteins

that were significantly different between SLE vs. HC, SLE vs. RA, and active SLE vs.

inactive SLE, respectively. The machine learning pipeline identified two

biomarker combinations that accurately distinguished patients with SLE from
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controls and discriminated between active and inactive SLE. The validated results

of ELISAs for two biomarker combinations were in line with the discovery cohort

results. Among them, the six-protein combination (IFIT3, MX1, TOMM40, STAT1,

STAT2, and OAS3) exhibited good performance for SLE disease diagnosis, with

AUC of 0.723 and 0.815 for distinguishing SLE from HC and RA, respectively.

Nine-protein combination (PHACTR2, GOT2, L-selectin, CMC4, MAP2K1,

CMPK2, ECPAS, SRA1, and STAT2) showed a robust performance in assessing

disease exacerbation (AUC=0.990). Further, the potential immune cellular

sources of nine PBMC biomarkers, which had the consistent changes with the

proteomics data, were elucidated by PBMC scRNAseq.

Discussion: Unbiased proteomic quantification and experimental validation of

PBMC samples from two cohorts of patients with SLE were identified as

biomarker combinations for diagnosis and activity monitoring. Furthermore, the

immune cell subtype origin of the biomarkers in the transcript expression level

was determined using PBMC scRNAseq. These findings present valuable PBMC

biomarkers associated with SLE and may reveal potential therapeutic targets.
KEYWORDS
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Introduction

Systemic lupus erythematosus (SLE) is an incurable, remitting,

and relapsing systemic autoimmune disease in young women (1).

The disease manifestations of SLE are unpredictable, ranging from

mild symptoms, such as rash and arthritis, to severe multi-organ

involvement (2). This clinical heterogeneity increases the difficulty

of disease diagnosis, clinical remission, and personalized treatment.

Thus, of importance for improving clinical management is to

discover novel molecular biomarkers, beyond autoantibodies and

complement proteins, for disease diagnosis and disease

exacerbation assessment of SLE.

To date, the established SLE pathophysiological pathway-based

approaches for biomarker detection, although useful, are typically

biased, largely because of limited screening of novel biomarkers and

their associated pathways (3). Blood or urine liquid biopsies are far

less invasive and cost-effective procedures that can be scheduled

more frequently for disease diagnosis and monitoring. Human

serum and urine have been extensively used in many

biomonitoring studies to assess SLE biomarkers (4, 5). Peripheral

blood mononuclear cells (PBMCs), as noninvasive biological

matrices, are not only crucial for abnormal changes in immune

cell subsets, but are also central to the pathogenesis of SLE (6–8).

PBMCs are thought to have good potential for biomarker detection.

More recently, unbiased approaches have been used for

biomarker discovery, including the protein microarray platform

(9), which is confined to detecting fewer proteins, and mass
02
spectrometry (10) with limited detection of low-abundance

proteins. In contrast to previous methods, a hybrid trapped ion

mobility spectrometry (TIMS) quadrupole time-of-flight (Q-TOF)

mass spectrometer (MS) with the parallel accumulation-serial

fragmentation (PASEF) technique provides a more powerful

performance. Briefly, the technique, named four-dimensional

label-free quantitative (4D-LFQ), assembles four-dimensional

patterns including mass-to-charge ratio (m/z), retention time, ion

mobility, and intensity (11). This greatly improves the speed,

sensitivity, and flux of proteomic detection and can be applied to

screen biomarker combinations. Moreover, single-cell RNA

sequencing (scRNA-seq) of PBMCs has the potential to be a

robust and unbiased method for profiling the makeup-and cell

type–specific transcriptional states of peripheral immune cells at the

same time.

This study aimed to identify biomarkers for disease diagnosis

and assessment of disease exacerbation in patients with SLE. Using

4D-LFQ technology, a discovery cohort of patients with SLE was

investigated for quantitative proteomics in PBMCs. To this end, we

developed a machine learning pipeline based on PBMC proteomics

data and identified two candidate biomarker combinations for

disease diagnosis and disease exacerbation assessment. Another

cohort was used to validate these two biomarker combinations via

enzyme-linked immunosorbent assays (ELISAs). Finally, we

identified the expression of each of these PBMC biomarkers in

different immune cell types using scRNAseq data from SLE patients

and healthy donor PBMC samples.
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Materials and methods

Patients, sample collection

Blood samples from two cohorts of subjects were used in this

study, including a discovery cohort for the 4D-LFQ screen and a

validation cohort for the ELISA test. Consecutive patients

diagnosed with SLE according to the 2019 EULAR/ACR

classification criteria for SLE classification were recruited,
Frontiers in Immunology 03
regardless of disease activity. Lupus disease activity was defined

according to the SLEDAI-2k score, of which active patients with

SLE are SLEDAI > 4 and inactive ones are SLEDAI ≤ 4. Age-, sex-,

and ethnicity-matched healthy control (HC) donors and

rheumatoid arthritis (RA) patients were recruited for the study,

in which HCs had no history of cancer, cardiovascular diseases,

autoimmune diseases, or known infectious diseases, and RAs

satisfied the 2010 EULAR/ACR classification criteria (12). The

subjects were divided into four groups: active SLE (SLE_A, n=68),
A

B D

E F G

C

FIGURE 1

Proteomic Profiling of PBMC from SLE and RA patients and Health Volunteers. (A) The workflow of the study. All PBMC samples were used for
4D-LFQ proteomics analysis and ELISA analysis. (B, C) The distribution of numbers of quantified (B) peptides and (C) proteins in the 52 PBMC
samples from three groups. Color dots represent multiple independent samples, SLE (n = 21), RA (n = 16), HC (n = 15). (D) The distribution of
MS/MS spectral counts of quantified peptides. (E) The distribution of peptide numbers of quantified proteins. (F) The distribution of protein
numbers in PBMC samples. (G) PCA of proteomic data in HC, SLE, and RA.
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inactive SLE (SLE_I, n=102), HC (n=110), and RA (n=116). The

workflow of the study is shown in Figure 1A.
Processing blood sample

All blood samples were collected in EDTA tubes (BD

Vacutainer). PBMCs were isolated via Ficoll gradient and
Frontiers in Immunology 04
stored at − 80°C prior to the protein extraction step. Total

protein was extracted and digested into peptides.
4D-LFQ proteomics analysis

A discovery cohort was used for 4D-LFQ analysis, as

described in Tables 1 and 2. The PBMC protein was mixed,

and 52 samples were obtained (SLE_A=7; SLE_I=14; RA=16;
TABLE 1 Clinicopathologic characteristics of the SLE patients from discovery cohort.

Discovery cohort SLE_A (n = 48) SLE_I (n = 82)

Age, (mean ± SD) 37 ± 13 40 ± 12

Sex, Female (%) 40 (83.3) 70 (85.3)

Clinical Criteria

Rash (%) 14 (29.2) 18 (22.0)

Oral ulcers (%) 3 (6.3) 0

Nonscarring alopecia (%) 3 (6.3) 2 (2.4)

Fever (%) 14 (29.2) 4 (4.9)

Serositis (%) 2 (4.2) 3 (3.7)

Synovitis involving two or more joints (%) 19 (39.6) 8 (9.8)

Renal disorder (%) 32 (66.7) 14 (17.1)

Neurologic disorder (%) 0 0

Leukopenia (< 3000/mm3, (%)) 4 (8.3) 7 (8.5)

Thrombocytopenia (<100,000/mm3, (%)) 6 (12.5) 2 (2.4)

LAC, (mean ± SD) 1.2 ± 0.2 1.3 ± 0.3

APTT, (sec, mean ± SD) 33.6 ± 10.4 30.9 ± 8.0

PT, (sec, mean ± SD) 12.0 ± 1.3 12.1 ± 1.7

ESR, (mm/h, mean ± SD) 40.3 ± 28.9 32.8 ± 29.1

CRP, (mg/L, mean ± SD) 9.0 ± 15.7 8.4 ± 17.8

Immunological Criteria

Positive ANA (%) 42 (87.5) 66 (80.5)

Anti-dsDNA (%) 31 (64.6) 26 (31.7)

Anti-b2GPI, (AU/ml, mean (range)) 8.5 (2.0-81.0) 11.5 (2.0-200.0)

ACL-IgG, (GPLU/ml, mean (range)) 11 (1.7-120.0) 11.8 (1.0-200.0)

ACL-IgM, (MPLU/ml, mean (range)) 4.6 (2.0-41.5) 2.9 (2.0-12.6)

Low complement 3 (low C3) (%) 29 (60.4) 22 (26.8)

Low complement 4 (low C4) (%) 22 (45.8) 25 (30.5)

Current drug use

Prednison (%) 20 (41.7) 39 (47.6)

Methylprednisolone (%) 24 (50.0) 27 (32.9)

Hydroxychloroquine (%) 36 (75.0) 66 (80.5)

Ciclosporin (%) 4 (8.3) 9 (11.0)

methotrexate (%) 2 (4.2) 10 (12.2)

Mycophenolate mofetil (%) 6 (12.5) 8 (9.7)

Oral anticoagulant (%) 3 (6.3) 4 (4.9)

Aspirin (%) 9 (18.8) 9 (11.0)
frontiersin.or
All included SLE patients were detected positive ANA at least one time to satisfy 2019 EULAR/ACR SLE classification criteria. While SLE blood samples collecting, ANA of some SLE
patients may turn negative. SD, standard deviation; LAC, lupus anticoagulant; APTT, activated partial thromboplastin time; PT, prothrombin time; ESR, erythrocyte sedimentation rate;
CRP, C-reactive protein; ANA, anti-nuclear antibody; Anti-dsDNA, anti-double strand DNA; Anti-b2GPI, anti-b2 glycoprotein I; ACL-IgG, anticardiolipin antibody-IgG; ACL-IgM,
anticardiolipin antibody-IgM; C3, complement 3; C4, complement 4.
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HC=15). The peptides were dissolved in 0.1% formic

acid (solvent A) and directly loaded onto a standardized

bore column with C18 resin (15 cm×75 mm i.d.). In 90-min

experiments, peptides were separated with a linear gradient

from 6% to 24% solvent B (0.1% formic acid in 98%

acetonitrile) within 70 min, followed by an increase to

35% solvent B within 14 min and further to 80% solvent

B within 3 min, then holding at 80% solvent B for the last

3 min, all at a constant flow rate of 450 nL/min on a NanoElute®

nanoflow ultra-high-pressure liquid chromatography

(UHPLC) system.

The peptides were subjected to capillary ion source ionization

followed by timsTOF Pro mass spectrometry (Bruker) for analysis.

The electrospray voltage applied was 1.6 kV, and the TOF was

scanned for precursor and fragment ions. The MS spectra were

recorded from 100 m/z to 1700 m/z, and the MS was operated in

the PASEF mode. After the first stage of MS collection, a 10 times

PASEF MS/MS scan was acquired for the secondary level of MS, in

which the charge number of the precursor ions ranged from 0 to 5.

To avoid rescans of precursor ions, the dynamic exclusion time for

tandem MS scanning was set to 30 s.
Frontiers in Immunology 05
4D-LFQ proteomics data analysis

The resulting MS/MS data were processed using MaxQuant

search engine (v.1.6.6.0). Tandemmass spectra were searched against

the human UniProt database (Homo_sapiens_9606_SP_20191115,

20380 entries), and a reversed sequence library was employed to

control the false discovery rate (FDR) at less than 1% for peptide

spectrum matches and protein group identifications. The missing

cleavages allowed up to two, and the required minimum peptide

sequence length was seven amino acids. Carbamidomethylation of

Cys residues was regarded as a fixed modification, and acetylation of

protein N termini and oxidation of Met residues as variable

modifications. The mass tolerance for precursor ions was set as 20

ppm in the first and main searches, and the mass tolerance for

fragment ions was set as 0.02 Da.
Proteomic data normalization and
imputation

For each sample of the PBMC proteomics data, the intensity

of a protein in one sample was normalized against the average
TABLE 2 Clinicopathologic characteristics of the RA patients and HC donors from discovery cohort.

Discovery cohort RA (n = 96) HC (n = 90)

Age, (mean ± SD) 51 ± 15 39 ± 11

Sex, Female (%) 82 (85.4) 76 (84.4)

Disease duration years, (mean ± SD) 10.0 ± 8.7

SJC, (mean (range)) 4 (0-28)

TJC, (mean (range)) 6 (0-28)

ESR, (mm/hour, (mean ± SD)) 35.6 ± 27.2

CRP, (mg/L, (mean ± SD)) 21.2 ± 31.9

RF positive (%) 47 (49.0)

CCP positive (%) 48 (50.0)

DAS28 score, (mean ± SD) 4.2 ± 1.6

ANA positive (%) 15 (15.6)

Low C3 (%) 3 (3.1)

Low C4 (%) 7 (7.3)

IGA, (g/L, (mean ± SD)) 2.8 ± 1.2

IGG, (g/L, (mean ± SD)) 14.7 ± 5.1

IGM, (g/L, (mean ± SD)) 1.2 ± 0.6

Current drug use

Oral glucocorticoid treatment (%) 32 (33.3)

DMARD (%) 45 (46.9)

Oral anticoagulant (%) 2 (2.1)

Aspirin (%) 3 (3.1)

Biologics (%) 6 (6.3)

Tripterygium glycosides (%) 15 (15.6)
SD, standard deviation; SJC, swollen joint count; TJC, tender joint count; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; CCP, anti-cyclic citrullinated
peptide antibody; DAS28, disease activity score (28-joint count); ANA, anti-nuclear antibody; C3, complement 3; C4, complement 4; IGA, immunoglobulin A; IGG, immunoglobulin G;
IGM, immunoglobulin M; DMARD, disease modifying antirheumatic drug.
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intensity of the protein in all samples to obtain the relative

protein intensity, which was used for further analysis. To ensure

data quality and maximize the use of proteomic data, proteins

quantified in < 60% of the samples were discarded. To impute

missing values of the remaining proteins, we used the R package

knnImputation function.
Heatmap analysis

A visual analysis module in TBtools (13) was used to execute

heatmap analysis for PBMC proteomics data from SLE, RA, and

HC. Heatmap analysis was also performed for proteins identified

in profile 10 using TBtools.
GSVA and GSEA analysis

All the gene sets were downloaded from the MSigDB

database. Gene Set Variation Analysis (GSVA) was utilized to

analyze the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways of differentially expressed proteins (DEPs) using the R

package GSVA and GSVAdata. The selection criteria for

significantly enriched KEGG pathways were set at P < 0.05.

The selection criteria for the differentially activated KEGG

pathways were based on |t | > 2. GSEA was used to predict the

differentially enriched KEGG pathways between SLE and HC or

RA using the R package GSEABase. |Normalized enrichment

score (NES)|> 1, P < 0.05, and FDR < 0.25 were set as the cutoffs.
Short time-series expression
minor analysis

To identify the molecular signatures associated with SLE

disease exacerbation, short time-series expression minor

(STEM) analysis was used to cluster protein expression

profiles from HC donors, SLE_I patients, and SLE_A patients

(14). The expression data were normalized and the STEM

clustering method was utilized. The minimum absolute

expression change was set at 0.5 for molecule filtering, and the

maximum correlation between any two model profiles was set at

0.9. The profiles with P < 0.05 based on the number of clustered

genes were considered as significantly enriched clusters.
Functional enrichment analysis for
profile 10 by Metascape

Metascape pathway enrichment analysis (https://metascape.

org) (15) was used for the analysis of PBMC proteins in profile

10, and the relevant parameters were as follows: minimum

overlap, 3; P value cutoff, 0.01.
Frontiers in Immunology 06
POC-SLE for SLE diagnosis and disease
exacerbation assessment

To identify biomarkers for disease diagnosis and assess disease

exacerbation in SLE, we constructed a classification model named

the Prioritization of Optimal biomarker Combinations for

SLE (POC-SLE). First, we used the R package Random Forest to

execute a random forest analysis (RFA) with 1000 bootstrap

sampling iterations. We used the GINI index to identify the top

100 ranked DEPs as the first candidate biomarker selection set

(CBSS). Second, we used the R package OPLS to perform

Orthogonal Projections to Latent Structures-Discriminant

Analysis (OPLS-DA). We used variable importance for the

projection (VIP) to evaluate DEPs with VIP > 1 as the second

CBSS. Finally, we took the intersection of the two CBSSs for

biomarker determination and established an ROC curve to

evaluate the diagnostic and prediction performance for

biomarkers when used alone and in combination.
ELISA validation

PBMCs from 80 subjects in the cross-sectional cohort were

included, comprising 20 HC donors, 20 RA patients, 20

inactive SLE patients (SLEDAI ≤ 4), and 20 patients with

active SLE (SLEDAI > 4), as described below (Tables 3 and

4). Importantly, all groups had comparable age and sex. PBMC

proteins were extracted from all samples. Following

manufacturer protocols, the protein biomarkers were

validated using ELISA assays (name, Manufacturer, catalog

number), including Anti-TOMM40, Laibio, JL13785; Anti-

STAT2, Laibio, JL15296; Anti-OAS3, Laibio, JL13727; Anti-

STATl, Laibio, JL15295; Anti-MXl, Laibio, JL13729; Anti-

lFIT3, Laibio, JL13731; Anti-SMClA, KALANG, KL-12419H;

Anti-PHACTR2, Laibio, JL13736; Anti-GOT2, Laibio,

JL13749; Anti-SELL, Laibio, JL13761; Anti-CMC4, Abebio,

AE32512HU; Anti-MAP2Kl, Laibio, JL13790; Anti-CMPK2,

Laibio, JL13775; Anti-ECPAS, FineTest, EH15161; Anti-

DTX3L, KALANG, KL-8064H; Anti-MZBl, FineTest,

EH10389; Anti-SRAl, KALANG, KL-12585H. In brief, an

optimal dilution of PBMC proteins was added to a

microplate precoated with capture antibody, incubated,

washed, followed by the addition of capture antibody,

horseradish peroxidase, and substrate. The absolute levels of

each PBMC protein were determined using standard curves

run on each ELISA plate and normalized for analysis.
PBMC single-cell RNA sequencing
for SLE

We applied single-cell RNA sequencing (scRNA-seq) to

PBMCs from patients with SLE and HC donors (16). In addition,
frontiersin.org
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publicly available scRNA-seq data from patients with active SLE,

inactive SLE, and healthy controls were obtained from the Gene

Expression Omnibus (GEO) database under accession numbers

GSE135779 (17), GSE142016 (18), GSE142637 (19), and

GSE162577 (20). For all datasets, post-quality control expression

datasets contained PBMC, yielding a total of 400,510 cells from 21

healthy controls and 46 SLE patient biopsies.

All datasets were integrated and normalized expression

values were obtained using the FindIntegrationAnchors and

IntegrateData functions, and then the whole expression data

and variable genes were scaled and identified using the
Frontiers in Immunology 07
ScaleData and FindVariableFeatures functions, respectively.

rincipal component analysis (PCA) was applied to genes

from the selected cells. The first 25 PCs were used for

uniform manifold approximation and projection (UMAP)

analysis. Then, we used the FindClusters function that

implements shared nearest neighbor (SNN) modularity

optimization based clustering algorithm on 25 PCA

components with resolution 0.1 - 1.0 leading to 10-24

clusters, and a resolution of 0.4 was chosen for further

analysis; to identify marker genes, the FindAllMarkers

function was used with likelihood-ratio test for single cell
TABLE 3 Clinicopathologic characteristics of the SLE patients from validation cohort.

Validation cohort SLE_A (n = 20) SLE_I (n = 20)

Age, (mean ± SD) 33 ± 10 33 ± 11

Sex, Female (%) 19 (95) 19 (95)

Clinical Criteria

Rash (%) 3 (15) 2 (20)

Oral ulcers (%) 0 0

Nonscarring alopecia (%) 0 1 (5)

Fever (%) 4 (20) 3 (15)

Serositis (%) 2 (10) 1 (5)

Renal disorder (%) 12 (60) 1 (5)

Neurologic disorder (%) 0 0

Leukopenia (< 3000/mm3, (%)) 6 (30) 1 (5)

Thrombocytopenia (<100,000/mm3, (%)) 4 (20) 0

LAC, (mean ± SD) 1.3 ± 0.5 1.1 ± 0.1

APTT, (sec, mean ± SD) 34.5 ± 10.4 31.5 ± 3.7

PT, (sec, mean ± SD) 11.7 ± 1.1 12.0 ± 1.7

ESR, (mm/h, mean ± SD) 39.2 ± 32.7 12.6 ± 9.3

CRP, (mg/L, mean ± SD) 8.3 ± 9.3 5.4 ± 10.4

Immunological Criteria

Positive ANA (%) 20 (100) 15 (75)

Anti-dsDNA (%) 13 (65) 6 (30)

Anti-b2GPI, (AU/ml, mean (range)) 6.6 (1.6-46.8) 5.7 (1.6-23.3)

ACL-IgG, (GPLU/ml, mean (range)) 6.2 (1.4-32.2) 5.1 (1.0-18.6)

ACL-IgM, (MPLU/ml, mean (range)) 4.0 (1.5-22.5) 3.0 (2-7.4)

Low C3 (%) 19 (95) 8 (40)

Low C4 (%) 17 (85) 8 (40)

Current drug use

Prednison (%) 9 (45) 7 (35)

Methylprednisolone (%) 10 (50) 11 (55)

Hydroxychloroquine (%) 16 (80) 19 (95)

Ciclosporin (%) 4 (20) 1 (5)

Methotrexate (%) 0 3 (15)

Mycophenolate mofetil (%) 5 (25) 3 (15)

Oral anticoagulant (%) 0 0

Aspirin (%) 5 (25) 1 (5)
All included SLE patients were detected positive ANA at least one time to satisfy 2019 EULAR/ACR SLE classification criteria. While SLE blood samples collecting, ANA of some SLE
patients may turn negative. SD, standard deviation; LAC, lupus anticoagulant; APTT, activated partial thromboplastin time; PT, prothrombin time; ESR, erythrocyte sedimentation rate;
CRP, C-reactive protein; ANA, anti-nuclear antibody; Anti-dsDNA, anti-double strand DNA; Anti-b2GPI, anti-b2 glycoprotein I; ACL-IgG, anticardiolipin antibody-IgG; ACL-IgM,
anticardiolipin antibody-IgM; C3, complement 3; C4, complement 4.
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gene expression (21). We performed differentially expressed

gene (DEG) analysis by comparing each cluster between SLE

and HC using the Wilcoxon rank sum test, and genes with P <

0.05 were designated as a significant signature. We also

performed differentially expressed gene (DEG) analysis by

comparing each cluster between inactive SLE (SLEDAI ≤ 4)

and active SLE (SLEDAI > 4) using the Wilcoxon rank

sum test, and genes with P < 0.05 were designated as

significant signatures.
Statistics analyses

All statistical analyses were performed using Prism

(GraphPad, v.8.2.1) and R software (v.4.1.0). Altered proteins

with P < 0.05, FC > 1.5 or < 0.67 were considered differentially

expressed proteins. Spearman’s correlation was used to describe the

relationships between the clinical parameters and proteins.

Statistical significance was assessed using unpaired two-tailed

Student’s t-test, Mann–Whitney U test, moderated t-test,

permutation test, likelihood-ratio test, or Wilcoxon rank-sum test,

where appropriate.
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Results

Proteomics profiling of PBMCs from
SLE patients

From the discovery cohort based on 4D-LFQ technology, we

obtained a total of 41,263 peptides from 21 SLE, 16 RA, and 15

HC samples (Figure 1B). The peptides were mapped to

corresponding protein sequences and 4247 proteins were

identified in 52 samples, with average number of proteins

ranging from 3,638 to 3,815 in the three groups (Figure 1C). To

assess the reliability of proteomic profiling, we found that 33,422

peptides (80.9%) werematched by ≥ 2 spectral counts (Figure 1D),

with an average spectral count of 17 for all peptides, indicating the

reliability of proteomic data at the peptide level. We discovered

that 4,043 proteins (95.2%) could be hunted by ≥2 peptides, and

the average peptides were calculated to be 10 for all proteins

(Figure 1E), implying high reliability at the protein level. We also

analyzed the distribution of proteins in different samples and

found that up to 1999 proteins (47.1%) were concurrently

quantified in all 52 samples (Figure 1F), indicating high

repeatability of the proteomic data for the discovery cohort.
TABLE 4 Clinicopathologic characteristics of the RA patients and HC donors from validation cohort.

Discovery cohort RA (n=20) HC (n=20)

Age, (mean ± SD) 37 ± 9 33 ± 9

Sex, Female (%) 19 (95) 19 (95)

Disease duration years, (mean ± SD) 6.1 (0.25-20)

SJC, (mean (range)) 4 (0-20)

TJC, (mean (range)) 5 (0-20)

ESR, (mm/hour, (mean ± SD)) 32.8 ± 27.0

CRP, (mg/L, (mean ± SD)) 11.0 ± 15.9

RF positive (%) 11 (55)

CCP positive (%) 12 (60)

DAS28 score, (mean ± SD) 3.9 ± 1.4

ANA positive (%) 6 (30)

Low C3 (%) 4 (20)

Low C4 (%) 6 (30)

IGA, (g/L, (mean ± SD)) 2.5 ± 1.0

IGG, (g/L, (mean ± SD)) 16.3 ± 8.2

IGM, (g/L, (mean ± SD)) 1.4 ± 0.6

Current drug use

Oral glucocorticoid treatment (%) 9 (45)

DMARD (%) 19 (95)

Oral anticoagulant (%) 0

Aspirin (%) 0

Biologics (%) 0

Tripterygium glycosides (%) 1 (5)
f

SD, standard deviation; SJC, swollen joint count; TJC, tender joint count; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; CCP, anti-cyclic citrullinated
peptide antibody; DAS28, disease activity score (28-joint count); ANA, anti-nuclear antibody; C3, complement 3; C4, complement 4; IGA, immunoglobulin A; IGG, immunoglobulin G;
IGM, immunoglobulin M; DMARD, disease modifying antirheumatic drug.
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After the database search, the LFQ intensity was normalized to

obtain the relative quantification value of each protein. According to

previous studies (22), it is credible to include proteins having less

than 50%missing data to ensure that each sample had enough data

for imputation. Furthermore, to discover the efficiency biomarkers

as far as possible under the condition of reliable data, we retained

the proteins that were expressed in 60% to 100% samples of the

large discovery cohort. To ensure high data quality, only 2602

proteins mutually quantified in > 60% of the samples (≥ 32) were

reserved for the discovery cohort. For each protein, K-Nearest

Neighbor (KNN) was applied to impute the missing values. The

PCA of the 52 samples was performed using 2602 proteins with

normalized expression values (Figure 1G). The SLE and RA samples

were not completely separated; consistent with this observation, SLE

and RA patients presented certain overlapping manifestations (23).

The normalized expression of 2602 proteins in the SLE, RA, and

HC groups was visualized in the heatmap (Figure 2A). A substantial

number of proteins were differentially expressed in different PBMC

samples from the three groups.
PBMC proteomics alternations of
SLE patients

Using the PBMC proteomic data, we identified signatures of

SLE which underwent significant differential expression in SLE

samples compared to RA and HC subjects. In total, 1023 and 168

differentially expressed proteins (DEPs) were found between SLE

vs. HC and SLE vs. RA in PBMC samples, respectively (Figure 2B

and Table S1, fold change (FC) > 1.5 or < 0.67, unpaired two-sided

Student’s t-tests, P < 0.05). This indicated that the alterations of

PBMC in SLE became less extensive in different autoimmune

rheumatic disease conditions compared with healthy donors. The

fold-changes of proteins in SLE vs. HC, SLE vs. RA, and SLE vs.

both are highlighted in Figure 2C. The interferon-induced GTP-

binding protein Mx1 (MX1), 2’-5’-oligoadenylate synthase 3

(OAS3), and interferon-induced protein with tetratricopeptide

repeats 3 (IFIT3), which are important in the type I interferon

signaling pathway (24–26), were significantly upregulated in SLE

vs. both, with MX1 being the most upregulated protein. Signal

transducer and activator of transcription 1 (STAT1) and STAT2,

which participate in JAK/STAT signaling in SLE (27), were also

notably upregulated in SLE vs. both. Azurocidin (AZU1), which

plays a role in inflammatory and cytokine stimulus responses (28),

is prominently downregulated in SLE.

The DEPs were then subjected to differentially enriched

pathway analysis between SLE and HC or RA by Gene Set

Variation Analysis (GSVA) (29). In total, 181 KEGG pathways

were annotated in the three groups; 107 and 59 KEGG pathways

were significantly differentially enriched in SLE vs.HC and SLE vs.

RA, respectively (Table S2, moderated t-test, P < 0.05).

Classification of these KEGG pathways revealed that cell

processes (32.0%), metabolic processes (22.7%), disease-related
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(16.6%), and signaling (14.4%) accounted for the highest

proportion (Figure S1 and Table S2). The heatmap shows the

enrichment scores of 36 KEGG pathways in each sample of the

three different groups after processing by GSVA, including

signaling, infection process, and cell process (Figure 2D,

moderated t-test, P < 0.05). KEGG pathways with |t value| > 2

further showed the differentially activated pathways in SLE vs.HC

and SLE vs.RA (Figure 2E). Compared with RA and HC, PBMC in

SLE were mainly activated in the NOTCH signaling pathway,

cytosolic DNA sensing pathway, DNA replication, RIG I-like

receptor signaling pathway, oxidative phosphorylation,

adipocytokine signaling pathway, and the intestinal immune

network for IgA production. In contrast, compared with RA and

HC, PBMC in SLE were mainly inhibited in the complement and

coagulation cascades, insulin signaling pathway, GNRH signaling

pathway, endocytosis, HEDGEHOG signaling pathway, ERBB

signaling pathway, and Fc-epsilon RI signaling pathway. These

results are consistent with previous reports showing that

inflammation and immunity are associated with SLE (30, 31).

Gene Set Enrichment Analysis (GSEA) (32) was used to assess

differentially enriched pathways between patients with SLE and

controls, as shown in Table S3. We also found that complement

and coagulation cascades from GSEA were suppressed in SLE

(normalized enrichment score, NES, SLE vs.HC_NES = -1.62; SLE

vs. RA_NES = -1.99; Figure 2F, permutation test, P < 0.05).
Proteomics alterations associated with
disease exacerbation of SLE patients

To understand how PBMC protein expression changes with

SLE disease exacerbation, we applied a Short Time-series

Expression Miner (STEM) analysis (14) for active SLE

(SLE_A), inactive SLE (SLE_I), and HC to obtain different

profiles of protein expression behavior. We identified five

significant protein profiles with different expression behaviors

across the HC, SLE_I, and SLE_A groups, including profiles 0, 2,

9, 10, and 11 (Figure 3A, permutation test, P < 0.05). The

expression of PBMC proteins in profile 10 increased with an

increase in SLEDAI score, suggesting a positive correlation

(Figure 3B). The PBMC proteins in profile 10 were

significantly enriched in neutrophil degranulation, the JAK-

STAT signaling pathway, and the complement system on the

Metascape platform (Figure 3C, P < 0.01).
Machine learning based selection
of biomarker combinations for
SLE disease diagnosis and disease
exacerbation assessment

In light of the PBMC proteomics data, we applied a new

machine-learning pipeline named Prioritization of Optimal
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biomarker Combinations for SLE (POC-SLE) to identify potential

biomarker combinations for SLE diagnosis to discriminate SLE

patients from HC donors and RA cases. The POC-SLE consists of

three steps, including 1000 bootstrap sampling iterations Random

Forest Analysis (RFA) to select the top 100 ranked DEPs as the first

candidate biomarker selection set (CBSS). Then, Orthogonal

Projections to Latent Structures-Discriminant Analysis (OPLS-
Frontiers in Immunology 10
DA) was used to obtain variable importance for the projection

(VIP) > 1 DEPs as the second CBSS. After that, the intersection of

two sets were taken for biomarker determination (Figure 4A). The

identified CBSSs are shown in Table S4, including SLE vs. HC and

SLE vs. RA. PCA was performed to evaluate the reliability of the

POC-SLE pipeline; it showed that the SLE and HC samples were

clearly classified into different groups by biomarker determination
A B

D
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C

FIGURE 2

Differential analysis in protein expression levels between SLE and HC or RA. (A) The heatmap for the expression of PBMC proteins in SLE, RA, and HC.
The expression of each proteins was normalized by Z score normalization. (B) Venn diagram summarising the differential and overlapping proteins
between SLE and HC or RA (fold change(FC) > 1.5 or < 0.67, unpaired two-sided Student’s t-tests, P < 0.05). (C) Plots of fold changes of differentially
expressed proteins in SLE vs. RA only, SLE vs. HC only, and SLE vs. both. (D) The enrichment score for 36 KEGG pathways by GSVA in SLE, RA, and HC.
The brown and green nodes represent upregulation and downregualtion state of pathway, respectively (moderated t-test, P < 0.05). (E) The differentially
activated KEGG pathways between SLE vs. RA and SLE vs. HC. The blue and purple bands represent the activated pathways of SLE vs. RA and SLE vs.
HC, respectively; and the gray bands represent the unactivated pathway. (F) GSEA of complement and coagulation cascades gene sets were significantly
differentially enriched between SLE and HC or RA (permutation test, P < 0.05).
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FIGURE 3

PBMC proteomic data for SLE disease exacerbation. (A) PBMC proteomics profiles of STEM analysis. STEM analysis was applied to obtain the
protein expression profiles across HC, SLE_I, and SLE_A. Profile ID was shown at the top left corner of the profile, and significance (P value) was
shown at the bottom left corner of the profile. Red lines in each profile represent the expression pattern of proteins across HC, SLE_I, and
SLE_A (permutation test, P < 0.05). (B) Heatmap for the expression of proteins in profile 10 along with disease exacerbation. (C) The function
analysis of profile 10 in Metascape platform (P < 0.01).
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(Figure 4B), indicating the reliability of the machine-learning

strategy for distinguishing patients with SLE and HC. The

clustering results for SLE and RA are shown in Figure 4E. We

then used the intersection of biomarker determination from SLE vs.

HC and SLE vs. RA and obtained seven proteins that could be used

as a final biomarker combination for SLE diagnosis, including

IFIT3, MX1, OAS3, STAT1, STAT2, mitochondrial import

receptor subunit TOM40 homolog (TOMM40), and structural

maintenance of chromosome protein 1A (SMC1A). The VIP

values of the seven proteins in SLE vs. HC and SLE vs. RA are

shown in Figures 4C, F, respectively. The RFA AUC value of this

seven-protein combination to distinguish the SLE and control

groups was calculated as 1 (SLE vs. HC, 95% confidence interval

[CI] = 1–1) and 1 (SLE vs. RA, 95% CI = 1–1) (Figures 4D, G,

respectively). Moreover, the AUC values of each of the seven

proteins ranged from 0.827 to 1, differentiating SLE from HC

and RA (Figures S2A, B), indicating that even when used alone,

these proteins could be used to distinguish between different groups

under most conditions.

To identify the potential biomarker combination for

assessing SLE disease exacerbation, we also constructed POC-

SLE to discriminate SLE_A subjects from SLE_I cases. We

identified two CBSSs shown in Table S4. PCA also showed

that the cluster variations between the SLE_A and SLE_I samples

were clear (Figure 4H). We identified 53 proteins as biomarkers

for distinguishing SLE_A from SLE_I by POC-SLE, then took

the intersection between biomarker determination and profile 10

subset (Table S5), and obtained 11 continuously increased

expression final biomarker combinations for assessing SLE

disease exacerbation, including phosphatase and actin

regulator 2 (PHACTR2), glutamate oxaloacetate transaminase

2 (GOT2), L-selectin (SELL), Cx9C motif-containing protein 4

(CMC4), dual specificity mitogen-activated protein kinase

kinase 1 (MAP2K1), cytidine/uridine monophosphate kinase 2

(CMPK2), Ecm29 proteasome adaptor and scaffold (ECPAS),

Deltex E3 ubiquitin ligase 3 L (DTX3L), marginal zone B and B1

cell specific protein (MZB1), steroid receptor RNA activator 1

(SRA1), and STAT2. The VIP values of the 11 proteins in SLE_A

vs. SLE_I are shown in Figure 4I. The RFA AUC value of the 11-

protein combination to distinguish SLE_A from SLE_I was

calculated as 1 (95% CI = 1–1) (Figure 4J). Moreover, the

AUC values for each of the 11 proteins ranged from 0.786 to

0.970 (Figure S2C), indicating that even when used alone, these

proteins could discriminate between SLE_A and SLE_I.
Validation of biomarker combinations for
SLE disease diagnosis and assessing SLE
disease exacerbation

To validate the veracity of the machine learning-based disease

diagnosis and assessment of disease exacerbation in SLE patients,
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we collected 80 PBMC samples as a new cohort (validation cohort)

for ELISA validation, comprising of 20 SLE_A, 20 SLE_I, and 20 RA

patients, together with 20 HC volunteers. The demographic

characteristics, clinical features, and pharmacotherapy history of

these patients are presented in Tables 3 and 4.

First, we succeeded in detecting 14 proteins, but three

proteins, SMC1A, DTX3L, and MZB1, were not detected by

ELISA. We found that the ELISA results of six proteins for SLE

disease diagnosis confirmed the proteomics data obtained in our

study. ELISA results showed that PBMC IFIT3 (Figure S3A;

mean SLE 57ng/mL, mean RA 42ng/mL, P = 0.002), MX1

(Figure S3B; mean SLE 117ng/mL, mean RA 83ng/mL, P =

0.003), TOMM40 (Figure S3C; mean SLE 56ng/mL, mean RA

35ng/mL, P < 0.0001), STAT1 (Figure S3D, mean SLE 5,412pg/

mL, mean RA 3,634pg/mL, P = 0.0004), and STAT2 (Figure S3E;

mean SLE 2.4ng/mL, mean RA 1.2ng/mL, P = 0.002), and OAS3

(Figure S3F, mean SLE 1,214 nmol/L, mean RA 847 nnmol/L,

P = 0.006) levels were significantly upregulated in SLE patients

compared to those in RA patients. Furthermore, PBMC IFIT3

(Figure S3A; mean HC 47ng/mL, P = 0.04), MX1 (Figure S3B,

mean HC 90ng/mL, P = 0.02), TOMM40 (Figure S3C; mean SLE

56ng/mL, mean RA 35ng/mL, P < 0.0001), and STAT1 (Figure

S3D, mean HC 4,214pg/mL, P = 0.02) levels were significantly

elevated in SLE patients compared to those in HC individuals.

And STAT2 (Figure S3E; mean HC 1.8ng/mL, P > 0.05) and

OAS3 (Figure S3F, mean HC 999 nmol/L, P > 0.05) levels were

both slightly higher in the SLE group than in the HC group.

Moreover, we found that the ELISA results of nine proteins for

assessing SLE disease exacerbation confirmed the proteomic

data. ELISA results showed that PBMC PHACTR2 (Figure

S4A; mean SLE_A 458ng/mL, mean SLE_I 452ng/mL), GOT2

(Figure S4B; mean SLE_A 49ng/mL, mean SLE_I 47ng/mL), L-

selectin (Figure S4C; mean SLE_A 17ng/mL, mean SLE_I 16ng/

mL), CMC4 (Figure S4D, the mean SLE_A 0.24ng/mL, mean

SLE_I 0.21ng/mL), MAP2K1 (Figure S4E, mean SLE_A 18ng/

mL, mean SLE_I 16ng/mL), CMPK2 (Figure S4F; mean SLE_A

14ng/mL, mean SLE_I 13ng/mL), ECPAS (Figure S4G; mean

SLE_A, 3,516pg/mL; mean SLE_I, 3,382pg/mL), SRA1 (Figure

S4H; mean SLE_A 4.7ng/mL, mean SLE_I 2.8ng/mL), and

STAT2 (Figure S4I, mean of SLE_A 1.8ng/mL, mean of SLE_I

1.7ng/mL) were all slightly upregulated in active SLE (SLE_A)

patients compared to the inactive SLE (SLE_I) patients.

The performance of these proteins in disease diagnosis and

assessment of disease exacerbation was further highlighted using

receiver operating characteristic (ROC) curves. As displayed in

Figure 5, the combination of OAS3, IFIT3, MX1, STAT1, STAT2,

and TOMM40 exhibited the disease diagnostic potential, with AUC

of 0.723 (95% CI = 0.591–0.854) and 0.815 (95% CI = 0.709–0.921),

in distinguishing SLE from HC and RA, respectively (Figures 5A,

B). Next, as shown in Figure 5C, the combination of PHACTR2,

GOT2, L-selectin, CMC4, MAP2K1, CMPK2, ECPAS, SRA1, and

STAT2 exhibited potential to assess disease exacerbation, with an
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AUC of 0.990 (95% CI = 0.968–1), in distinguishing SLE_A from

SLE_I. The nine proteins combined into a panel outperformed

traditional clinical parameters, such as anti-dsDNA (AUC = 0.739),

C3 (AUC = 0.788), and C4 (AUC = 0.774), in distinguishing SLE_A

from SLE_I, as shown in Figures 5D–F. Next, the correlation
Frontiers in Immunology 13
between the clinical features and biomarkers was analyzed using a

correlation plot, as shown in Figure 5G. We found that the

expression levels of IFIT3, MAP2K1, and OAS3 were positively

correlated with SLEDAI, indicating that these are biomarkers

related to disease exacerbation. Furthermore, GOT2, IFIT3,
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FIGURE 4

Identification of potential biomarker combinations for the disease diagnosis and assessing disease exacerbation of SLE patients. (A) The
workflow of POC-SLE, including 1000 bootstrap sampling iterations RFA and OPLS-DA. The PCA plot for distinguishing SLE and HC (B), SLE and
RA (E), and SLE_A and SLE_I (H). The VIP value of potential biomarker combinations for discriminating SLE and HC (C), SLE and RA (F), SLE_A
and SLE_I (I). ROC curve of the biomarker combination for disease diagnosis to differentiate SLE and HC (D), SLE and RA (G); ROC curve of the
biomarker combination for assessing disease exacerbation to distinguish SLE_A and SLE_I (J).
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MAP2K1, MX1, and OAS3 were positively correlated with dsDNA

levels. Conversely, GOT2, IFIT3,MAP2K1,MX1, OAS3, SRA1, and

STAT2 were negatively correlated with C3 and C4 levels. Thus, the

identified PBMC biomarkers are strong indicators for assessing

disease exacerbation in SLE patients.
Differential expression of PBMC
biomarkers in different immune
cells for SLE
To further explore the immune cell origins of PBMC

biomarkers in lupus, PBMC scRNA-seq database from 46 SLE

and 21 HC peripheral blood samples were analyzed. After

quality control, we clustered 21 cell types, including T cells, B

cells, natural killer (NK) cells, monocytes, dendritic cells (DC),

megakaryocytes (Mks), granulocyte-monocyte progenitors (GM

Pro), and erythroid-like and erythroid precursor cells (EPC)

(Figure 6A). To explore the transcript expression levels of

biomarkers in SLE patients, we first compared the total PBMC

transcript expression of each biomarker for disease diagnosis

(IFIT3,MX1, TOMM40, STAT1, STAT2, and OAS3) between the

SLE and HC groups. We found that the scRNA-seq results of

IFIT3,MX1, STAT1, STAT2, andOAS3 for SLE disease diagnosis

showed the same changes as the proteomics data between the

SLE and HC groups in our study (Figure S5A, all P < 0.0001). We

then compared the differential expression of these five genes

between SLE and HC samples, as shown in violin plots

(Figures 6B–F, Wilcoxon rank sum test, P < 0.05). Compared

to HC samples, IFIT3, MX1, STAT1, STAT2, and OAS3 were all

significantly upregulated in memory B cell clusters in SLE

samples, and IFIT3, MX1, and OAS3 were significantly

upregulated in naïve CD4 T, TEM CD4 T, TEM CD8 T,

MAIT T, and Mk clusters. In the CD14 mono, classical mono,

and macrophage clusters, IFIT3 and STAT1 were notably

upregulated. The PBMC scRNA-seq profiling of these

biomarkers robustly supported that interferon-stimulated

genes were likely to be the central pathogenesis of lupus patients.

We then compared the total PBMC transcript expression of

each biomarker to assess disease activity (PHACTR2, GOT2,

SELL, CMC4, MAP2K1, CMPK2, ECPAS, SRA1, and STAT2)

between 16 SLE_A and 25 SLE_I samples. We found that the

scRNA-seq results of PHACTR2, SELL, CMPK2, and STAT2 for

assessing SLE disease activity showed the same changes as the

proteomics data in our study (Figure S5B, all P < 0.05). We then

compared the differential expression of these four genes between

SLE_A and SLE_I, as shown in violin plots (Figures 6G–J,

Wilcoxon rank sum test, P < 0.05). Compared with HC

samples, PHACTR2, SELL, CMPK2, and STAT2 were all

significantly upregulated in the CD14 mono-cluster in SLE_A

samples. In Mk and TEM CD4 T cell clusters, SELL, CMPK2,
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and STAT2 were significantly upregulated in SLE_A patients.

These results indicate that molecular heterogeneity of SLE exists

in different immune cells.
Discussion

The ability to simultaneously screen a large number of

proteins has changed the landscape of biomarker discovery

research. In this study, we conducted PBMC proteomic

profiling to identify specific alterations in SLE and identified

two biomarker combinations that can classify SLE and assess

disease exacerbation using the machine learning-based

pipeline POC-SLE we have developed. Moreover, the accuracy

of these biomarkers for SLE disease diagnosis and disease

exacerbation assessment was further validated using ELISA.

Finally, we obtained the immune cell subtypes of these

biomarkers using PBMC scRNAseq. Therefore, these PBMC

proteins can be further developed as clinical biomarkers,

providing innovative tools for prompt clinical diagnosis and

disease monitoring.

We found the interferon (IFN) signature, including IFIT3,

MX1, STAT1, STAT2, and OAS3, as the main components of

disease diagnosis biomarker combinations for SLE patients. In

this study, we identified the IFN signature as a biomarker for

disease diagnosis at the PBMC protein level, whereas most

studies report the IFN signature at the transcriptional level as

a measure of IFN activity (33). The central role of IFN signatures

in SLE has been thoroughly investigated (34), and approximately

half of SLE patients have an upregulated type I IFN gene

signature (IGS) (35). The development of type I IGS as an SLE

biomarker has been initiated. However, most studies have

focused on the application of the IGS to help assess disease

exacerbation, but not on SLE disease diagnosis. Baechler et al.

found that an elevated IFN score is strongly associated with the

most severe manifestations of SLE and that IGS is a marker for

severe SLE (36). Feng et al. found that five IFN-inducible genes

were highly expressed in SLE patients, and increased levels were

correlated with SLE disease activity (37). Although most

experiments show that IGS is associated with disease activity,

none of them could demonstrate a connection between IGS and

changes in SLEDAI-2K (38). Given that no significant

differences in the disease activity index after anti-IFNa
treatment were found (39), it is unreasonable to attribute the

IFN signature in SLE as a biomarker reflecting disease activity.

Furthermore, the expression levels of five IFN-inducible genes

for SLE diagnosis were evaluated, and the modified IFN score

may serve as a good biomarker for SLE diagnosis (40). The major

concern of using the IFN signature for SLE diagnosis is

specificity, because activation of the type I IFN pathway has

been reported in other conditions, including rheumatoid

arthritis, myositis, and primary Sjögren’s syndrome (41). In
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this study, we recruited patients with RA as disease controls to

determine the specificity of the IFN signature for SLE diagnosis.

The IFN signature is known to be increased in PBMC of SLE

patients (42), resulting in abnormal activation of different immune
Frontiers in Immunology 15
cells (43), and likely gives rise to an autoimmune response in SLE

patients. Gao et al. found that OAS3 expression in CD4+ T cells was

notably upregulated in active SLE patients compared to healthy

participants (44), which was in keeping with our scRNA-seq results
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FIGURE 5

Validation of disease diagnosis and assessing disease exacerbation biomarker combinations of SLE patients. ROC curves for the disease
diagnosis of distinguishing SLE from HC (A) and SLE from RA (B). ROC curve for the assessing disease exacerbation of distinguishing SLE_A from
SLE_I (C). ROC curves for distinguishing SLE_A from SLE_I using anti-DNA (D), C3 (E), and C4 (F). (G) Correlation plot of clinical parameters with
biomarkers. Each square represents a correlation. A darker background indicates a lower P value, as determined by Spearman correlation. The
size of the dot in each square represents the magnitude of the correlation, with a bigger dot representing higher correlation. Blue and orange
dots indicate negative correlation and positive correlation, respectively.
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that OAS3 was increased in SLE naïve CD4+ T cells and TEMCD4+

T cells than in HC. IFIT3 is highly expressed in SLE of CD14+

monocytes and CD4+ T cells (45, 46), which is in line with the IFIT3

results from our scRNA-seq data. Furthermore, Li et al. identified

that JAK-STAT pathway genes, including JAK2, STAT1, and STAT2,
Frontiers in Immunology 16
play vital roles in SLE pathogenesis (47). STAT1 mRNA was

increased in T cells (48), and total STAT1 protein was increased

in B cells from SLE patients compared with healthy controls (49),

which was in line with the STAT1 result from our scRNA-seq data,

including naïve B cells, memory B cells, and plasma cells.
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FIGURE 6

UMAP visualization for PBMC scRNAseq and Violin plots of scRNAseq data for SLE vs. HC and active SLE vs. inactive SLE. (A) Two-dimensional
integrated UMAP visualization of PBMC cells combined from 46 SLE patient and 21 HC donors. PBMC were divided into clusters based on the
expression of canonical genes. (B-F) Violin plots showing the differented expression profile of five SLE disease diagnosis related genes identified
between SLE and HC; (G–J) Violin plots showing the differented expression profile of four assessing disease exacerbation related genes
identified between active SLE and inactive SLE (Wilcoxon rank sum test, P < 0.05). Red dot presents for HC or inactive SLE, and green dot
presents for SLE or active SLE. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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Furthermore, individual therapeutic agents can influence the

expression of IFN signature-related biomarkers. Previous studies

have shown that antimalarial-like drugs reduce interferon-

stimulated gene expression in SLE PBMC in vitro (50), including

MX1. Furthermore, baricitinib treatment reduces the

mRNA expression of functionally interconnected genes involved

in SLE, including STAT1-target, STAT2-target, and multiple IFN-

responsive genes (51). Hence, it has been suggested that the IFN

signature plays an important role in SLE pathogenesis via various

immune cells.

Of the ELISA-validated protein combinations for assessing

disease exacerbation, including PHACTR2, GOT2, L-selectin,

CMC4, MAP2K1, CMPK2, ECPAS, SRA1, and STAT2, the

biomarker combination exhibited an ROC AUC value of 0.990 in

terms of distinguishing active SLE patients from inactive SLE

patients. Seven proteins (PHACTR2, GOT2, CMC4, MAP2K1,

CMPK2, ECPAS, and SRA1) were reported for the first time as

markers with a potential impact on SLE exacerbation. L-selectin

(CD62L) is a member of the selectin family of adhesion molecules

expressed in leukocytes (52). Soluble L-selectin (sL-selectin) is

elevated in the serum (53) and cerebrospinal fluid (54) of patients

in comparison to healthy donors. Levels of sL-selectin correlate

significantly with the levels of antibodies to dsDNA in patients with

SLE (55). Moreover, previous studies have shown that sL-selectin

(55, 56) and L-selectin (57) levels are correlated with SLE disease

exacerbation and have been suggested as useful biomarkers for

assessing disease exacerbation. STAT2, a downstream signaling

molecule of type I IFN, contributes to its transactivation domain

for gene transcription (58). A study of single-cell gene expression in

SLE monocytes revealed that the transcriptional expression level of

STAT2 was most decreased in patients with a high SLEDAI (59).

However, Ramıŕez-Vélez et al. found that differences in STAT2

phosphorylation between active and inactive SLE patients were not

significant, and there was no correlation between SLE disease

activity and STAT2 phosphorylation (60). Thus, the role of

unphosphorylated and phosphorylated STAT2 in unleashing the

IFN signature in SLE requires further investigation.

Our study has some limitations. First, although we used two

different cohorts to generate consistent results, the inclusion of

additional ethnic groups and a larger sample size would provide

additional power to validate the PBMC proteins reported here.

In addition, a longitudinal study should be designed to

investigate how these PBMC biomarkers relate to treatment

response over time and long-term outcomes. Finally,

mechanistic studies are needed to elucidate their respective

roles in disease pathogenesis.
Conclusions

Our study found that a machine-learning pipeline can be

used to identify biomarker combinations for disease diagnosis
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and assessment of disease exacerbation based on the PBMC

proteome of patients with SLE. Furthermore, scRNA-seq

analysis identified biomarkers from different immune cells,

which can provide potential treatment targets for SLE patients.
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