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Autoantibodies are well known as potentially highly harmful antibodies which

attack the host via binding to self-antigens, thus causing severe associated

diseases and symptoms (e.g. autoimmune diseases). However, detection of

autoantibodies to a range of disease-associated antigens has enabled their

successful usage as important tools in disease diagnosis, prognosis and

treatment. There are several advantages of using such autoantibodies. These

include the capacity to measure their presence very early in disease

development, their stability, which is often much better than their related

antigen, and the capacity to use an array of such autoantibodies for enhanced

diagnostics and to better predict prognosis. They may also possess capacity for

utilization in therapy, in vivo. In this review both the positive and negative

aspects of autoantibodies are critically assessed, including their role in

autoimmune diseases, cancers and the global pandemic caused by COVID-

19. Important issues related to their detection are also highlighted.
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Introduction

It is well known that an antibody (Ab) produced by B cells helps the immune system

to identify and neutralize non-self-antigens (e.g. antigens from bacteria, viruses, toxins

and fungi etc.). However, sometimes the immune system fails to distinguish between self

and non-self-antigens, leading to the generation of autoantibodies against self-antigens,

or autoimmunity. This can cause autoimmune diseases, and, increasingly, autoimmunity

has been found to be associated with a wide range of diseases, such as cancer, infectious

disease (e.g. such as COVID-19), cardiovascular disease and neurodegenerative disease.

However, autoantibodies are also found in healthy populations, albeit usually not in high

levels and, for the most part, do not cause damage or attack the host.

Autoantibodies were first reported by Hargraves et al. (1) in lupus erythematosus

(LE). LE cell factors, which could bind nuclear antigens, were eventually identified as

autoantibodies. While it is widely reported that autoantibodies play a crucial role in the
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pathogenesis of various autoimmune diseases, they may mediate

both systemic inflammation and tissue injury (2). The exact

reasons for autoantibody generation in certain diseases (e.g.

cancer) have still not been fully elucidated. However, there are

several suggested theories for autoantibody generation in cancer.

They may include a) tolerance defects and inflammation, b)

altered antigen expression, c) changes in exposure or

presentation of antigen, and d) cellular death mechanisms (3).

Some autoantibody production is due to a combination of

genetic and environmental factors (e.g. exposure to viruses,

certain toxins and hazardous chemicals). In systemic lupus

erythematosus (SLE), autoantibody generation is triggered by

genetic abnormalities and environmentally induced defects in

immune cells, mutations in regulatory components which are

involved in cellular apoptosis and ineffectual cellular debris

clearance (4).

Approximately 5% of the general population suffers from

one or more autoimmune diseases (5). About 50 million

Americans may have some form of an autoimmune disease

and among them, over 75% are women. Autoimmune diseases

cause significant deaths in young to middle-aged women (6, 7).

In some cancers and other diseases autoantibodies are generated

and these can be used as biomarkers in diagnosis. It is also

suggested that some cancers may be promoted by certain

autoantibodies (8, 9). Increasingly reports suggest that in

COVID-19, especially severe COVID-19, new autoantibodies

are generated (10). Moreover, these new autoantibodies directly

cause harm, including blood clotting, blood vessel inflammation,

and tissue damage. Autoantibodies may also play a role in long

COVID symptoms (11).

Autoantibodies may provide both harmful and potentially

beneficial effects. For example, in malaria, autoantibodies appear

to be involved in aspects of pathogenesis, which then lead to

various symptoms, such as cerebral malaria, anemia, acute kidney

injury and respiratory distress syndrome. However,

autoantibodies which are produced during malarial infection

may also assist in host protection (12). Autoantibodies can also

make useful contributions in disease diagnosis, prognosis and

treatment. The longer half-lives of autoantibodies (when

compared with their sometimes less stable antigens) in vivo

(e.g. in blood and other bodily fluids) often makes

autoantibody detection easier and more effective compared to

measurement of their related antigens. The overall stability of

autoantibodies (with half-lives of up to several weeks in blood

circulation and over years when blood samples are stored at -20°

C and even longer at -80°C) may be much higher than that of

their associated antigen (sometimes with a half-life of a few hours

or a few days in the blood circulation). For instance, the in vivo

half-lives of IL-1b and IL-18 are 20 min and 16 h, respectively

(13), while the average half-life of IgG autoantibody in circulation

is about 3 weeks (14). Moreover, many autoantibodies may be

detected well in advance of clinical manifestations of the disease,

which enables earlier diagnosis and, thus, benefits the selection
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and application of effective treatments (15). In addition, the

immune response against self-antigens amplifies the signal, which

makes the autoantibody detection easier and earlier than antigen

detection. Finally, autoantibody-based immunoassays (e.g.

enzyme-linked immunosorbent assay (ELISA) and lateral flow)

are very easy to be translated to clinical diagnosis platforms (16).

Since autoantibodies can be used as promising biomarkers for

diagnosis/prognosis of various diseases (e.g. autoimmune diseases,

cancer and cardiovascular disease) this may aid potential

treatment using a more targeted approach (17, 18). It was also

noted that patients with some autoimmune diseases have a lower

cancer risk, which suggests that certain autoantibodies may

contribute to the protection of the individual (19).
Problems caused
by autoantibodies

Role of autoantibodies in
autoimmune diseases

In autoimmune diseases, the immune system ‘mistakenly’

recognizes self-cells/tissues/organs as non-self, which leads to

autoantibody production. Such autoantibodies then bind/attack

self-cells/tissues/organs causing damage, inflammation and/or

organ dysfunction. However, some autoantibodies do not cause

injury directly (e.g. Graves’ disease is directly caused by thyroid-

stimulating autoantibodies), but they are thought to be part of an

overall complicated immune response that causes inflammation

and damage. Various roles of autoantibodies in relation to the

activation of autoimmune diseases are detailed below.

There are approximately 100 identified autoimmune

diseases (20). Nine of the most common and/or harmful

autoantibody-associated autoimmune diseases are Type 1

diabetes (T1D), rheumatoid arthritis (RA), multiple sclerosis

(MS), systemic lupus erythematosus (SLE), Graves’ disease

(GD), psoriasis, inflammatory bowel disease (IBD), Sjögren’s

syndrome (SS) and celiac disease (CD).

It was reported that 9.5% of the world’s population was

affected by T1D, in which the immune system attacks insulin-

producing cells in the pancreas (21). Insulin, produced by the

pancreas plays a crucial role in blood sugar regulation. High

blood sugar caused by T1D leads to damage of blood vessels and

organs (e.g. heart, kidneys, eyes, and nerves). Many different

harmful autoantibodies are generated including autoantibodies

against glutamic acid decarboxylase (GAD), an enzyme which

aids pancreatic function. Such anti-GAD autoantibodies

promote T1D. They do this by directing the immune system

to kill the insulin-producing pancreatic cells. Moreover,

autoantibodies against islet cell cytoplasmic insulinoma-

associated antigen-2, as well as insulin were usually found in

T1D patients. These autoantibodies also are involved in T1D

development (22).
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In rheumatoid arthritis (RA) the immune system attacks the

joints resulting in their damage and destruction and, eventually,

disability occurs. Approximately 0.5-1% of adults worldwide

suffer from RA (23). Autoantibodies are also important

biomarkers for RA, and among these are rheumatoid factor

(autoantibody against the fragment-crystallizable (Fc) region of

IgG) and antibodies against post-translationally modified

proteins involving citrullination (ACPA) and carbamylation

(anti-CarP antibodies). Immune complexes in the joint may be

formed by these autoantibodies, which cause swelling, redness,

stiffness and warmth (24, 25).

Multiple sclerosis (MS) is a chronic autoimmune disease,

where the protective coating (known as myelin sheath) that

surrounds nerve cells in the central nervous system is damaged,

and this is associated with characteristic inflammatory lesions

and demyelination. Mobility limitations are a key feature, while

other typical symptoms are weakness, numbness, balance

dysfunction and trouble with walking. Over 2.8 million people

are estimated to live with MS worldwide (26) and about 50% of

these people will require the use of a walking aid within 15 to 25

years following diagnosis with MS (27). Kuerten et al. (28)

demonstrated that B cells and autoantibodies play crucial roles

in MS pathogenesis, also, broadly increased anti-myelin

autoantibody levels were detected in the plasma of MS

patients. Identification of specific pathogenic autoantibodies in

MS and their target antigens remains a significant challenge.

Systemic lupus erythematosus (SLE) is well known to cause

skin rash, however, it is a chronic autoimmune disease which

affects many organs, including the joints, kidneys, brain, and

heart. Other common symptoms of SLE are joint pain/swelling,

fatigue, and fever.

It was reported that the prevalence of SLE in 2018 in the US

was 0.073% (29). Autoantibody production in SLE is thought to

be triggered by a complex interaction of genetics, the

environment, and hormones, leading to harmful self-attack

and inhibition of immune regulation (30). Leptin, an

adipocytokine, plays a crucial role in the development and

maintenance of proinflammatory immune responses and SLE

was found to be promoted by autoantibodies increased by

leptin (31).

Graves’ disease (GD) is caused by thyroid-stimulating

autoantibodies (TSAbs) that activate the thyrotropin receptor

on the thyroid cell membrane, leading to the over-production of

thyroid hormones. GD affects approximately 2-3% of the world’s

population (32). While thyroid hormones play a crucial role in

control of metabolism, high levels hyper-stimulate the body’s

activities, resulting in nervousness, a fast heartbeat, heat

intolerance, and weight loss. Bulging eyes, an associated

symptom of GD, was found in circa 30% of GD patients (33).

Psoriasis is an autoimmune condition where T cells

mistakenly attack the host’s skin cells. It is a common skin

disease affecting approximately 2–3% of the population globally

(34). The occurrence of psoriasis in children varied from 0% in
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Taiwan to 2.1% in Italy, whilst in adults it ranged from 0.91% in

the USA to 8.5% in Norway (35). In psoriasis, skin cells grow too

quickly. This leads to build up of extra cells and this causes

inflamed red patches. Over 30% of psoriasis patients also

develop psoriatic arthritis, a form of inflammatory arthritis

that can cause pain, swelling and sometimes damage to the

joints. Four autoantigens involved in psoriasis have been

reported. They are cathelicidin LL-37, melanocytic

ADAMTSL5, lipid antigen PLA2G4D and keratin 17.

Autoantibodies against LL-37 and ADAMTSL5 have been

reported to play a potential role in pathogenesis of psoriatic

arthritis (36).

Inflammatory bowel disease (IBD) is an immune-mediated

inflammatory disease, which causes inflammation in the lining

of the intestinal wall. There are two types of IBD, namely

Crohn’s disease and ulcerative colitis (UC) (37). Crohn’s

disease can produce inflammation in any part of the

gastrointestinal tract, from the mouth to the anus, whereas

ulcerative colitis affects only the lining of the large intestine

(colon) and rectum. It is reported that autoantibodies may

promote the pathological phenotype by activating M1

monocytes in the animal model where NOD/ScidIL2Rgnull
mice were reconstituted with PBMC from ulcerative colitis

donors (NSG-UC), and also in patients with ulcerative colitis

(38). Antinuclear autoantibodies (ANA, the antibodies that

attack contents in the cell nucleus) may represent a factor that

enhances the propensity to the development of ulcerative

colitis (39).

Sjögren’s syndrome is an autoimmune disorder where the

immune system attacks the glands providing lubrication to the

eyes and mouth and leads to dry eyes and dry mouth. It also

affects the joints and skin. About 0.2-4% of the world’s

population are affected (40). There are various autoantibodies

associated with Sjögren’s syndrome. These include anti-salivary

protein 1 (SP1), anti-carbonic anhydrase II and IV, anti-parotid

secretory protein (PSP), anti-Ro (SS-A) and anti-La (SS-B),

rheumatoid factor, and ANA (41, 42).

The pathogenic role of these autoantibodies in the

development of Sjögren’s syndrome remains to be elucidated.

However, Kim et al. (43) reported a pathologic role of primary

Sjögren’s syndrome autoantibodies associated with down-

regulation of the major histocompatibility complex I (MHC I)

molecule with muscarinic type 3 receptor (M3R) through

internalization. It was also found that autoantibodies against

Ro and La cause apoptosis in the A-253 cell line. Moreover, anti-

carbonic anhydrase II autoantibodies have been detected in

approximately 13 to 21% of Sjögren’s syndrome patients and

are believed to have a pathogenic role in renal tubular acidosis, a

common extra-glandular manifestation of primary Sjögren’s

syndrome (44).

Celiac disease (CD), an autoimmune enteropathy, is

triggered by dietary gluten in genetically susceptible

individuals. The pooled global prevalence of CD was 1.4%,
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based on serologic test results published from January 1991

through March 2016 (45). In CD, the immune system attacks the

small intestine with gluten in it, which leads to inflammation,

diarrhea and abdominal pain. While the autoantibodies in CD

do not trigger the disease directly, they have pathogenic

potential. It is reported that CD autoantibodies induced ataxia

in vivo, and, moreover, induce epithelial proliferation and

neuronal apoptosis in vitro (46). CD can be easily identified

by the presence of autoantibodies against a self-antigen, tissue

transglutaminase (tTG). The specificity of anti-tTG

autoantibodies (IgA and IgM in IgA-deficient subjects) test

can achieve 99% for CD patients (47).
Autoantibodies which promote the
progression of cancer

Autoantibodies are produced in the early stage of cancer by

the humoral immune response, which is activated by abnormal

expression of tumor-associated antigens (TAAs) (48). The

presence of autoantibodies is well established as early-stage

biomarkers in cancer diagnosis. However, some autoantibodies

are believed to contribute to cancer progression and resistance to

cancer therapy, while some contribute to cancer suppression (19,

49, 50). Lin et al. (51) reported two autoantibodies (antibody 93

and 641) in breast cancer patients which play a role in cancer

progression. Antibody 93 stimulated tumor growth, while

antibody 641 inhibited tumor cell growth. The role of

autoantibodies in promoting and inhibiting cancer is poorly

defined. Andreu et al. (52) reported that autoantibodies promote

chronic-inflammation-induced tumorigenesis. They found that

through interaction with activating Fc gamma receptors, they

may control several crucial functions of leukocytes in neoplastic

tissue. It was also noted that stromal accumulation of

autoantibodies in premalignant skin appears to promote

neoplastic progression and subsequent carcinoma development.

It is reported that among patients with autoimmune

diseases, that the risk of certain cancers is increased

significantly. For instance, hematological, vulvar, thyroid,

pancreatic, lung and hepatic cancers occur more frequently in

SLE patients (53). Anti-double stranded DNA (anti-dsDNA)

autoantibodies were found in about 30% of SLE patients but

were less than 1% in healthy individuals. These anti-dsDNA

autoantibodies, which attack and damage DNA, cause increased

release of intracellular contents (e.g. DNA) from dying cells,

which may then lead to further inflammation and autoantibody

production, and, thus form a destructive cycle. Anti-dsDNA

autoantibodies could increase the cancer risk directly among SLE

patients through DNA damage or inflammation. (8, 9).

Some non-B cell-produced antibodies were found to

influence tumor progression. For example, antibodies or

‘antibody-like’ molecules produced by malignant epithelial

cells of various tumors (e.g. breast tumor, colon tumor, lung
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tumor and liver tumor) were able to aid the growth and survival

of tumor cells in vitro and in vivo (54). This leads to the

intriguing question as to whether or not these are

autoantibodies and preliminary evidence suggests some are, as

they target self-antigens (e.g. HEp2 cell antigens) (49, 55).

However, the situation is still complex. Findings seem to

indicate that antibodies expressed and secreted by various

cancer cells (e.g. colorectal cancer, epithelial cancer, prostate

cancer) enable cancer cell proliferation but suppress cancer cell

apoptosis (56–58). Tumor-derived antibodies have been found

to aid tumor development and progression in the following

aspects i.e. tumor cell growth and proliferation, tumor cell

migration, invasion, and metastasis; tumor immune escape

and other biological functions (e.g. immunity regulation,

promotion of drug resistance, involvement in cancer-

associated diabetes, influence of tumor-associated thrombosis,

mediation of CSC potential, regulation of cell morphogenesis,

cell cycle process, fatty acid biosynthetic process, protein

biosynthesis, and antimicrobial activity) (55). Xu et al. (57)

found out that after IgG1 knockdown, colony formation,

survival, cell cycle progression, migration and invasion of

LNCaP (lymph node carcinoma of the prostate) cells

decreased significantly. Furthermore, reduction of proliferation

[assessed via the proliferation marker, proliferating cell nuclear

antigen (PCNA)], and increasing of numbers of apoptotic cells

(detected using the apoptotic marker, caspase-3) were observed

after IgG1 silencing.
Autoantibodies could drive severe and
long COVID-19

Several publications have suggested a link between

autoantibody generation and severe/long COVID-19 (10, 59–

62). It is reported that 52% of 172 people hospitalized with

COVID-19 had autoantibodies against phospholipids,

which contribute to the control of blood clotting, which is one

of the severe COVID-19-associated symptoms (63). Therefore,

scientists concluded that these anti-phospholipid autoantibodies

are potentially pathogenic. It was demonstrated that

autoantibodies neutralizing high concentrations of type I

interferons (IFNs) were found in 9.5% of patients admitted to

the ICU for COVID-19 pneumonia in a hospital in Barcelona

(64). Troya et al. (65) also reported in a hospital in Madrid, anti-

type I IFN autoantibodies were found in over 10% of COVID-19

patients at severe/critical COVID-19 stages. Moreover,

Chauvineau-Grenier et al. (66) reported that the presence of

anti-type I IFN autoantibodies was associated with higher risk of

mortality, as these autoantibodies were found in 21% of patients

who died from COVID-19 pneumonia in a hospital in France.

Therefore, the presence of these anti-type I IFNs autoantibodies

was recommended for testing as soon as possible after COVID-

19 diagnosis, as they may indicate the possibility of life-
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threatening issues. Inhibition of annexin A2 leads to systemic

thrombosis, cell death, and non-cardiogenic pulmonary edema.

Zuniga et al. (67) reported increased anti-annexin A2

autoantibodies among hospitalized COVID-19 patients and

these autoantibody levels were associated with and may

predict mortality levels. Anti-annexin A2 autoantibodies can

be included in testing to predict severe COVID-19.

Cytokines are crucial in the immunopathology of infections

caused by viruses, including COVID-19. They are well known to

assist the immune and inflammation responses via controlling the

growth and activity of blood cells and cells of the immune system.

Increased levels of a wide range of cytokines [e.g., interferon

(IFN)-a, IFN-ϵ, IL-1b, IL-2, IL-6, IL-7, IL-8, IL-10, IL-17, IL-22,
macrophage colony-stimulating factor (M-CSF), granulocyte

colony-stimulating factor (G-CSF), granulocyte-macrophage

colony stimulating factor (GM-CSF), 10 kD interferon-gamma-

induced protein (IP-10), monocyte chemoattractant protein-1

(MCP-1), macrophage inflammatory protein 1-a (MIP 1-a)
and TNFa] as well as anti-cytokine autoantibodies have been

identified in hospitalized/severe COVID-19 patients (68). Feng et

al. (69) reported that more than 60% of hospitalized COVID-19

patients have one or more autoantibodies that recognize

cytokines. Interestingly enough, these anti-cytokine

autoantibodies are also highly prevalent (over 50%) in non-

COVID-19 infections patients in ICU. Moreover, Chang et al.

(10) stated that various autoantibodies (including anti-cytokine

autoantibodies and autoantibodies against some intracellular

antigens) found in COVID-19 patients are also associated with

connective tissue diseases (e.g. systemic sclerosis, myositis, and

overlap syndromes). It was found that autoantibodies against IFN-

g, GM-CSF, IL-6 and TH-17 contribute to or are closely related to

infection susceptibility (70). Bastard et al. (71) reported that

autoantibodies against type I IFNs neutralize their

corresponding type I IFNs to block COVID-19 infection both in

vitro and in vivo.

But one key question is, do pre-existing autoantibodies cause

severe COVID-19 or does COVID-19 trigger the production of

new autoantibodies which then cause severe COVID-19

symptoms, or both? Some scientists suggested that pre-existing

autoantibodies against type I IFNs are predictive of critical

COVID-19 pneumonia (64). However, more and more

publications showed that new autoantibodies developed during

and after COVID-19 (especially severe COVID-19) cause serious

problems (10, 72). Wang et al. (73) found autoantibodies which

attacked B cells, and some that attacked interferon in COVID-19

patients. They also suggested the possibility that COVID-19

triggers the body to generate new autoantibodies which attack

self-tissues. Such autoantibodies were found against proteins in

patients’ blood vessels, hearts and brains. These new

autoantibodies can do harm to individuals by causing blood

clotting, blood vessel inflammation, tissue/organ/nerve damage,

and attack the immune system, resulting in impaired ability to

fight infection (74).
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It is highly possible that both pre-existing and new

autoantibodies generated during/after COVID-19 infection

play a crucial role in severe COVID-19 individuals. Chang

et al. (10) screened blood (serum and plasma) samples from

147 hospitalized COVID-19 patients, and then concluded that

52% of the patients with severe COVID-19 had at least one type

of pre-existing autoantibody in their blood, while in healthy

controls, only 15% had these autoantibodies. They also found

that about 20% of hospitalized COVID-19 patients did not have

any autoantibodies when they were first admitted but developed

them during their illness. This evidence suggests that while pre-

existing autoantibodies do correlate with severe COVID-19 it

also leads to the development of new-onset IgG autoantibodies.

These new autoantibodies, which break tolerance to self, were

also found to correlate positively with the severity of COVID-

19 (10).

Liu et al. (72) demonstrated that COVID-19 triggers the

development of autoantibodies directly. These new

autoantibodies were against both structural proteins similar to

COVID-19, but also to proteins which are dissimilar to COVID-

19 proteins. Moreover, they found sex-specific patterns of

autoantibody reactivity, which last up to 6 months following

associated symptomatology. Namely, males carry the risk of

diverse autoimmune activation following symptomatic COVID-

19, while females carry the risk for a distinct profile of

autoimmune activation following asymptomatic COVID-19.

Many scientists believed that autoantibodies may play a role

in long COVID symptoms, as these autoantibodies can remain

for over 6 months, or much longer, after the original COVID-19

virus disappeared (11). Therefore, relevant autoantibody

presence could be tested at an early stage following diagnosis

of COVID-19, to predict which patients are at high risk or, for

long COVID, with a view to more specific and effective

treatment. (64).
Exploiting the benefit
of autoantibodies

Autoantibody value in the detection and
treatment of autoimmune and
other disorders

Autoantibodies are widely used in the diagnosis and

prognosis of autoimmune diseases (Table 1). For some

autoimmune diseases, the diagnosis can be easily achieved

through the observation of symptoms and detection of

autoantibodies. For example, Graves’ disease and Hashimoto’s

thyroiditis can be easily diagnosed and monitored by anti-

thyroid autoantibody levels (95). Celiac disease can mainly be

diagnosed and monitored by anti-tTG and DGP autoantibody

tests (112). Moreover, some autoantibodies may be detected

many years before the onset of autoimmune disease. It was
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reported that over 88% of SLE patients showed at least one SLE

autoantibody-positive test (e.g. aANA, antiphospholipid, anti-

Ro, anti-La, anti-Sm, anti-nuclear ribonucleoprotein and anti-

double-stranded DNA autoantibodies) before the diagnosis of

SLE (up to 9.4 years earlier; mean, 3.3 years) (114).

Nevertheless, for the autoimmune diseases which involve

systemic autoantibodies against various organs or systems (e.g.

rheumatoid arthritis, systemic lupus erythematosus,

scleroderma, and dermatomyositis), the diagnosis is much

harder. For instance, in order to diagnose systemic lupus

erythematosus, in addition to symptom assessments, physical

examination and X-rays, levels of various autoantibodies should

be determined against a panel of targets, namely, anti-

erythrocyte-bound C4d (E-C4d), anti-B-cell-bound C4d (B-

C4d), ANA, and anti-mutated citrullinated vimentin (MCV);

or, against a panel including anti-dsDNA, ANA, anti-MCV,

anti-E-C4d, and anti-B-C4d (86).
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Profiling the autoantibodies presented in serum is

commonly used for the diagnosis of diseases, including various

autoimmune diseases and cancers. Protein array technology

enables the identification of novel panels of autoantibody

biomarkers through the screening of the humoral immune

response against thousands of proteins (115). For example,

thousands of recombinant proteins may be expressed, purified,

and then spotted on microarrays or chips to enable easy

screening of test samples (e.g. serum) (116–118). Moreover,

the potential autoantibodies can be screened and identified using

tiny amounts of samples [e.g. autoantibodies to over 10,000

human antigens can be investigated in one experiment using

only 50 µL serum sample by applying Engine protein arrays

(Engine – a biomarker company in Germany)]. Antigens thus

identified can then be used as potential novel probes for disease

diagnosis, stage, progression, response to therapy, as well as

treatment (119). For example, B-lymphocyte stimulator (BLyS)
TABLE 1 Summary of autoantibody applications in various autoimmune disease.

Autoimmune
disease type

Autoantibody targets for diagnosis and prognosis Autoantibody targets for
treatment

Type 1 diabetes
(T1D)

Insulin; cytoplasmic proteins in beta cells, glutamic acid decarboxylase (GAD-65); protein tyrosine phosphatase
(IA-2A); zinc transporter 8 (ZnT8); Pdx1 and Reg1A, cytokine CCL3, Rab GDP dissociation inhibitor beta
(GDIb) (75)

CD3, CD20, CD2, interleukin
(IL)-1b, IL-1R, IFNa, IFNg, IL-12,
IL-21, IL-17A, IL-25, CD4 and
CD8a, CD127, IL-7Ra, IL-2,
CD127, IL-7Ra (76)

Rheumatoid
arthritis (RA)

Rheumatoid factor (RF), citrullinated antibodies (ACPA), carbamylated protein (anti-CarP), peptidyl arginine
deiminase-4 (PAD-4), glucose-6-phosphate isomerase (anti-GPI), Type II collagen (CII), Heterogeneous nuclear
ribonucleoprotein A2, RA33, malondialdehyde (MDA), malondialdehyde-acetaldehyde (MAA), CCP2 (25, 77)

TNFa, integrin alpha-9 (a9), IL-2,
IL-10, IL-6R, CD20, CD80/86 (78,
79)

Multiple sclerosis
(MS)

Potassium channel KIR4.1 (80),
anti-a-D-Glcp-(1!4)-a-D-Glcp (GAGA4) IgM (81), myelin oligodendrocyte glycoprotein (MOG), myelin basic
protein (MBP), KIR4.1, Neurofilaments-Heavy chain (NF-H), Chitinase-3-Like-1 precursor, miR-19a, miR-21,
miR-22, miR-142-3p, miR-146a, miR-146b, miR-155, miR-210, and miR-326 (82)

Integrin a, a4b1-integrin, CD52,
CD20 (83–85);

Systemic lupus
erythematosus
(SLE)

C1q, panel of Erythrocyte-bound C4d (E-C4d), B-cell-bound C4d (B-C4d), nuclear contents, and mutated
citrullinated vimentin (MCV), panel of antibodies against dsDNA, nuclear contents, MCV, E-C4d, and B-C4d
(86); Serum Complement 3 (C3), Complement 4 (C4), Nucleosome, Erythrocyte Sedimentation Rate (ESR), C-
Reactive Protein (CRP), Sm, C1q, C1q (87); extractable nuclear antigens (anti-ENA), B lymphocyte stimulator
(BLyS), TNF-like weak inducer of apoptosis (TWEAK) (88), myc-associated zinc finger protein (MAZ) (89),
TRIM21 (90)

B-lymphocyte stimulator (BLyS)
(91);
Thyroid peroxidase (TPO), BLyS,
CD 20, CD22, CD19, Cereblon
Modulator (CC-220), CD40, IL-
12/23, IL-10, IL-6, IFNa,
Interferon-g (IFNg), IFNa Kinoid
(IFNa-K) (92)
CD38 (93)
a proliferation-inducing ligand
(APRIL) (94)

Graves’ disease
(GD)

Thyroglobulin (TG), thyroid peroxidase (TPO), and thyroid-stimulating hormone receptor (TSHR) (95) CD20 (96), TSHR/IGF-IR
receptor complex, IL-6, TNF-a
(97)

Psoriasis Cyclic Citrullinated Peptide, Rheumatoid factor (RF), nuclear contents (98) TNF-a, (99)
IL-12, -23, and -17 (100) CD6
(101), CD4 (102)

Inflammatory
bowel disease
(IBD)

Neutrophil cytoplasmic, Exocrine Pancreas, Saccharomyces cerevisiae, glycan, outer-membrane porin C, Cbir1,
I2, Mycobacterium avium subspecies paratuberculosis, Caenorhabditis elegans, cocktail multiple antigenic
peptide, tailless complex polypeptide (TCP), granulocyte macrophage colony-stimulating factor (103, 104)

TNF-a, IL-12, IL-23, a4 integrin,
a4b7 integrin (105–107)

Sjögren’s
syndrome (SS)

Nuclear contents, Sjögren’s syndrome type, rheumatoid factor, Panel of murine parotid tissue proteins,
including parotid secretory protein, carbonic anhydrase 6, and salivary protein-1 (108), carbonic anhydrase 6
(CA6) (109)

CD-20 (110), IFN-a (111)

Celiac disease
(CD)

Tissue Transglutaminase (tTG), Deamidated gliadin peptide, endomysium (112) IL-15 (113)
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has been found to increase significantly in SLE patients, and

autoantibodies against BLyS have been successfully applied in

SLE treatment (120). An anti-BLyS human monoclonal

antibody, Belimumab, was approved by the US FDA, and is

still proven to be safe and effective in SLE therapy (121).

Scientists have shown great interest in anti-idiotypic (anti-

ID) use. Here the antibody against the binding site of the

autoantibody (Ab1) is known as anti-ID antibody (Ab2).

Autoantibodies offer a potential target for anti-ID antibody

prevention/treatment for autoimmune disease. The antigen-

binding regions of anti-ID antibodies (Ab2) that are specific

for autoantibody (Ab1) can structurally mimic/resemble that of

the target antigens. Thus, the Ab2 antigen-binding domain can

potentially represent an exact mirror image of the initial targeted

antigen of Ab1. Moreover, Ab2 may display a similar functional

activity with the original antigen (122). Such Ab2s have been

validated for potential application as a surrogate for the original

antigen in vaccine studies (123).

There are several advantages of using anti-ID antibodies for

immunotherapy. Firstly, anti-ID antibodies enable the inhibition

of specific autoantibody responses while the rest of the immune

system remains unaffected, thus, avoiding potential side effects.

Secondly, anti-ID antibodies trigger a memory response

(through T-helper memory cell generation) promoting longer-

lasting immunity and preventing relapses. Finally, it is relatively

safe to use anti-ID antibodies in vivo, since anti-ID antibodies

naturally occurred in the body and the immune response caused

by anti-ID antibodies should be similar with that caused by the

original antigens, which are mimicked by anti-ID antibodies

(124). For example, high levels of anti-dsDNA autoantibodies

can be detected years before the onset of SLE, and these harmful

autoantibody levels are associated with the severity of SLE. Anti-

dsDNA autoantibodies are often correlated with continuing

inflammation and kidney damage (125). Lee et al. (126)

reported that high levels of anti-dsDNA antibody were

successfully neutralized and decreased through the binding of

anti-ID antibodies, which then lead to apoptosis of anti-dsDNA

antibody-producing cells. Therefore, there is potential to employ

anti-ID antibodies for prevention (e.g. vaccine) and

treatment purposes.

Table 1 summarizes the targets for autoantibodies which

have been used clinically or have high potential (as proved at

research level) in diagnosis, prognosis and therapy of

autoimmune diseases. It is very interesting to notice that for

diagnosis and prognosis of different types of autoimmune

disease, the autoantibody targets vary significantly for disease-

specificity, while for treatment, one target can be used in several

different types of autoimmune disease. For example, anti-cluster

of Differentiation 20 (CD20) autoantibody showed therapeutic

effect in Type 1 diabetes, rheumatoid arthritis, multiple sclerosis,

systemic lupus erythematosus, Graves’ disease and Sjögren’s

syndrome. Anti-tumor necrosis factor (TNF) a autoantibody

is effective in the treatment of rheumatoid arthritis, Graves’
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disease, psoriasis and inflammatory bowel disease. Anti-IL-12

autoantibody can be useful for the therapy of Type 1 diabetes,

systemic lupus erythematosus, psoriasis and inflammatory

bowel disease. This indicates that a panel of autoantibodies

may be able to provide effective treatment for various

autoimmune diseases/conditions.
The role of autoantibody in cancer
diagnosis, prognosis and tumor
inhibition/treatment

Cancer requires early detection and effective treatment,

while early diagnosis is usually essential for effective therapy.

Tumor-associated autoantibodies are popular candidates for

both early detection and treatment of cancer, as increasing

numbers of autoantibodies against tumor specific antigens

have been reported and their detection exploited for research

and clinical analysis (127–129).

Tumor-associated autoantibodies are antibodies produced as

an immune response against various tumor-associated

autoantigens (i.e. over expressed antigens, mutated or post-

translationally modified proteins). Various tumor-associated

autoantibodies have been identified in virtually all types of

cancers. However, there are some problems associated with

autoantibody detection. This includes issues due to their very

low levels which may be undetectable (130). Autoantibodies may

start to be produced before disease symptoms are manifested but

their detection may be difficult due to their low concentrations.

Some autoantibodies may be very good potential biomarkers

(sensitive and specific), but there is the possibility that their

corresponding target antigens are still not identified, either

because they are unknown or have not been linked to specific

diseases (131). There may also be an issue for detection of

autoantibodies that have very low antigen binding

affinities (132).

Kijanka et al. (133) demonstrated that by screening high-

density protein arrays, colorectal cancer-special antibody

profiles (e.g. autoantibodies against p53, HMGB1, TRIM28,

TCF3, LASS5 and ZNF346) can be identified for colorectal

cancer diagnosis in symptomatic patients. Fitzgerald et al.

(134) further described a novel ELISA assay which showed

high predictive value for the presence of colorectal cancer,

through the detection of IgM and IgG autoantibody immune

responses in human serum. This novel blood-based test has

potential for enhanced patient uptake, as such a blood-based test

is generally more acceptable than a fecal-based test.

Some autoantibodies have potentially good diagnostic

capacity, but some are also applicable for use in prognosis. It is

reported that the serum autoantibodies against GAGE7,

MAGEA1, PGP9.5, CAGE and p53 could be used for lung

cancer diagnosis, while autoantibodies to PGP9.5 particularly

correlate with poor prognosis for lung cancer patients (135).
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Some autoantibodies were associated with good prognosis, while

others indicated bad prognosis. Denkert et al. (136) found that

high levels of autoantibodies against tumor-infiltrating

lymphocytes (TILs) and p53 were associated with better

prognosis in HER2-positive breast cancer patients, while

autoantibodies against MSH2, EZR, PGK1, VCL and ANXA2

were associated with poorer pancreatic cancer patient outcomes

(137). Autoantibodies against CDC25B also indicated poor

prognosis in advanced esophageal squamous cell carcinoma

(ESCC) patients (138). In some circumstances, an autoantibody

can be used in both diagnosis and treatment (139) with panels of

autoantibodies being more useful. For example, an autoantibody

against human epidermal growth factor receptor 2 (HER2) can be

used for diagnosis for HER2-positive breast cancer. Moreover, as

HER2 promotes cancer cell growth, anti-HER2 autoantibodies

may also provide potentially effective anti-cancer outcomes (140).

For prostate cancer, an anti-prostate-specific antigen (PSA)

autoantibody could serve as a diagnostic biomarker (since PSA

is a FDA-approved prostate cancer diagnosis biomarker, although

it has clearly established limitations, but is routinely used in

clinics), and may mediate anti-cancer effects (141). The value of

anti-PSA antibodies was shown by Sinha et al. (142) who

successfully used anti-PSA IgG as a selective delivery agent for

conjugated chemotherapeutic drugs to PSA-producing neoplastic

prostate cells in nude mice, without causing cytotoxic effects on

mouse organs.

Early diagnosis improves cancer outcomes significantly, but, is

also challenging and demanding. Wang et al. (143) identified an

anti-ALDH1B1 autoantibody which may have potential for early

detection of colorectal cancer. Anti-TOPO48 autoantibody was

reported to be a potentially useful biomarker for early diagnosis

and prognosis of ESCC (144). Autoantibodies against aberrantly

glycosylated MUC1 in early-stage breast cancer are believed to

predict a better prognosis (145). Detection of a panel of

autoantibodies against seven various targets (p53, GAGE7,

PGP9.5, CAGE, MAGEA1, SOX2 and GBU4-5) was suggested

to have significant clinical value for early diagnosis of lung cancer

(146). However, autoantibody panels are generally proven to be

more effective and accurate than the use of a single autoantibody

in cancer diagnosis (147). O’Reilly et al. (148) reported that a

panel of zinc finger proteins, including ZNF346, ZNF638, ZNF700

and ZNF768, are suitable for use as capture antigens in a blood-

based autoantibody biomarker assay for colorectal cancer. Jiang

et al. (48) successfully developed a panel of seven autoantibodies

(reactive with: TP53, NPM1, FGFR2, PIK3CA, GNA11,

HIST1H3B, and TSC1) for effective early detection of lung

cancer, as well as providing novel targets for lung

cancer immunotherapy.

In relation to the determination of autoantibodies, IgG, IgM

and IgA have been demonstrated to have differential

discriminatory abilities (134, 149). While protein targets are

predominant, changes in glycation, citrullination or
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phosphorylation are also potentially significant. The linkage of

autoantibody profiles to genomic findings and other sets of

clinical data, with associated analysis using complex

computational approaches, should be capable of providing

greater insights and diagnostic capacity and risk analysis of

diseases including cancer and autoimmunity (150).

Increasing numbers of studies have shown that some

autoantibodies play a crucial role in cancer inhibition.

Autoantibodies could inhibit tumors via surveillance

mechanisms thereby controlling prolonged survival for

various cancers, for instance, melanoma, esophago-gastric,

breast gastric, colon, lung, pancreatic and tongue cancers

(19). It is reported that the generation of autoantibodies

specific to tumor antigens is derived from the migration,

differentiation, and maturation of TIL-B (tumor infiltrating

B-cells) in tumor-associated tertiary lymphoid structures. Thus

tumor associated autoantibodies, which are believed to be

indicative of more significant immunological reactivity, will

induce functional anti-tumor humoral immunity and promote

immune surveillance for cancer cells (151). Evidence suggests

that certain pre-existing tumor associated autoantibodies (e.g.

NY-ESO-1, XAGE1, and SIX2) are associated with clinical

benefit in anti-PD-1 treatment for non-small-cell lung cancer

(152–154). Karagiannis et al. (155) observed that impairment

of autoantibody IgG1-mediated tumoricidal functions,

generated poor clinical outcomes in melanoma.

The autoantibodies or autoantibody-derived antibodies

involved in cancer therapy function in four ways. Firstly,

autoantibodies induce tumor cell death directly, which includes

blockade of growth factor receptor signaling, as well as ligand

binding blockage that induces tumor cell apoptosis. Secondly,

autoantibodies induce tumor cell death indirectly by engaging

components from the host immune system, which include

antibody-dependent cellular cytotoxicity, complement-dependent

cytotoxicity, and antibody-dependent cellular phagocytosis (156).

Thirdly, neutralization of harmful tumor-specific antigens and/or

overexpressed tumor-associated antigens may occur. Finally,

delivery of chemotherapy or radiotherapy specifically to cancer

cells, but not to healthy cells and tissues, can be mediated with less

side effects (157). There are now many potential autoantibodies for

use in diagnosis and therapy of various cancers. For instance, there

are around 100 autoantibodies with possible utility for lung cancer

diagnosis and therapy (48, 146, 158, 159). Table 2 summarizes

autoantibody targets which have been approved by the EU and US

FDA for cancer diagnostics and therapeutics.

The advantages and principles of using the anti-ID antibodies

in treatment were stated previously. Racotumomab (Vaxira) is the

first approved (approved only in Cuba and Argentina) anti-ID

antibody therapeutic vaccine. Racotumomab, which is well tolerated

by patients, has successfully increased the overall survival rate of

Non-Small Cell Lung Cancer patients in recurrent or advanced

stages (161).
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How could autoantibody utilization aid
the treatment of COVID-19?

Certain autoantibodies (e.g. anti-type I IFNs autoantibody)

could drive severe and long COVID-19. These ‘harmful’

autoantibodies should be determined at an early stage

following diagnosis of COVID-19 infection to predict the

severity and possible long-term effects of infection, thus,
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hopefully enabling more effective therapy. Anti-cytokine

autoantibodies (e.g., antibodies against IFNa, IFNϵ, IL-6, IL-
22, GM-CSF and TNFa) may also provide a potential target for

COVID-19 treatment. Troya et al. (65) analyzed clinical data

from COVID-19 patients receiving subcutaneous IFN-beta-1b

treatment from March to May 2020, at the Infanta Leonor

University Hospital in Madrid, Spain. However, no improved

clinical outcomes were observed. It was suggested that IFN-beta
TABLE 2 Summary of EU and/or US FDA-approved autoantibody targets for cancer diagnosis and of autoantibodies/autoantibody-derived
antibodies for cancer treatment .

Cancer
Type

Autoantibody
targets for
diagnosis

Treatment autoantibodies or autoantibody-derived antibody drug conjugates (ADC)
(Antibody name/target/type)

Breast
cancer

HER2/neu, CA27-29,
and CA15-3 (Mucin-1

[MUC1])

Margetuximab/HER2/Chimeric IgG; Atezolizumab/PD-L1/Humanized IgG1;
Ado-trastuzumab emtansine/HER2/Humanized IgG ADC; Pertuzumab/HER2/Humanized IgG1; Trastuzumab emtansine/HER2/

Humanized IgG1; [fam]-trastuzumab deruxtecan/HER2/ Humanized IgG1 ADC; Margetuximab/HER2/Chimeric IgG1;
Sacituzumab govitecan/TROP2/Humanized IgG1 ADC.

Lung
cancer

Atezolizumab/PD-L1/Humanized IgG1; Bevacizumab/VEGF/Humanized IgG1; Necitumumab/EGFR/recombinant human IgG1;
Nivolumab/PD-1/Human IgG4; Pembrolizumab/PD-1/Humanized IgG4.

Bladder
cancer

Nuclear Mitotic
Apparatus protein
(NuMA, NMP22)

Atezolizumab/PD-L1/Humanized IgG1; Durvalumab/PD-L1/Human IgG1; Enfortumab/vedotin Nectin-4/human IgG1.

Colorectal
cancer

carcinoembryonic
antigen (CEA)

Bevacizumab/VEGF/Humanized IgG1;
Cetuximab/EGFR/Chimeric IgG1;

Edrecolomab/EpCAM/Murine IgG2a; Panitumumab/EGFR/Human IgG2;
Nivolumab/PD-1/Human IgG4;

Ramucirumab/VEGFR2/Human IgG1.

Renal /
kidney
cancer

Bevacizumab/VEGF/Humanized IgG1; Ipilimumab/CTLA-4/Human IgG1;
Nivolumab/PD-1/Human IgG4.

Ovarian
cancer

CA125 (MUC16),
ROMA (HE4+CA-

125), OVA1 (multiple
proteins), HE4

Bevacizumab/VEGF/Humanized IgG1.

Multiple
Myeloma

Belantamab mafodotin/BCMA/Humanized IgG1 ADC; Daratumumab/CD38/Human IgG1; Elotuzumab/SLAMF7/Humanized
IgG1; Isatuximab/CD38/Chimeric IgG1.

Melanoma Ipilimumab/CTLA-4/Human IgG1; Nivolumab/PD-1/Human IgG4; Pembrolizumab/PD-1/Humanized IgG4; Tebentafusp/gp100
CD3/Bispecific immunoconjugate (TCR-scFv).

Lymphoma Loncastuximab tesirine/CD19/Humanized IgG1 ADC; Tafasitamab/CD19/Humanized IgG1 ; Mogamulizumab/(T cell) CCR4/
Humanized IgG1; Rituximab/(B cell) CD20/Chimeric IgG1; Brentuximab vedotin/CD30/Chimeric IgG1 ADC; Polatuzumab

vedotin/CD79B/Humanized IgG1 ADC; Ibritumomab tiuxetan/CD20/Murine IgG1; Iodine (I131) tositumomab/CD20/Murine
IgG2a; Pembrolizumab/PD-1/Humanized IgG4.

Leukemia Moxetumomab pasudotox/CD22/Murine IgG1 dsFv-immunotoxin; Obinutuzumab/CD20/Humanized IgG1; Ofatumumab/CD20/
Human IgG1; Glycoengineered Blinatumomab/CD19, CD3/Murine bispecific tandem scFv; Alemtuzumab/CD52/Humanized IgG1;

Inotuzumab ozogamicin/CD22/recombinant humanised IgG4 ADC; Gemtuzumab ozogamicin/CD33/Humanized IgG4 ADC.

Sarcoma Olaratumab/PDGFRa/Human IgG1.

Gastric
cancer

Ramucirumab/VEGFR2/Human IgG1.

Cervical
cancer

Tisotumab vedotin/Tissue factor/Human IgG1 ADC; Pembrolizumab/PD-1/Humanized IgG4.

Pancreatic
cancer

CA19-9 LYT-200/galectin-9/human IgG4.

Prostate
cancer

PSA Evaluating Panitumumab/(ABX-EGF) EGFr/human IgG2.

General
cancer type

Carcino-embryonic
antigen
This table is derived from a combination of reports (156, 157, 160).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.953726
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2022.953726
treatment was given too late, after two weeks of symptoms.

Therefore, an earlier, ambulatory IFN-beta treatment appears to

be required (162).

Cytokines play an important role in protection of the host

against bacterial and viral (including COVID-19) infections.

However, an over-activated immune response may cause an

acute inflammatory reaction called a ‘cytokine storm’ (acute

overproduction and uncontrolled release of pro-inflammatory

cytokines), leading to multiple organ dysfunction. This is quite

common (ca 21%) in COVID-19-infected pneumonia patients

(163–165). Therefore, autoantibodies could be employed for

COVID-19 treatment. The therapeutic functions of

monoclonal neutralization antibodies against IL-6 and GM-

CSF have been reported. Temesgen et al. (166) successfully

used an anti-human GM-CSF monoclonal antibody for the

treatment of patients with severe COVID-19 pneumonia,

which proved to be safe and effective, with improved clinical

outcomes, as well as a reduced cytokine storm. Moreover, an

anti-IL-6 monoclonal antibody decreased IL-6 levels, which lead

to the reduction of the inflammatory process in COVID-19

patients with severe respiratory disease. Therefore, there is high

potential to use anti-IL-6 neutralization antibody for prevention

of a cytokine storm and death caused by it (167). Similarly, anti-

ID antibodies, which showed significant value for autoimmune

disease treatment could be used in the same way.

Autoantibody-triggered autoimmune responses are often

associated with severe and long COVID-19. Therefore, anti-ID

antibodies of autoantibody targets may also have potential in

COVID-19 treatment (122, 168, 169).
Conclusions and future trends

Autoantibodies have various roles and can be exploited as

enemies, as well as friends, capable of doing harm and good. The

levels and stability of autoantibodies can cause challenges (e.g. in

autoimmune disorders and long COVID-19), but also enable

potentially better and more reliable diagnosis.

Overall, in order to take full advantage of autoantibodies,

and avoid/limit their negative aspects, more research is required.

Luckily, more and more mature and advanced technologies will

aid research on autoantibodies, for instance, protein arrays and

use of anti-ID antibodies (119, 169).

The use of protein arrays for autoantibody detection offers

advantages including high multiplexing capacity, availability of

multiple detection systems, well-established quality control

procedures, small sample volume requirements, high

sensitivity, good dynamic ranges and rapid generation of
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results. Challenges include the need to detect autoantibodies at

highly variable concentrations, issues with effective

immobilization of proteins/antigens depending on their

characteristics, epitope availability and stability and the need

to identify appropriate sets of targets with the required

sensitivity and specificity (170). The availability of artificial

intelligence (AI) and other approaches for processing results

from multiple analytical determinations from many patient

cohorts and controls should also provide enhanced

discrimination for diagnosis and follow-up. Linking

autoantibody determination with genomics analysis should

provide opportunities for precision health for greatly improved

patient welfare, but the associated analysis may be

complex (171).
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the management of COVID-19. antagonists of IL-6: Siltuximab. Adv Ther (2022)
39:1126–48. doi: 10.1007/s12325-022-02042-3

168. Harville TO, Arthur JM. Anti-idiotype antibodies in SARS-CoV-2
infection and vaccination. N Engl J Med (2022) 386:897–9. doi: 10.1056/
NEJMc2119443

169. Naveed A, Naz D, Rahman SU. Idiotype/anti-idiotype antibodies: as a
glorious savior in COVID-19 pandemics. Transl Med Commun (2021) 6:18.
doi: 10.1186/s41231-021-00097-y

170. Aziz F, Smith M, Blackburn J. Autoantibody-based diagnostic biomarkers:
Technological approaches to discovery and validation. In: WA Khan, editor.
Autoantibodies and cytokines. Intech Open (2018). p. 159–87. doi: 10.5772/
intechopen.75200

171. Wang C, Zheng X, Jiang P, Tang R, Gong Y, Dai Y, et al. Genome-wide
association studies of specific antinuclear autoantibody subphenotypes in primary
biliary cholangitis. Hepatology (2019) 70:294–307. doi: 10.1002/hep.30604
frontiersin.org

https://doi.org/10.1016/S1470-2045(17)30904-X
https://doi.org/10.1016/j.pan.2019.06.009
https://doi.org/10.1016/j.pan.2019.06.009
https://doi.org/10.1186/1479-5876-8-81
https://doi.org/10.1186/1479-5876-8-81
https://doi.org/10.3389/fphar.2020.632079
https://doi.org/10.3389/fphar.2020.632079
https://doi.org/10.1007/s10549-016-3801-4
https://doi.org/10.2217/imt.13.83
https://doi.org/10.3389/fonc.2020.01081
https://doi.org/10.3389/fonc.2020.01081
https://doi.org/10.1016/j.clinre.2017.09.007
https://doi.org/10.1186/bcr2841
https://doi.org/10.1186/bcr2841
https://doi.org/10.1080/2162402X.2017.1384108
https://doi.org/10.1038/s41420-019-0207-1
https://doi.org/10.1038/s41420-019-0207-1
https://doi.org/10.1371/journal.pone.0123469
https://doi.org/10.1002/cti2.1330
https://doi.org/10.1172/JCI156025
https://doi.org/10.1172/jci.insight.129641
https://doi.org/10.1016/j.jtho.2019.08.008
https://doi.org/10.1001/jamaoncol.2018.5860
https://doi.org/10.1001/jamaoncol.2018.5860
https://doi.org/10.7150/thno.45816
https://doi.org/10.1172/JCI65579
https://doi.org/10.3390/antib9030034
https://doi.org/10.1038/s41388-021-01811-8
https://doi.org/10.3978/j.issn.2218-6751.2015.06.02
https://doi.org/10.3978/j.issn.2218-6751.2015.06.02
https://doi.org/10.3389/fonc.2020.00741
https://doi.org/10.1186/1559-0275-10-13
https://doi.org/10.37757/MR2021.V23.N3.5
https://doi.org/10.1016/j.antiviral.2020.104791
https://doi.org/10.1097/MD.0000000000027400 
https://doi.org/10.3390/cells10061550
https://doi.org/10.1186/s12985-022-01814-1
https://doi.org/10.1186/s12985-022-01814-1
https://doi.org/10.1101/2020.06.08.20125369
https://doi.org/10.1007/s12325-022-02042-3
https://doi.org/10.1056/NEJMc2119443
https://doi.org/10.1056/NEJMc2119443
https://doi.org/10.1186/s41231-021-00097-y
https://doi.org/10.5772/intechopen.75200
https://doi.org/10.5772/intechopen.75200
https://doi.org/10.1002/hep.30604
https://doi.org/10.3389/fimmu.2022.953726
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Autoantibodies - enemies, and/or potential allies?
	Introduction
	Problems caused by autoantibodies
	Role of autoantibodies in autoimmune diseases
	Autoantibodies which promote the progression of cancer
	Autoantibodies could drive severe and long COVID-19

	Exploiting the benefit of autoantibodies
	Autoantibody value in the detection and treatment of autoimmune and other disorders
	The role of autoantibody in cancer diagnosis, prognosis and tumor inhibition/treatment
	How could autoantibody utilization aid the treatment of COVID-19?

	Conclusions and future trends
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


