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Introduction: Severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) infection
triggers inflammatory clinical stages that affect the outcome of patients with coronavirus
disease 2019 (COVID-19). Disease severity may be associated with a metabolic
imbalance related to amino acids, lipids, and energy-generating pathways. The aim of
this study was to characterize the profile of amino acids and acylcarnitines in COVID-19
patients. A multicenter, cross-sectional study was carried out. A total of 453 individuals
were classified by disease severity. Levels of 11 amino acids, 31 acylcarnitines, and
succinylacetone in serum samples were analyzed by electrospray ionization–triple
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quadrupole tandem mass spectrometry. Different clusters were observed in partial least
squares discriminant analysis, with phenylalanine, alanine, citrulline, proline, and
succinylacetone providing the major contribution to the variability in each cluster
(variable importance in the projection >1.5). In logistic models adjusted by age, sex,
type 2 diabetes mellitus, hypertension, and nutritional status, phenylalanine was
associated with critical outcomes (odds ratio=5.3 (95% CI 3.16-9.2) in the severe vs.
critical model, with an area under the curve of 0.84 (95% CI 0.77-0.90). In conclusion the
metabolic imbalance in COVID-19 patients might affect disease progression. This work
shows an association of phenylalanine with critical outcomes in COVID-19 patients,
highlighting phenylalanine as a potential metabolic biomarker of disease severity.
Keywords: COVID-19, metabolomics, SARS – CoV – 2, amino acids, phenylalanine
INTRODUCTION

The severe acute respiratory syndrome–coronavirus 2 (SARS-
CoV-2) pandemic has drastically impacted humanity,
threatening public health and the global economy (1).
Infections of pneumocytes by SARS-CoV-2 is responsible for
causing coronavirus disease 2019 (COVID-19) (2), which has
infected approximately 458 million people worldwide and caused
the death of more than 6 million people (3). Reported clinical
manifestations of COVID-19 range from asymptomatic infection
to mild, severe, and critical disease (4). Patients with critical
outcomes develop dyspnea, hypoxia, acute respiratory disease
syndrome, multiple organ dysfunction syndrome (5), septic and
cardiogenic shock, and acute myocardial injury or myocarditis
(6–8). Cytokine storm, iron overload, anemia, and hypoxia have
been proposed as possible factors related to critical outcomes and
death (9–14).

Various aspects of the host-virus interaction have been
proposed as part of the mechanism to explain the complexity
of COVID-19 pathogenesis (15). In this sense, the virus induces
modifications in host metabolism, including pathways related to
amino acids, lipids, and energy generation, leading to metabolic
reprogramming that can be reflected as an impaired metabolome
(16–18). Recent evidence indicates that SARS-CoV-2 causes
metabolic dysregulation at different levels, affecting glucose,
cholesterol, amino acid, and fatty acid metabolism (17–19).
Some of these observed metabolic changes in the host could be
related to an increase in muscular protein and lipid catabolism as
a means of meeting the high energy requirement needed to fight
the infection (20). Recent studies have shown that phenylalanine
metabolism is one of the most dysregulated pathways in COVID-
19 patients (17, 20–22). However, the effects of SARS-CoV-2
infection on intermediary metabolism, including metabolism of
acylcarnitines, has been poorly studied. Nevertheless,
measurement of total carnitine has been used as a precision
biomarker to predict mortality risk in diseases such as sepsis,
T2DM, cancer, and heart failure (23).

Another key metabolite that has been poorly explored in
COVID-19 is succinylacetone. This metabolite is an organic
acid which comes from tyrosine catabolism and when
fumarylacetoacetate hydrolase enzyme activity is impaired it can
org 2
accumulate contributing to acidosis, it can also act as an
oncometabolite, or a metabotoxin (24). A better understanding of
dysregulation of amino acid, succinylacetone and acylcarnitine
metabolism associated with the different COVID-19 clinical
phenotypes could provide novel insights into treatment strategies
that reduce the index of fatal outcomes. The present study aimed to
characterize the profile of amino acids, succinylacetone, and
acylcarnitines in a cohort of COVID-19 patients as potential
biomarkers of different stages of the disease.
MATERIAL AND METHODS

Setting and Participants
From June 2020 to March 2021, a cross-sectional multicenter
study was carried out. The inclusion criteria for selecting subjects
were independent of gender, age ≥18 years, non-vaccinated, and
non-pregnant women with clinical manifestations of COVID-19
and positive RT-PCR test. A non-probabilistic sampling study
design was used, as patients were recruited directly from the
COVID-19 triage facilities of the participant institutions. The
participants were recruited from the following public hospitals of
the Mexican Governmental Health System in Mexico City:
Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra
Ibarra”, Instituto Nacional de Cardiologıá “Ignacio Chávez”,
Hospital Central Norte Pemex, Instituto Nacional de Ciencias
Médicas y Nutrición “Salvador Zubirán”, Hospital General “Dr.
Manuel Gea González”, and Hospital General ISSSTE “Tláhuac”.

Ethical Statement
This study was conducted following good clinical practices and
the Declaration of Helsinki. Written informed consent was
obtained from each participant or legal representative. The
privacy of patient data was stated at the time of informed
consent. The ethics and research committees of the
participating institutions approved this study.

Outcomes
Patients were classified by disease severity according to Gandhi
et al. criteria (4), as follows: mild (n=152), ambulatory subjects
with symptoms such as fever, headache, fatigue, odynophagia,
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cough, rhinorrhea, diarrhea, anosmia, or dysgeusia, with or
without dyspnea or pneumonia, not requiring hospitalization;
severe (n=60), hospitalized individuals with any of the following
symptoms: tachypnea (respiratory rate>30 bpm); pulmonary
infiltrate >50%, dyspnea after small efforts; and critical
(n=210), patients requiring invasive mechanical ventilation
who could course to shock and multi-organ failure. In
addition, the healthy group was selected by the surgery
orthopedic service at the Instituto Nacional de Rehabilitación
LGII, including subjects with negative RT-PCR test to SARS-
CoV-2 and without symptoms of fever, odynophagia, myalgia,
anosmia. Thus, four groups were studied: healthy, mild, severe,
and critical patients.

Sample and Metabolomic Analysis
Venous blood samples were obtained mainly at hospital COVID-
19 triage, or in the first hours of admission. Samples were
immediately centrifugated and serum was separated and stored
at -70 oC. Targeted metabolomic analysis was performed using a
commercial kit (NeoBaseTM non-derivatized MSMS kit, Perkin
Elmer-WallacTM Oy, Turku, Finland), which comprises eleven
amino acids (alanine, arginine, citrulline, glycine, XLE-OHPro
[leucine, isoleucine alloisoleucine and hydroxyproline],
methionine, ornithine, phenylalanine, proline, tyrosine, and
valine); 31 acylcarnitines (Free-carnitine, acetylcarnitine,
propionylcarnitine, malonylcarnitine, butyrylcarnitine, 3-hydroxy-
butyrylcarnitine, methylmalonylcarnitine, isovalerylcarnitine,
tiglylcarnitine, glutarylcarnitine, 3-hydroxy-isovalerylcarnitine,
hexanoylcarnitine, adipylcarnitine, octanoylcarnitine,
octenoylcarnitine, decanoylcarnitine, decenoylcarnitine,
dodecanoylcarnitine, dodecenoylcarnitine, tetradecanoylcarnitine,
tetradecenoylcarnitine, tetradecadienoylcarnitine, 3-hydroxy-
tetradecanoylcarnitine, hexadecanoylcarnitine, hexadecenoylcarnitine,
3-hydroxy-hexadecanoylcarnitine, 3-hydroxy-hexadecenoylcarnitine,
octadecanoylcarnitine, octadecenoylcarnitine, octadecadienoylcarnitine,
3-hydroxy-octadecanoylcarnitine, 3-hydroxy-octadecenoylcarnitine,
and one organic acid (succinylacetone). All the reagents for the
measurement such as internal and calibration standards, quality
controls and the mobile phase were included in the kit. Samples
were processed following the manufacturer’s instructions. Briefly,
metabolites were extracted from samples using a methanolic
solution that included stable isotope–labeled standards for
quantification. After extraction, the samples were analyzed with a
MSMS instrument (MSMS, Quattro micro-API, Waters Inc, Milford,
MA, USA), which is constituted of a triple quadrupole mass analyzer.
The samples were introduced without previous chromatographic step,
by flow injection. Analytes were ionized by electrospray ionization
using nitrogen as curtain gas. The collision gas used between the two
mass spectrometers was argon. For data acquisition multiple reaction
monitory method was used. Metabolites were quantified with
NeoLynxTM software (Perkin Elmer-WallacTMOy, Turku, Finland).

MetaboAnalyst version 5.0 was used. Data were normalized
according to the constant sum method, and data scaling was
performed with mean-centering and division by the standard
deviation of each variable. Data transformation was performed
using the log2-normalized median fold-change and the level of
each amino acid was calculated and compared with the level in
Frontiers in Immunology | www.frontiersin.org 3
healthy subjects (HS). Hierarchical clustering was performed
using the so-called h-clust function in the package stat, which is
included in the MetaboAnalyst software. Clustering results are
shown as a heatmap. Partial least squares discriminant analysis
(PLS-DA) was used to identify metabolites that could outline
different clusters related to disease severity among all the studied
groups. The variable importance in projection (VIP) based on de
PLS-DA analysis was determined to identify metabolites that
would enable discrimination of disease severity, those
metabolites with VIP score ≥1.5 were considered significant for
group separation (25, 26).

Statistical Analysis
Clinical and anthropometric analyses: normality of the variables
was determined using the Kolmogorov-Smirnov test. Univariate
and bivariate exploratory analyses were also carried out. The
Kruskal-Wallis test was used for nonparametric continuous
variables, and results are described using the median and
interquartile range (IQR). For categorical variables, chi-squared
or Fisher exact tests were performed. A value of p<0.05 was
considered statistically significant for all tests.

To associate the COVID-19 phenotypes to those metabolites
with a VIP>1.5, we performed unadjusted and adjusted logistic
regression models. For this analysis the reference group used was
the mild disease group. Age, sex, type 2 diabetes mellitus (T2DM),
hypertension, and body mass index (BMI) according to WHO
criteria (≥18.5-24.9: normal weight; ≥25-29.9: overweight and ≥30:
obesity) were considered as covariates. Receiver-operating
characteristic (ROC) curves were used to determine sensitivity,
specificity, and area under the curve (AUC). Bonferroni correction
for multiple comparisons was performed, and p ≤ 0.003 was
considered statistically significant. All analyses were carried out
using the STATA 13 statistical package.
RESULTS

Subjects
This cross-sectional, multicenter study included 453 non-vaccinated
subjects, 31 of whom were healthy subjects (HS) that formed the
control group, and 422 who formed the COVID-19 group and
presented clinical characteristics of COVID-19, which was
confirmed by RT-PCR diagnosis of SARS-CoV-2 infection. Males
represented 59% (n=267) of the study population. The median age
of COVID-19 patients was 51 years (IQR=41-62 years). We found
significant differences among the study groups in terms of
anthropometric and clinical characteristics. For instance, a
significant reduction in oxygen saturation with increasing disease
severity was observed. Moreover, overweight, obesity, T2DM, and
hypertension were more prevalent in severe and critical COVID-19
patients (Table 1).

The Metabolomic Characterization
Targeted metabolomics was performed using MSMS. A total of 43
metabolites were analyzed. Radial graphics show the 11 amino
acids, succinylacetone, and 31 acylcarnitines analyzed in our study
(Figures 1A, B). Hierarchical clustering analysis was performed to
July 2022 | Volume 13 | Article 936106
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identify changes in metabolite abundance among the study groups
(Figure 1C) and showed that the most marked changes in average
relative concentration occurred in 25 of the 43 studied metabolites.
It is noteworthy to mention that concentrations of somemetabolites
changed as disease severity increased. Similar to amino acids
associated to COVID-19 outcome, several short chain
acylcarnitines, such as acetylcarnitine, and 3-hydroxybutyryl
carnitine/malonylcarnitine were also elevated according to disease
severity (Figure 1B).

PLS-DA
The presence of two clearly defined clusters was noted; one cluster
comprised of healthy and ambulatory subjects and the other by
hospitalized COVID-19 patients. Moreover, overlap within each
cluster was observed (Figure 2A). A plot of VIP scores shows the
contribution of each metabolite to the variability in each cluster
(Figure 2B). A high VIP score indicates a greater contribution of the
metabolite to separating the groups. We identified five metabolites
with a VIP score >1.5 that were considered responsible for the
observed separation. Phenylalanine had the highest VIP score (2.6),
followed by alanine (2.5), citrulline (2.2), proline (1.9), and
succinylacetone (1.7).

A paired PLS-DAwas performed to refine the differences among
the study groups (HS vs. mild; HS vs. severe; HS vs. critical; mild vs.
severe; mild vs. critical, and severe vs. critical). As disease progressed
toward the critical stage, the metabolomic differences became more
apparent (Figure 1S Supplementary Material).
Frontiers in Immunology | www.frontiersin.org 4
Figure 3 shows the normalized concentrations of the primary
metabolites. Phenylalanine showed the lowest value in HS and
the highest in patients with critical outcomes (Figure 4A),
whereas citrulline and proline showed a tendency to decrease
(Figures 4C, D). Alanine and succinylacetone levels were the
highest in patients with mild disease, whereas a tendency toward
decreased levels was observed in severe and critical COVID-19
patients (Figures 4B–E).

Odds Ratios (ORs) of COVID-19 Outcomes
Relative to Various Metabolites
In the unadjusted model the metabolites that showed a significant
association with the severe COVID-19 group were phenylalanine,
alanine, proline, and succinylacetone. The same metabolites plus
citrulline were also found associated with the critical COVID-19
group. When comparing severe versus critical groups, a significant
association was only observed for phenylalanine and citrulline.
Regarding the adjusted model by age, sex, T2DM, hypertension,
and BMI, we found statistically significant associations for alanine
and succinylacetone with the severe COVID-19 group (OR=0.22;
95% CI 0.12-0.36 and OR=0.45; 95% CI 0.29-0.68, respectively).
Moreover, for critical COVID-19 group, phenylalanine, alanine,
citrulline, proline, and succinylacetone were associated. When
comparing the severe versus critical COVID-19 groups
significant associations for phenylalanine and citrulline were
observed (OR=5.3; 95% CI=3.16-9.2 and OR=0.52; 95%
IC=0.36-0.74, respectively) (Table 2).
TABLE 1 | Anthropometric and clinical characteristics of the studied population.

Healthy n = 31 Mild n = 152 Severe n = 60 Critical n = 210 P value

Age (years) & 43 (32,52) 42 (31,49) 51.5 (44,63.5) 57(49,67) <0.001**
Male gender, n (%) 17 (55) 73 (48) 33 (55) 144(69) 0.001*
Heart rate, median (IQR), bpm+& 85 (73,102) 87 (78,103) 90 (80,103) 95 (88,110) <0.001**
Body temperature, median (IQR) &, °C 36.3 (36.3,36.45) 36.35 (36.1,36.5) 37 (36.4,38) 36.5 (36.1,37.1) <0.001**
Oxygen saturation % (IQR) & 95 (94,97) 94 (93,96) 88 (80,92) 83 (71,88) <0.001**
Breathing frequency, median (IQR), bpm+& 16 (15,16.5) 18 (16,20) 18 (17,20) 28 (24,36) <0.001**
WHO body mass index classification, n (%)
Normal weight 17 (55) 115 (76) 20 (33) 37 (18) <0.001*
Overweight 11 (35) 21 (14) 22 (37) 88 (42)
Obesity 3 (10) 16 (10) 18 (30) 85 (40)

T2DM, n (%) 3 (13) 13 (8) 21 (35) 74 (35) <0.001*
Hypertension, n (%) 4 (17) 11 (7) 15 (25) 85 (41) <0.001*
Fever, n (%) 0 (0) 47 (31) 29 (48) 116 (57) <0.001*
Cough, n (%) 5 (16) 90 (59) 44 (73) 171 (81) <0.001*
Dyspnea, n (%) 1 (3) 39 (26) 43 (72) 152 (72) <0.001*
Chest pain, n (%) 1 (3) 37 (24) 19 (36) 60 (30) 0.006*
Headache, n (%) 3 (10) 95 (62) 30 (50) 125 (59) <0.001*
Odynophagia, n (%) 0 (0) 74 (49) 29 (48) 82 (39) <0.001*
Rhinorrhea, n (%) 4 (13) 67 (44) 9 (15) 42 (20) <0.001*
Myalgia, n (%) 0 (0) 78 (67) 24 (57) 113 (54) <0.001*
Diarrhea, n (%) 2 (6) 37 (24) 17 (28) 53 (25) 0.11*
Sickness, n (%) 1 (3) 33 (22) 3 (5) 104 (49) <0.001*
Vomiting, n (%) 0 (0) 6 (4) 4 (7) 22 (10) 0.09*
Abdominal pain, n (%) 0 (0) 18 (12) 8 (13) 25 (12) 0.82*
Anosmia, n (%) 0 (0) 33 (22) 13 (22) 24 (11) 0.004*
July
 2022 | Volume 13 | Articl
+Beats per minute; *Chi square test; **Kruskal-Wallis Test. IQR, interquartile range.
&Dunn post hoc test p<0.05. Age: Healthy vs Severe; Healthy vs. Critical; Mild vs. Sever; Mild vs. Critical; Severe vs. Critical.
&Dunn post hoc test p<0.05. Heart rate: Mild vs. Critical.
&Dunn post hoc test p<0.05. Body temperature: Healthy vs Severe; Mild vs. Sever; Mild vs. Critical; Severe vs. Critical.
&Dunn post hoc test p<0.05. Oxygen saturation: Healthy vs Severe; Healthy vs. Critical; Mild vs. Sever; Mild vs. Critical; Severe vs. Critical.
&Dunn post hoc test p<0.05. Breathing frequency: Healthy vs. Critical; Mild vs. Sever; Sever vs. Critical.
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ROC Curve Analysis of the Relationships Between
Metabolites and COVID-19 Outcomes
ROC curve analyses were performed to test each metabolite in
the previously described logistic regression models. Among all
metabolites, the AUC for the association of phenylalanine
Frontiers in Immunology | www.frontiersin.org 5
with critical COVID-19 group was 0.96 (95% CI=0.95-0.98)
(Figure 4A). Additionally, ROC curve analysis comparing
the relationship of phenylalanine with severe versus
critical groups exhibited an AUC of 0.84 (95% CI=0.77-
0.90) (Figure 4B).
A B

FIGURE 2 | Three-dimensional score plot of selected components. (A) Partial least squares-discriminant analysis plot of differential metabolites from HS and patients
with mild, severe, and critical COVID-19. The explained variances are shown in parentheses. (B) Metabolites with a variable importance in projection (VIP) score >1.5.
The intensities of colors in boxes to the right (from blue to red) indicate the relative concentrations of the corresponding metabolite in each group under study. HS=
healthy subjects. PHE, Phenylalanine; ALA, Alanine; CIT, Citrulline; PRO, Proline; SA, succinylacetone.
A

B

C

FIGURE 1 | Changes associated with COVID-19 clinical severity. (A) Radar plot of amino acid and SA profiles in the studied groups. (B) Radar plot of acylcarnitine
profiles in the studied groups. The log2-normalized median fold-change in the levels of acylcarnitines was calculated and compared with the levels in HS. (C)
Hierarchical clustering analysis heatmap illustrating the changes in serum metabolite abundance (average serum metabolites from each studied group) of the top 25
metabolites from HS and patients with mild, moderate, and critical COVID-19. The colored boxes on the right of the figure indicate the relative concentrations of the
corresponding metabolite in each group under study, from less concentrated (dark blue) to most concentrated (dark red). ALA, Alanine; ARG, Arginine; CIT, Citrulline;
GLY, Glycine; XLE-OHPro (Leucine, Isoleucine Alloisoleucine and Hydroxyproline); MET, Methionine; ORN, Ornithine; PHE, Phenylalanine; PRO, Proline; TYR,
Tyrosine; VAL, Valine; SA, Succinylacetone; C0, Free-carnitine; C2, Acetylcarnitine; C3, Propionylcarnitine; C3DC, Malonylcarnitine; C4, Butyrylcarnitine; C4OH, 3-
hydroxy-butyrylcarnitine; C4DC, Methylmalonylcarnitine; C5, Isovalerylcarnitine; C5:1, Tiglylcarnitine; C5DC, Glutarylcarnitine; C5OH, 3-Hydroxy-isovalerylcarnitine;
C6, Hexanoylcarnitine; C6DC, Adipylcarnitine; C8, Octanoylcarnitine; C8:1, Octenoylcarnitine; C10, Decanoylcarnitine; C10:1, Decenoylcarnitine; C12,
Dodecanoylcarnitine; C12:1, Dodecenoylcarnitine; C14, Tetradecanoylcarnitine; C14:1, Tetradecenoylcarnitine; C14:2, Tetradecadienoylcarnitine; C14OH, 3-Hydroxy-
tetradecanoylcarnitine; C16, Hexadecanoylcarnitine; C16:1, Hexadecenoylcarnitine; C16OH, 3-Hydroxy-hexadecanoylcarnitine; C16:1OH, 3-Hydroxy-
hexadecenoylcarnitine; C18, Octadecanoylcarnitine; C18:1, Octadecenoylcarnitine; C18:2, Octadecadienoylcarnitine; C18:OH, 3-Hydroxy-octadecanoylcarnitine;
C18:1OH, 3-Hydroxy-octadecenoylcarnitine.
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DISCUSSION

Viral infections can provoke an imbalance in metabolic pathways
such as those associated with energy and protein and lipids
catabolism (20). During SARS-CoV-2 infection, changes in the
Frontiers in Immunology | www.frontiersin.org 6
metabolome could be related to disease outcome (17). In the
present study, we explored the metabolome of COVID-19
patients to find differences associated with disease severity and
to identify metabolites or metabolomic profiles that could serve
as prognostic markers. Our metabolomic results showed a clear
A B

FIGURE 4 | Receiver operating characteristic (ROC) curves for phenylalanine. (A) Phenylalanine in mild vs. critical model, adjusted by covariates. (B) Phenylalanine in
severe vs. critical model, adjusted by covariates (all p ≤ 0.003).
A B

D

E

C

FIGURE 3 | Normalized serum concentrations of the five metabolites with variable importance in projection of >1.5 from healthy subjects and patients with mild,
severe, and critical COVID-19. Data are expressed as median with interquartile range.
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impact on amino acid metabolism, with significant increases in
phenylalanine serum concentrations as disease severity
progressed. In contrast, levels of alanine, citrulline, proline,
decreased as the disease worsened.

Phenylalanine had the highest VIP score (2.6), showing an
increase according to disease severity. This increase in
phenylalanine concentration was previously reported in a
longitudinal study (27) and in other studies of COVID-19
patients (20, 28–32) [20,27-31]. Moreover, in our logistic
regression model adjusted by age, sex, T2DM, hypertension,
and nutritional status, the significant elevation in levels of this
amino acid was conserved (Table 2). These findings are
supported by the ROC curve analyses, which showed an AUC
of 0.96 with phenylalanine, compared with an AUC of 0.92
without phenylalanine. These results support the potential
usefulness of phenylalanine as a biomarker of COVID-
19 severity.
Frontiers in Immunology | www.frontiersin.org 7
Phenylalanine is an essential ketogenic and glucogenic amino
acid and a precursor of tyrosine and dopamine-related
neurotransmitters (33). In the present study, tyrosine showed a
slight tendency to accumulate in severe and critical patients. The
primary phenylalanine and tyrosine catabolic pathway is
hydroxylation via the catalytic action of phenylalanine and
tyrosine hydroxylases (34) (Figure 5). Both types of enzymes
use molecular oxygen and tetrahydrobiopterin (BH4) as a
cofactor (34, 35) [32,33]. In addition, nucleosides such as
NADH are required for regeneration of the reduced form of
BH4 (34) [32]. Thus, a lack of some of these factors could cause a
deficiency in catalytic activity, thereby explaining the observed
accumulation of both amino acids. Transamination is another
mechanism by which phenylalanine and tyrosine can be
catabolized via the action of phenylalanine and tyrosine
transaminases, forming phenylpyruvate from phenylalanine
and p-hydroxyphenylpyruvate from tyrosine (33). These
TABLE 2 | Unadjusted and adjusted logistic regression models for the association of metabolite profile with COVID-19 disease severity.

Metabolite Severe Critical Severe vs. Critical

OR IC 95% P value OR IC 95% P value OR IC 95% P value

Unadjusted model
Phenylalanine 2.23 1.39-3.58 0.001* 10.15 6.49-15.88 0.001* 4.7 2.92-7.66 <0.001*
Alanine 0.18 0.11-0.28 <0.001* 0.11 0.07-0.16 <0.001* 0.63 0.44-0.91 0.016
Citrulline 0.59 0.41-.84 0.004 0.23 0.16-0.32 <0.001* 0.48 0.34-0.68 <0.001*
Proline 0.56 0.39-0.80 0.001* 0.31 0.22-0.41 <0.001* 0.64 0.47-0.88 0.007
Succinylacetone 0.48 0.34-0.68 <0.001* 0.28 0.21-0.37 <0.001* 0.66 0.49-0.87 0.004
Adjusted model**
Phenylalanine 1.62 0.95-2.78 0.07 8.4 4.89-14.45 <0.001* 5.3 3.16-9.2 <0.001*
Alanine 0.22 0.12-0.36 <0.001* 0.12 0.07-0.20 <0.001* 0.56 0.37-0.84 0.005
Citrulline 0.64 0.43-0.95 0.05 0.29 0.19-0.42 <0.001* 0.52 0.36-0.74 <0.001*
Proline 0.65 0.44-0.94 0.03 0.39 0.27-0.56 <0.001* 0.67 0.48-0.93 0.019
Succinylacetone 0.45 0.29-0.68 <0.001* 0.26 0.17-0.39 <0.001* 0.68 0.50-0.93 0.016
July 2022 | V
olume 13 | Article
*Bonferroni test P=0.003. **Adjusted by age, sex, T2DM, hypertension, and nutritional status.
A B

FIGURE 5 | Phenylalanine (A) and tyrosine (B) metabolic pathways and observed metabolic changes in COVID-19 patients. AS, Aspartate synthetase; ASL,
Argininosuccinate lyase; ARG, Arginase; NO, Nitric oxide; BH4, Tetrahydrobiopterin; BH2, Dihydrobiopterin; HS, Healthy subjects; SA, succinylacetone; TCA,
tricarboxylic acid cycle.
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Martı́nez-Gómez et al. Metabolic Modulation by SARS-CoV-2 Infection
enzymatic reactions use vitamin B6 (pyridoxine) as a cofactor
(36). A deficiency of this vitamin has been observed in COVID-
19 patients (37). Therefore, these findings also strengthen our
hypothesis that phenylalanine and tyrosine accumulate due to
impaired hydroxylation and transamination caused by a possible
deficiency of cofactors such as BH4, NADH, oxygen, and vitamin
B6. Increased levels of phenylalanine have also been found in
patients with other viral infections, such as HIV, and these
increases have been associated with immune activation,
microvascular endothelial damage, and an increased risk of
cardiovascular events (27, 38, 39). It is important to highlight
that the presence of high blood concentration of phenylalanine,
specially those higher than 360 mmol/L are neurotoxic and
require a nutritional therapeutic intervention (34).

In the present study succinylacetone had a VIP score > 1.5.
Until our knowledge, this organic acid has never been related to
COVID-19 patients. However, its concentration did not show a
tendency to increase or decrease according to the disease
severity, and the dispersion of the data did not allow us to
make any hypothesis or propose it as a potential biomarker of
COVID-19 severity.

Citrulline levels showed a significant decrease as COVID-19
worsened, and this difference was conserved in the adjusted
model, accompanied by a tendency toward increased arginine
levels (Figure 6). This increase in arginine levels in COVID-19
patients has also been reported by others, however the
mechanism remains unclear (40). Arginine is metabolized to
citrulline via nitric oxide synthase (NOS), an enzyme also
dependent on BH4, oxygen, and NADPH (41). Thus, the
observed accumulation of arginine and decrease in citrulline
levels could also be explained by a deficiency of these cofactors.
NOS activity plays an essential role in endothelial homeostasis,
and its impairment can provoke cardiovascular events such as
arterial hypertension (42). Arterial hypertension reportedly
contributes to COVID-19 disease severity (27). Furthermore,
hypertensive episodes have also been observed in severely ill
Frontiers in Immunology | www.frontiersin.org 8
COVID-19 patients (43, 44). These events could be triggered by
an imbalance in the citrulline–nitric oxide cycle.

Our results show a significant decrease in alanine serum levels
with worsening COVID-19. In this context, alanine gains
importance as a glucogenic component of the Cahill cycle (also
known as the glucose-alanine cycle) to supply energy demand
(45). Alterations in alanine levels have a marked impact on
muscle integrity; for example, decreased levels of alanine reduce
the biosynthesis of carnosine, a critical dipeptide that prevents
the muscle mass loss associated with sarcopenia (46).
Furthermore, COVID-19 patients commonly exhibit high
energy demand, skeletal muscle catabolism, and sarcopenia,
which can increase their risk of death (47–49). Therefore,
maintaining alanine homeostasis is crucial to decreasing the
risk of severe disease (47, 48). Toward that end, interventions
such as dietary alanine supplementation could reverse these
pernicious effects of SARS-CoV-2 (50) [48].

We found an increase of the acetylcarnitine and 3-
hydroxybutyryl/malonyl carnitine according to disease
progression (Figure 2). Even though this finding was not
significant; it deserves to be revised. Increased acylcarnitines in
COVID-19 patients have been proposed as activators of
proinflammatory pathways (51), and their imbalance has been
related to ATP depletion (30). Our results support the fact that
COVID-19 patients present an over utilization of lipid beta-
oxidation pathway to supply the high energetic demand (52).
Thus, this could also suggest an important dysregulation of these
metabolites especially the short chain acylcarnitines, which are
fundamental for maintaining the optimal energetic status.

Taken together, our results not only confirm the metabolomic
findings of other studies (17, 20, 27, 53), they also highlight the
importance of mechanisms such as the catalytic activity of
phenylalanine and tyrosine hydroxylases, transaminases, and
NOS enzymes, which are dependent on BH4, oxygen, NADH,
NADPH, and vitamin B6, and the potential importance of
deficiencies of these cofactors. These data could highlight the
FIGURE 6 | Arginine and citrulline metabolic pathways and observed changes in COVID-19 patients. BH4, Tetrahydrobiopterin; BH2, Dihydrobiopterin; B6,
Pyridoxine; HS, Healthy subjects; PHE, Phenylalanine; TYR, Tyrosine.
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importance of nutritional interventions, such as vitamin B6 or
BH4 supplementation as a strategy for improving the outcome of
COVID-19 patients, as the energy demand increases with disease
progression and metabolites related to exacerbation of catabolic
pathway disruptions have been exhaustively reported in COVID-
19 patients (52, 54). We propose the inclusion of phenylalanine
as a plausible marker of COVID-19 severity, as diverse analytical
methodologies such as MSMS are available for its efficient
quantification on a large scale.

The major comorbidities in our study population were
hypertension and T2DM, resulting in worse COVID-19
outcomes. The typical clinical features observed among
COVID-19 patients in this study, such as fever, cough,
dyspnea, chest pain, headache, odynophagia, rhinorrhea,
myalgia, diarrhea, vomiting, abdominal pain, and anosmia,
were similar to hallmarks reported in other studies (5, 55).
Other prominent clinical manifestations described in COVID-
19 patients are low oxygen saturation (SpO2) and hypoxemia
(56–58). In this sense, the tendency toward low SpO2 in our
study could be related to illness severity. Critical subjects showed
a SpO2 level of 83% (IQR 71-88); such a low SpO2 level in
combination with anemia could induce hypoxemia affecting the
respiratory system, which is the main characteristic of severe
outcomes in COVID-19 (56).

The present study has some limitations, mainly its cross-
sectional design, which precluded the possibility of monitoring
metabolites in conjunction with disease progression. Thus, further
prospective studies are needed to characterize changes in the
COVID-19 metabolome as disease severity progresses. Another
limitation is that some of the measured metabolites are molecular
species with the same nominal mass but different exact masses,
and this isobaric characteristic avoided to distinguish them with
the MS/MS methodology used. Finally, the nutrition of the
patients at moment of the sample collection was not possible to
determine, considering that all the samples were taken at the triage
facilities or in the first hours of hospital admission.

In conclusion, the metabolomic fingerprint of COVID-19
related to disease progression is characterized by dysregulation
of amino acids and short chain acylcarnitines metabolic pathways,
especially those of aromatic amino acids. Which would be related
to a deficiency in cofactors such as BH4, vitamin B6 and
nucleosides (NADH and NADPH), which are essential for
hydroxylation, transamination and monooxygenation enzymatic
reactions. Our data suggest that a metabolic dysregulation could
induce states of hypoxemia, loss of endothelial function, and other
clinical damage characteristic of COVID-19. The deregulation of
amino acids such as phenylalanine, alanine, citrulline, and proline
observed in our study was clearly associated with critical outcomes
in COVID-19 patients. Therefore, phenylalanine could be
considered as a promising biomarker of COVID-19 severity.
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Fernando Flores-Silva M.D. Departamento de Neurologıá y
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Medicina Genómica, Instituto Nacional de Ciencias Médicas y
Nutrición Salvador Zubirán, Tlalpan, CDMX, 14080, México
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Alexandro J Martagón-Rosado Ph.D. Unidad de Investigación en
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en Enfermedades Metabólicas (UIEM), Instituto Nacional de
Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan,
CDMX, 14080, México
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