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Cancer immunotherapy, including the inhibition of immune checkpoints,

improves the tumor immune microenvironment and is an effective tool for

cancer therapy. More effective and alternative inhibitory targets are critical for

successful immune checkpoint blockade therapy. The interaction of the

immunomodulatory ligand B7 family with corresponding receptors induces

or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals

respectively. Blocking the glycosylation of the B7 family members PD-L1, PD-

L2, B7-H3, and B7-H4 inhibited the self-stability and receptor binding of these

immune checkpoint proteins, leading to immunosuppression and rapid tumor

progression. Therefore, regulation of glycosylation may be the “golden key” to

relieve tumor immunosuppression. The exploration of a more precise

glycosylation regulation mechanism and glycan structure of B7 family

proteins is conducive to the discovery and clinical application of antibodies

and small molecule inhibitors.
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Introduction

Changes in protein glycosylation are a pivotal regulatory part of tumor progression

and directly affect cell growth, survival, tumor immune escape and final metastasis (1).

Tumor-related crucial glycoproteins (such as EGFR (2, 3), CD44 (4), E-cadherin (5),

TGF-b receptor (6, 7), CA199 (8) and MUC-1 (9, 10)), glycan abundance and structural

changes profoundly affect tumor cell fate and patient prognosis. Most immune

checkpoints are membrane glycoproteins, and increasing attention has been given to

how protein glycosylation changes affect the tumor immune microenvironment (11) (12)
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(13). Programmed cell death ligand 1 (PD-L1) belongs to the B7

protein family and binds to its receptor programmed death

receptor 1 (PD-1) on activated T cells to suppress antitumor

immunity by counteracting T-cell activation signals (14). The

role of glycoprotein PD-L1/PD-1 glycosylation in tumor

immune regulation has been extensively studied (15–17). B7

family members also include B7-1, B7-2, PD-L2, B7-H2, B7-H3,

B7-H4, B7-H5, BTNL2, B7-H6, B7-H7 and Ig-like domain-

containing receptor 2 (ILDR2). These proteins and their

receptors play critical roles in cell proliferation, cytokine

secretion and tumor immune microenvironment regulation

(18–21). B7-1 (22), PD-L2 (23), B7-H3 (24), B7-H4 (25), and

B7-H6 (26, 27) were confirmed to be modified by glycosylation.

However, current evidence suggests that glycosylation may not

be required for the function of B7-1 (22) and B7-H6 (26, 27), and

the significance of glycosylation for B7-1 and B7-H6 proteins is

largely unknown. Therefore, the significance, mechanism and

possibility of targeted therapy of PD-L1, PD-L2, B7-H3, B7-H4

and B7-H6 glycosylation are explored in this review.
Significance, mechanism and
possible use of PD-L1 glycosylation
as a therapeutic target

The PD-L1 protein consists of an immunoglobulin V-like

domain (IgV, F19-T127), an immunoglobulin C-like domain

(IgC, P133-V225), a transmembrane domain (TM, T239-F259)

and an intracellular short tail domain (R260-T290) (28, 29), and

is affected by a variety of posttranslational modifications,
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including phosphorylation, glycosylation, palmitoylation,

acetylation and ubiquitination (30). There are four N-glycan

sites in the extracellular domain of PD-L1: N35, N192, N200 and

N219 (31), and these N-glycans are critical to the stability of the

PD-L1 protein (30, 31). PD-1 and PD-L1 interact through the

large hydrophobic surface of their respective Ig-like V-domains,

while the Ig-like C2 domain of PD-L1 has no contact with PD-1

(32). The interaction between PD-L1 and PD-1 also requires

glycosylation (33). PD-1/PD-L1 binding can induce tumor-

specific T-cell apoptosis by inhibiting T-cell activation and is

currently one of the most important immunotherapeutic targets

(34). The glycosylation site of PD-L1 may not be easily bound by

antibodies (35, 36), and understanding the specific mechanism

of PD-L1 glycosylation (Figure 1) is of practical significance for

targeted therapy.
STT3 mediates PD-L1 N-glycosylation

Oligosaccharide transferases (OSTs) generate N-

glycosylated proteins by transferring oligosaccharides in

lipolinked oligosaccharides (LLOs) to the asparagine residues

of the Asn-Xaa-Ser/Thr receptor sequence (37). The mammalian

OST subtypes carry STT3A or STT3B catalytic subunits for co-

translation or post translation N-glycosylation modification

(37). STT3A-OST and STT3B-OST are highly correlated, but

there are important differences in their catalytic mechanisms

and speed (38–40). The role of STT3A/B in tumor progression

has been studied (41–43), and it plays an important role in the

N-glycosylation of PD-L1 (44).
FIGURE 1

The mechanism of PD-L1 glycosylation. EGFR, TGF-b Signaling and noncoding RNA Let-7 participate in the regulation of STT3A/B expression by
C-Jun and TCF4/b-catenin complex. Glycosyltransferases STT3A/B, B4GALT1, a-Mannosidase II, GLT1D1 and B3GNT3 regulate the glycosylation
abundance of PD-L1, thus changing the tumor immune microenvironment.
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At the initial stage of tumor cell metastasis, epithelioid

tumor cells transform into mesenchymal-like cells (EMT),

resulting in loss of cell-to-cell contact, increased mechanical

mobility, and invasion of the surrounding matrix (45). At the

same time, the tumor immune microenvironment is also

changing (46). The molecular relationship between EMT and

tumor immune escape is being explored (47). For example, miR-

200/ZEB1-mediated EMT progression can promote PD-L1

expression and subsequent CD8+ T-cell suppression (48). In

addition, as an EMT transcription regulator, b-Catenin can also

regulate the expression of PD-L1 (49–52). Hsu et al. (53) found

that the TGF-b-driven b-catenin/TCF4 complex activates

STT3A/B expression on the promoter of the STT3 subtype. In

addition, TGF-b1 also promotes c-Jun binding to the promoter

of STT3A and regulates STT3A expression at the transcriptional

level (54). Early studies have shown that the two STT3 isomers

act on peptides sequentially to maximize the efficiency of N-

glycosylation (38). In triple-negative breast cancer (TNBC),

nasopharyngeal carcinoma and HNSCC, STT3A/B increased

the level of PD-L1 N-glycosylation and protein stability (53–

55). The b-catenin inhibitor KYA1797K can downregulate the

expression of STT3A/B, thereby inhibiting PD-L1 glycosylation

and immune escape of colon CSCs (56). However, the difference

in STT3A- and STT3B-mediated N-glycan modification and

how they are regulated remain to be fully elucidated, and

distinguishing the differences in PD-L1 N-glycosylation

induced by STT3A and STT3B may provide ideas for more

precise targeted therapy.
EGFR/GSK3b mediated PD-L1
glycosylation and ubiquitination

Glycogen synthase kinase 3b (GSK3b) is a serine/threonine
protein kinase originally identified as a regulator of glycogen

metabolism (57, 58), which is widely believed to be associated

with tumors, embryonic development, liver injury and aging

(59). GSK3b induces the phosphorylation-dependent

proteasome degradation of Snail, Mcl-1, SIRT7, GFI1, CRY1

and EZH2, leading to mesenchymal epithelial transformation,

chemotherapy sensitivity, apoptosis and chromosome stability

of cancer cells (60–65). Recently, the focus of research in this

area has been strictly on decreasing the stability of the PD-L1

protein by inactivating GSK3b (phosphorylation at the T180, S9

and S184 sites), thereby regulating T-cell-mediated tumor

immunity (66–70). Inactivation of GSK3b may stabilize the

PD-L1 protein by increasing PD-L1 ubiquitination (31).

However, the EGF/EGFR pathway not only inactivates GSK3b
(31) but also promotes PD-L1 glycosylation (31, 71) and

ubiquitination (72). In addition, Li et al. (31) ound that

GSK3b binds to phosphorylated, nonglycosylated PD-L1

(N192, N200 and N219 residues are required), which may

block PD-L1 glycosylation, and the glycosylation of N192,
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N200 and N219 antagonizes the interaction between PD-L1

and GSK3b. Furthermore, GSK3 is involved in the regulation of

b-catenin (73), and GSK3b/b-catenin/STT3 may be one of the

pathways that regulates PD-L1 glycosylation (53). Therefore, the

EGFR/GSK3b pathway is required for PD-L1 protein stability

and PD-L1/PD-1 interface maintenance.
B3GNT3 mediates PD-L1 glycosylation

b-1,3-n-acetylglucosamine aminotransferase 3 (B3GNT3) is

a type II transmembrane protein in the Golgi apparatus (74) that

can form extended core 1 oligosaccharides (75). The relationship

between B3GNT3 and tumor immunosuppression is being

explored. B3GNT3 overexpression inhibits CD8+ T-cell

infiltration in pancreatic cancer and promotes tumor

progression (76). A metabolism-related gene pair index

(MRGPI) study showed that the high expression of B3GNT3

and low expression of HSD17B6 may have a synergistic reaction

in the immune escape of lung adenocarcinoma through the PD-

1/PD-L1 pathway (77). The immunohistochemical data of 145

cases of primary lung adenocarcinoma also showed that the

expression of B3GNT3 was closely and positively correlated with

the expression of PD-L1 and EGFR mutation (78). B3GNT3 also

regulates L-selectin ligand function, lymphocyte transport and

T-cell homing (75). Li et al. (71) found that B3GNT3 induced by

EGF can increase glycosylation at the N192 and N200 sites (poly

LacNAc) of PD-L1 and promote PD-L1/PD-1 binding. In

addition, B3GNT3 can activate NF-kB signaling (79).

Considering the important role of NF-kB in tumor immunity

(80, 81), B3GNT3 may regulate tumor immunity through

multiple pathways.
B4GALT1 mediates PD-L1 galactosylation

Seven members of the b4-galactosyltransferase (B4GALT)

family have different biological functions due to differences in

receptor specificity, tissue distribution, and temporal expression

(82). B4GALT1 is the main enzyme responsible for the transfer

of UDP-galactose residues to terminal N-acetylglucosamine

residues in Golgi-processed glycoproteins (83), and its

expression is involved in galactosylation of IgG, CDK11p110

and other proteins (84–88). In addition, B4GALT1 can also

regulate the expression of glycans on proteins through the JAK

signaling pathway (89, 90). B4GALT1 is overexpressed in

pathological processes, such as inflammation and proliferation

of cancer cells, which makes targetting this enzyme in anticancer

therapy possible (91, 92). B4GALT1 expression was positively

correlated with PD-L1 and CTLA4 expression in bladder cancer

(93). In TNBC, RNA binding motif single strand interacting

protein 1 (RBMS1) positively regulates B4GALT1 expression,

which is related to the inhibition of inflammation and PD-L1-
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mediated antitumor immunity (94). Mechanistically, RBMS1

increases the stability of B4GALT1 mRNA and promotes

B4GALT1-mediated PD-L1 galactosylation in N-glycans,

thereby reducing PD-L1 protein degradation (94).
MAN2A1 mediates PD-L1 glycosylation

The mannosidase a class II member 1 (MAN2A1) gene

encodes a-mannosidase II, which can transform the precursor

high mannose type N-glycans into mature complex structures

and is a key enzyme for N-glycan biosynthesis (95). The

MAN2A1 and MAN2A2 genes are widely expressed in the

human body at a relatively high level (96). The single deletion

of MAN2A1 or MAN2A2 will leads to a relatively mild and

organ-specific phenotype, but the simultaneous deletion of both

genes will leads to embryonic death and complete lack of

complex N-glycans (97). Shi et al. (98) knocked out MAN2A1

in tumor cells, and simple/precursor and heterozygous N-

glycans increased, while complex N-glycans decreased.

Therefore, the lack of a-mannosidase II weakened PD-L1/PD-

1 binding-mediated T-cell immunosuppression (98). The a-
mannosidase inhibitor swainsonine makes tumors sensitive to

anti-PD-L1 therapy (98). However, a-mannosidase II is highly

similar in structure to lysosomal a-mannosidase, and

coinhibition of these two proteins was produced when

targeting a-mannosidase II and resulted in severe side effects,

weakening the potential of a-mannosidase II as a therapeutic

target (99).
GLT1D1 is involved in
PD-L1 glycosylation

The glycosylation process mainly involves the sequential

action of different glycosyltransferase families, and their

expression and function are strictly regulated in each cell

(100). In addition to STT3, B3GNT3, B4GALT1 and a-
mannosidase II, which are involved in PD-L1 glycosylation

(54, 71, 94, 98), other glycosyltransferases involved or possibly

involved in PD-L1 glycosylation have also been explored.

Glycosyltransferase 1 containing domain 1 (GLT1D1) is highly

upregulated in incurable B-cell non-Hodgkin’s lymphoma

subtypes and early relapsed diffuse large B-cell lymphoma

(101) and may be associated with poor prognosis of colon

cancer (102) and multiple myeloma (103). GLT1D1 expression

is positively correlated with glycosylated PD-L1 levels in B-cell

non-Hodgkin’s lymphoma, and high GLT1D1 expression is

associated with poor prognosis of patients (101). GLT1D1

plays an important role in the N-glycosylation and stability of

the PD-L1 protein. The downregulation of GLT1D1 reduces the

glycosylation of the PD-L1 protein, leading to an increase in

cytotoxic T-cell infiltration in the tumor microenvironment
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(101). However, GLT1D1 is an insufficiently studied

glycosyltransferase, and its specific modification form is unclear.
Glycosylation is critical for PD-1 stability
and its binding to PD-L1

Approximately 20%-90% of protein N-glycans on the cell

surface are generated by core fucosylation, which is catalyzed by

a-1,6 fucosyltransferase (FUT8) (104, 105). FUT8-mediated

core fucosylation modification of the TGF-b receptor and E-

cadherin, PD-1 and a3b1 integrin proteins is vital for their

function (106). In fact, the four N-glycans of PD-L1 are highly

core fucosylated (31), but the significance of FUT8-mediated

PD-L1 N-glycan core fucosylation has not been discussed.

However the loss of core fucosylation significantly enhanced

the ubiquitination of PD-1, which led to the degradation of PD-1

in the proteasome (107). Highly N-glycosylated PD-1 is widely

expressed in T cells and is the key to maintaining the stability

and cell surface localization of PD-1 protein, especially the

glycosylation at the N58 site, which is necessary to mediate its

interaction with PD-L1 (16, 108). Monoclonal antibodies

STM418 (108), camrelizumab (17), mAb059c (109) and

penpulimab (110) specifically target glycosylated PD-1 and

have a high binding affinity for PD-1, effectively inhibiting

PD-L1/PD-1 binding and enhancing anti-tumor immunity. In

addition, adenine base editor (ABE) induces the conversion

from a-t to g-c at specific sites, changes the coding sequence of

the N74 residue of PDCD1 in CAR-T cells, downregulates the

expression and glycosylation of PD-1 in CAR-T cells, and

enhances the cytotoxicity in vitro and in vivo (111).
Inhibiting PD-L1 glycosylation to improve
tumor immune infiltration

Antibodies targeting the immune checkpoint receptor PD-1

or its ligand PD-L1 are used to treat various types of cancer, and

can significantly improve the survival of patients (112).

However, drug resistance in tumor immunotherapy forces us

to look for more effective inhibitors. Direct/indirect inhibition of

PD-L1 glycosylation is a potential strategy to achieve therapeutic

effects. The antibodies STM004 and STM108 constructed by Li

et al. (71) effectively block the interaction of PD-L1/PD-1.

STM108 recognizes the N192 and N200 glycosylation sites,

and the amino acid cross-linking is closer to the C-terminal

domain of PD-L1 (Y81, K162 and S169); STM004 recognizes the

N35 glycosylation site, and amino acid cross-linking is relatively

close to the N-terminal domain of PD-L1 (Y56, K62 and K75)

(71). STM108 can specifically recognize the B3GNT3 mediated

poly LacNAc part on N192 and N200 glycosylation sites of PD-

L1, and induce PD-L1 internalization and degradation (71).

Metformin can improve the effect of immune checkpoint
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inhibitor therapy (113), changing the glycan structure of PD-L1

by activating AMPK, thus promoting the degradation of PD-L1

and thereby blocking the immunosuppressive signal (114). 2-

deoxyglucose (2-DG) can be used as a glucose analog to reduce

PD-L1 glycosylation and reverse the immunosuppression

induced by polyadenosine-diphosphate-ribose polymerase

(PARP) inhibitor in TNBC (115, 116). In addition, D-

mannose can also act ivate the AMPK pathway to

phosphorylate PD-L1 at the S195 site, leading to abnormal

glycosylation and degradation of PD-L1 (117).

Resveratrol is a kind of polyphenolic stilbene that is found in

grapes, mulberries, peanuts, rhubarb and several other plants

and is used to treat diabetes, obesity, cardiovascular disease,

neurodegeneration and cancer (118). Resveratrol can affect the

expression of PD-L1/PD-1 and the subcellular localization and

posttranslational modification of PD-L1 (119). Resveratrol

regulates the N-glycosylation modification of PD-L1 by

inhibiting a-glucosidase/a-mannosidase, a mannose-rich

abnormal glycosylated form of PD-L1 that inhibits binding to

PD-1 (120). In addition, resveratrol promotes PD-L1

dimerization by interacting with the inner surface of PD-L1

(111), but dimerized PD-L1 can also bind to PD-1 and regulate

T-cell toxicity (121, 122). Poor pharmacokinetics and low

potency seem to be the two main bottlenecks of resveratrol

(123). However, resveratrol combined with a PD-L1 inhibitor

can not only significantly promote the infiltration of CD8+/

CD4+ T cells but also significantly inhibit the number of Treg

cells and MDSCs at the same glycolysis level (124).

Inhibitors of glycosyltransferase associated with PD-L1

glycosylation have been developed. The small molecule OST

inhibitor such as NGI-1 can inhibit the activities of STT3A and

STT3B at the same time (125, 126). Puschnik et al. (127) found

that 12 inhibitors such as me-3,4-depostatin, hispidin, myricetin

and piceatannol can inhibit B4GALT1 activity. And a-
Mannosidase II can be inhibited by pyrrolidine compounds

and salacinol family compounds (128). These inhibitors are

potential drugs to improve tumor immunosuppression

mediated by PD-L1 glycosylation. However, the role of these

glycosyltransferase inhibitors in the treatment of tumors and

PD-L1 deglycosylation still needs to be further explored.
Structure and significance of
PD-L2 glycosylation

PD-L1 and PD-L2 (B7-DC) are the two main ligands of PD-

1 (129). The binding affinity of PD-L2 to PD-1 is 2-6 times

higher than that of PD-L1 to PD-1 (130). In addition, PD-L2 is

also the combination partner of repulsive guidance molecule b

(RGMb), which improves respiratory tolerance (131). Similar to

PD-L1, PD-L2 has an N-terminal IgV domain and a membrane

proximate IgC domain. However, the PD-L1 IgV domain
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contains the C’ and C″b chains, while in the PD-L2 IgV

domain the C’ and C″b chains are replaced by a flexible C-D

ring (132). The IgV domain of PD-L2 binds to PD-1, and its

glycosylation structure regulates its affinity for PD-1 (133). The

stability of the PD-L2 protein is related to the N-glycosylation

sites N157, N163 and N189 but not N64 (23). The N64 glycan is

located in the C-D ring region of PD-L2, and its glycosyl

structure and solubility increase the dynamic characteristics of

the C-D ring region. Furthermore, the affinity of PD-L2 for PD-1

can be improved by removing the N64 glycan (119). In addition,

the “pocket” formed by N64 may be the binding site of PD-L2/

PD-1 affinity drugs (134). However, the glycosylation

significance of PD-L2 at the N10 and N43 sites has not been

clarified (135).

PD-L2 is expressed on immune cells, dendritic cells and

other types of hematopoietic and non hematopoietic cells (136)

(137) (138). PD-L2 and PD-1 inhibit T-cell proliferation

mediated by the T-cell receptor (TCR) and cytokine

production (139). Although the frequency or intensity of PD-

L2 expression may not be as high as that of PD-L1 in most

tumors (140), PD-L2 can be expressed without PL-L1 expression

in some specific tumors. PD-L2 is expressed or strongly

expressed in 51.7% of esophageal adenocarcinomas, while PD-

L1 is expressed in 2% of esophageal adenocarcinomas (141). PD-

L2 was expressed in 62.7% of HNSCCs (more than twice as

many as for PD-L1), and 61.4% of HNSCCs were PD-L1-

negative (142). In addition, Xu et al. (23) found that PD-L2

was N-glycosylated and upregulated in tumor tissues of HNSCC

patients resistant to cetuximab. Deglycosylation inhibited the

expression of PD-L2 in colorectal cancer cells (143). In HNSCC,

the STAT3 pathway activates FUT8-mediated PD-L2

glycosylation, which stabilizes the PD-L2 protein by blocking

ubiquitin-dependent lysosome degradation, thereby promoting

its combination with PD-1 and immune escape (23). Moreover,

glycosylated PD-L2 forms a complex with EGFR, which leads to

the activation of EGFR/STAT3 signaling and reduces the

binding affinity of cetuximab for EGFR (23).
Significance of B7-H3 glycosylation

As a type I transmembrane protein, B7-H3 consists of an

extracellular domain, a transmembrane domain and a short

intracellular domain. The human B7-H3 protein has two

isomers determined by the extracellular domain: 4IgB7-H3

and 2IgB7-H3. 4IgB7-H3 consists of two pairs of identical

IgV-like domains and IgC-like domains, 2IgB7-H3 consists of

one pair of identical IgV-like domains and IgC-like domains,

and 4IgB7-H3 is more common in human cells (144). B7-H3 is

abnormally highly expressed in lung (145), ovarian (146),

glioblastoma (147), colorectal (148), gastric (149), prostate

(150), urothelial (151), brain (152), pancreatic (153), breast
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(154), cholangiocarcinoma (155), hepatocellular (156), oral

(157) and renal (158) cancer cells and can be induced to be

expressed on antigen presenting cells (APCs), including

dendritic cells (DC) and macrophages (159). In the tumor

microenvironment, B7-H3 inhibits CD4+ and CD8+ T cell

responses by inhibiting IFN-g, IL2, IL-10 and IL-13 (160) and

promotes the immune escape of tumor cells (161, 162). In

addition, B7-H3 also has nonimmunogenic effects, promoting

tumor cell migration, invasion, angiogenesis, drug resistance,

and EMT and regulating cell metabolism (144). These results

make B7-H3 a potential target for tumor therapy.

B7-H3 is a highly glycosylated protein. Human B7-H3

protein can have eight N-glycan sites, N91, N104, N189, N215,

N309, N322, N407 and N433 (Figure 2) (24, 163). Chen et al.

(157) found that the glycan of B7-H3 in an OSCC cell line

contains a more diversified N-glycan structure and a terminal a-
galactose, and the glycan rich structure of B7-H3 may allow it to

play an important role in the progression of oral cancer. In

esophageal squamous cell carcinoma (ESCC), the increased level

of B7-H3 protein N-glycan fucosylation promotes the

occurrence and development of tumors (164). Huang et al.

(24) found that the N-glycosylation of B7-H3 at the NXT

motif site is related to protein stability and triple-negative

breast cancer (TNBC) immunosuppression. In breast cancer,

there are more than 140 N-glycan core fucosylated glycoproteins

mediated by FUT8 (165, 166). Knockout of FUT8 inhibits the

immunosuppressive function mediated by N-glycosylated B7-

H3 in TNBC cells (24). Moreover, the combination of the core
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fucosylation inhibitor 2F-Fuc and anti-PD-L1 can enhance the

therapeutic effect of B7-H3-positive TNBC (24).
Significance of B7-H4 glycosylation

The B7-H4 (also known as B7x, B7S1 or VTCN1) protein

consists of 282 amino acids, including an extracellular domain, a

large hydrophobic transmembrane domain and an intracellular

domain composed of only two amino acid residues (132). The

B7-H4 protein has the overall structure of a type I

transmembrane protein. Similar to other B7 family members,

its extracellular domain has a pair of Ig-like domains. However,

the homology of this protein with other B7 family members is

only approximately 25% (132). Different from other B7 family

members with restricted mRNA expression, B7-H4 mRNA is

widely expressed in the brain, heart, kidney, liver, lung, ovary,

pancreas, placenta, prostate, skeletal muscle, skin, thymus and

uterus (167). Although B7-H4 mRNA is widely expressed in

normal human cells, the distribution of B7-H4 protein on the

surface of normal cells is rare (168). However, the B7-H4 protein

is highly expressed in human tumors and is associated with the

clinicopathological features of patients (157). The expression of

B7-H4 in gastric (169, 170), breast (171, 172), lung (145),

prostate (173), pancreatic (174), bladder (175), colorectal

(176), ovarian (177), renal (178), urothelial (179), esophageal

(180), and gallbladder (181) cancers is associated with tumor

size, primary tumor grade, TNM stage, low survival rate, drug
FIGURE 2

Site-specific representative glycans of B7-H3.
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resistance and a decreased number of tumor-infiltrating T cells.

B7-H4 inhibits the proliferation, cell cycle progression and

cytokine production of CD4+/CD8+ T cells (168, 182),

attenuates the inflammatory response, and enables tumor cells

to evade the immune system (132, 183).

Salceda et al. (184) found that the highly glycosylated B7-H4

protein was overexpressed in most serous ovarian cancers and

breast cancers but was hardly expressed in normal tissues, mucous

or low-grade malignant ovarian cancers. The accumulation of

glycosylated B7-H4 expression in immunocompetent breast

cancer was negatively correlated with the expression of PD-L1

(25), and similar results were also found in glioma (185), lung (186)

and pancreatic (187) cancer. Therefore, B7-H4 may be the key to

treating PD-L1-negative cold tumors, and B7-H4 glycosylation sites

are potential therapeutic targets. In 293T cells, B7-H4 has five N-

glycans (N112, N140, N156, N160 and N255) and two

ubiquitination sites (K146 and K138) (25). Glycosylation can

stabilize the structure of the B7-H4 protein, blocking the

phosphorylation of eIF2a, reducing the exposure of calreticulin,

and thus inhibiting the immunogenicity of cancer cells (Figure 3)

(25). Moreover, the B7-H4 ubiquitination site can only be detected

in the presence of PNGas F, and glucosyltransferase STT3A/

UGGG1-mediated N-glycosylation at the asparagine site interferes

with the ubiquitination of lysine residues (Figure 3) (25).
Glycosylation mediates the
interaction between B7-H6
and NKp30

B7-H6 is a type I transmembrane protein consisting of two

extracellular IgG-like domains (IgV and IgC), an a-helical
Frontiers in Immunology 07
transmembrane domain, and homologous C-terminal

sequences of population specific antigen (GAG) proteins (26).

The B7-H6 C-terminal sequence has a variety of signal motifs,

including ITIM, SH-2 and SH-3 binding motifs, which can

trigger signal transduction after binding with natural killer

protein 30 (NKp30) (26, 27) and activate NK cells and

cytokine secretion (188). The closest structural homolog of B7-

H6 is PD-L1, and both are highly glycosylated glycoproteins (26,

27). However, although the B7-H6 protein has five predicted N-

glycosylation sites, Skorěpa et al. (189) found that the removal of

the B7-H6 N-glycan did not affect its crosslinking with NKp30.

In contrast, NKp30 glycosylation modification is essential for the

interaction between NKp30 and B7-H6 (190). The removal of

the N68 glycosylation site of NKp30 reduced its affinity for the

B7-H6 ligand, while the removal of the N42 glycosylation site of

NKp30 almost completely eliminated its binding to the B7-H6

ligand (179). Targeting NKp30 to treat tumors has proven to be

effective, and CAR-T cells expressing chimeric NKp30 receptors

can destroy B7-H6+ cells (191, 192).
Conclusion

The binding of antibodies to PD-L1 was affected by the degree

of protein glycosylation. Deglycosylation of PD-L1 enhances

binding to 28-8, CAL10, CAL10, SP142, atezolizumab and SP142

MAbs (193, 194) but is not conducive for binding to avelumab

(195). Targeting PD-L1 glycosylation promotes its degradation and

inhibits the binding of some antibodies to PD-1 but also increases

the therapeutic effect of some antibodies. The complex network

composed of STT3A/B, EGFR/GSK3b, B3GNT3, B4GALT1, a-
mannosidase and GLT1D1 regulates PD-L1 glycosylation and
FIGURE 3

Regulation and significance of B7-H4 glycosylation. Glycosylated B7-H4 inhibits the phosphorylation of eIF2a and dendritic cell recruit, and
deglycosylation lead to the ubiquitination and degradation of B7-H4. CALR, calreticulin; HSK70, heat shock protein 70; HSK90, heat shock protein 90.
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participates in PD-L1 stabilization and binding to PD-1 (Figure 1).

Glycosylation is also important for the protein function and stability

of PD-L2, B7-H3 and B7-H4. Blocking or targeting PD-L1/2 and

B7-H3/4 protein glycosylationmay be an important supplement for

tumor immunotherapy. A more comprehensive study of the

glycosylation modification of the B7 protein family will reveal a

new direction for the translational application of glycobiology in

tumor immunotherapy.
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