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Epstein–Barr virus (EBV) was the first tumor virus in humans. Nasopharyngeal

carcinoma (NPC) accounts for approximately 60% of the 200,000 new tumor

cases caused by EBV infection worldwide each year. NPC has an insidious onset

and is highly malignant, with more than 70% of patients having intermediate to

advanced disease at the time of initial diagnosis, and is strongly implicated in

epithelial cancers as well as malignant lymphoid and natural killer/T cell

lymphomas. Over 90% of patients with confirmed undifferentiated NPC are

infected with EBV. In recent decades, much progress has been made in

understanding the molecular mechanisms of NPC and developing

therapeutic approaches. Radiotherapy and chemotherapy are the main

treatment options for NPC; however, they have a limited efficacy in patients

with locally advanced or distant metastatic tumors. Tumor immunotherapy,

including vaccination, adoptive cell therapy, and immune checkpoint blockade,

represents a promising therapeutic approach for NPC. Significant

breakthroughs have recently been made in the appl icat ion of

immunotherapy for patients with recurrent or metastatic NPC (RM-NPC),

indicating a broad prospect for NPC immunotherapy. Here, we review

important research findings regarding immunotherapy for NPC patients and

provide insights for future research.
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1 Introduction

Approximately 95% of the global population are EBV

asymptomatic carriers (1, 2). EBV primarily infects epithelial

and B cells. Infection with EBV may cause many human cancers,

including malignant lymphoid and epithelial cancers such as

NPC, primary pulmonary lymphoepithelioma-like carcinoma

(PLELC), EBV-associated intrahepatic cholangiocarcinoma, and

EBV-associated gastric carcinoma (EBVaGC) [ (3–7), Figure 1].

NPC and EBVaGC are the two most common EBV-associated

epithelial malignancies that account for 80% of these tumors.

Over 90% of patients with confirmed undifferentiated NPC are

infected with EBV (2, 13, 14). According to the last two global

cancer statistical surveys from the International Agency for

Research on Cancer, in 2018 and 2020, there were 129,079 and

133,354 new NPC cases in the world, and 72,987 and 80,008

NPC-associated deaths worldwide, respectively (15, 16). NPC is

relatively rare compared to other cancers, accounting for only

0.7% of total cancers diagnosed each year. The geographical

distribution of NPC is uneven, as approximately 80% of patients

are from China and Southeast Asia (17, 18). Although both gene

and lifestyle affect NPC incidence, EBV infection is particularly

closely related to NPC, making EBV a unique target for

tumor immunotherapy.

In accordance with the International Union Against Cancer

staging system, NPC are graded according to several stages (I–
Frontiers in Immunology 02
IVB) (19–21). NPC treatment options vary depending on the

stage. Conventional therapy for NPC includes surgery,

radiotherapy, and chemotherapy (Figure 2). Owing to the deep

tumor localization and complex anatomical structure of the tumor

site, surgical options are limited. However, NPC is a highly

radiosensitive and chemosensitive tumor; therefore,

radiotherapy and chemotherapy alone or in combination are the

primary treatments for patients with stage I/II NPC (22, 23).

Although combined chemoradiotherapy has good prognosis (85–

90% survival over 5 years), its efficacy is nonetheless limited, and

approximately 8–10% of patients experience recurrence or

metastasis (24–26). Platinum plus multidrug therapy is the

preferred treatment for RM-NPC patients, however, the

eventually developing resistance is a major barrier to successful

treatment (27). Concurrent chemoradiotherapy is of great

importance for improving treatment outcomes in locally

advanced NPC but often leads to complications, such as

xerostomia, trismus, and secondary tumors, which seriously

impact patients ’ quality of life (28–32). Concurrent

chemoradiotherapy based on cisplatin is the standard treatment

for patients with locally advanced NPC (33), and more than 50%

of NPC patients are initially confirmed as advanced stage (34, 35).

Therefore, the development of new strategies that not only

prolong the disease-free survival of patients but also reduce

treatment-related complications and adverse events is of critical

clinical importance.
FIGURE 1

Graphical summary of EBV infected epithelial cells, B cells, and NK/T cell. EBV primarily infects epithelial and B cells. Infection with EBV may
cause many human cancers, including epithelial cancers such as EBVaGC, NPC, EBVaICC, and pLELC. EBV-infected B cells can lead to
malignant lymphomas, such as DLBL, PTLD, and BL. Similarly, EBV infects NK/T cells to form NK/T cell lymphomas. EBV establishes a persistent
latent infection in malignant epithelial cells (known as latency I, latency II, and latency III). All EBV-associated epithelial cancers express a latency
II program (8–12). Two therapeutic vaccines have been investigated for NPC, namely, peptide-based vaccines and DC vaccines. EBV requires a
variety of envelope proteins to enter cells. The membrane proteins gp350, gH/gL, gB, and gp42 are required for B cell infection, whereas
BMFR2, gH/gL, and gB are needed for epithelial cell infection. Another vaccine under study mainly uses LMP1, LMP2, EBNA1 and EBNA3 as
target antigens to construct viral vaccines by single or multiple protein combinations. Figure was created with BioRender.
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At present, the clinical efficacy of radiotherapy or

chemotherapy alone for the patients with RM-NPC is

suboptimal, and it may be improved by the use of

immunotherapy. The dense matrix infiltration by immune

cells and EBV antigen expression in NPC patients are the

main research targets for immunotherapy (36, 37). The

primary strategies for immunotherapy are vaccination,

adoptive cell therapy (ACT), and immune checkpoint

blockade. Here, we review important research advances in the

field of NPC immunotherapy, hoping to provide insights for

future studies.
2 EBV-directed vaccination

Infection with EBV primarily leads to epithelial and B cell

malignancies, including NPC, infectious mononucleosis (IM), and

Burkitt’s lymphoma (38–42). Concurrent chemoradiotherapy,

induction chemotherapy, and adjuvant chemotherapy are the

three main therapies for NPC patients that have good curative
Frontiers in Immunology 03
effects. However, the emergence of drug resistance and adverse

events limit the application of chemotherapy for NPC (29).

Sources of EBV infection are widespread, and transmission

routes are difficult to cut off, similar to those of human

papillomavirus and hepatitis B virus (43, 44). Vaccination is the

most effective treatment to prevent infection with EBV and the

most cost-effective way to treat IM and EBV-associated diseases,

such as multiple sclerosis [(45), Figure 3A]. An effective EBV

vaccine will make a great impact on public health and the

economy. The use of EBV preventive vaccines is intended to

prevent EBV infection of target cells by eliciting neutralizing

antibodies (43–45). Two types of vaccines have been

investigated for NPC treatment, peptide and viral vaccines.

Peptide vaccines primarily focus on gp350, which stimulates the

body to produce neutralizing antibodies to block the virus

infection pathway after inoculation. Other antiviral vaccines

currently being studied use LMP1, LMP2, EBNA1, and EBNA3

as target antigens or their combinations (46–50).

EBV needs to pass through a variety of membrane proteins

to enter the cytoplasm of the epithelial, B cells, and NK/T cells.
FIGURE 2

Treatment of NPC. Different stages of NPC have different treatment methods. The traditional treatment of NPC includes surgery,
radiotherapy, chemotherapy, and targeted therapy. Immunotherapy is a promising therapeutic approach for NPC treatment. Figure was
created with BioRender.
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The infection of B cells by EBV requires five membrane proteins

(gp350, gH, gL, gB, and gp42), whereas the infection of epithelial

cells by EBV needs four membrane proteins (BMFR2, gH, gL,

and gB). These proteins are expressed on EBV and could be good

targets for EBV-preventive vaccine (35, 51–56). Studies on

vaccines for EBV-related diseases were began in the 1980s,

with approximately half the studies focusing on the EBV

protein gp350 (also known as gp340) that binds to CD21/

CD35 of B cells [ (57, 58), Table 1]. Early studies

demonstrated that the gp350-containing vaccine impacts the

infection process. Non-recombinant gp340 vaccine was first

shown to work against EBV-induced lymphoma in an animal

trial in the 1980s (70). In the early 1990s, the first clinical trial of

a vaccine containing gp350 were conducted in China. Subjects

developed corresponding antibodies after receiving the vaccine;

however, this vaccine was not further developed (59). Two

clinical trials of the vaccine containing recombinant gp350

showed considerable efficacy (mean response rate, 78.0%) in

preventing IM caused by EBV infection but not the

asymptomatic EBV infection (60, 61). This was most likely

because gp350-induced antibodies did not protect epithelial

cells from EBV infection. Therefore, it is important to identify

new target antigens to develop an effective EBV-preventive

vaccine. EBV glycoproteins gH/gL and gB co-mediate the

fusion step of EBV into B cells or epithelium. Inoculation with
Frontiers in Immunology 04
vaccines containing these proteins induced the development of

antibodies that could broadly protect against EBV infection (71,

72). The immunogens of proteins expressed or polymerized by

multimers are relatively stronger than those of single protein

polymers (73–75). Cui et al. compared the vaccines based on the

tetrameric and monomeric isoforms of the gp350 protein in

ovarian cells and found that the tetrameric gp350 had markedly

higher immunogenicity than its monomeric counterpart. These

data showed that the application of the tetrameric gp3501–470

and EBV protein multimerization, in general, may facilitate the

development of a potent prophylactic EBV vaccine (76).

According to two reports published in 2016 and 2021, serum

neutralization titers of antibodies raised against EBV gp350

monomer were lower than those induced by three dimer and

trimer gH/gL, trimer gB, or four gp3501–470 polymers (77, 78).

This may be attributed to the key role of gH/gL and gB in the

fusion and entry of EBV into B cells or epithelium. Therefore,

compared with gp350 alone, EBV gH/gL and gB may be the

better targets for EBV-preventive vaccine, and gp350 binding

with gH/gL, gB may yield a stronger EBV-preventive vaccine. In

2021, the gH/gL-specific antibody 1D8 was isolated from EBV-

infected individuals to target EBV-vulnerable sites (79). 1D8

binds to the critical fragile interfaces of viral gH/gL proteins,

disrupting the gH/gL-mediated fusion of EBV with the

membrane of target cells. The discovery of antibodies against
B

C

A

FIGURE 3

Illustration of major modalities of tumor immunotherapy for NPC. Primary strategies of tumor immunotherapy for NPC include EBV-directed
vaccination (A), EBV-CTLs intravenous infusion (B), and immune checkpoint blockade (C). Figure was created with BioRender.
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new EBV targets is therefore highly warranted. Our team

comprehensively described the response between T cells and

full-length gB. In vitro, gB-specific CD8+ T cells were found to

inhibit the transformation of B cells; available gB epitopes,

including gB D-II and D-IV, were identified; and two specific

gB antibodies (3A3 and 3A5) were isolated. The two antibodies

were identified to target and neutralize EBV-infected B cells and

epithelial cells. These studies indicate that accurate localization

of gB T cell epitopes is beneficial to the development of gB

subunit vaccines and immune surveillance and that gB D-II and

D-IV are promising targets for the development of EBV vaccines

(58, 80).

Despite numerous attempts to produce vaccines against

EBV, none has been licensed to date. Virus-like particles

(VLPs) may be promising vaccine candidates. The VLP-based

vaccine against hepatitis B and HPV have been widely used in

clinical practice, suggesting that a similar approach may be

fruitful for an effective vaccine against EBV (79, 81–83). The

first complete EBV VLPs had knockouts of the potential cancer-

causing genes and repetitive sequences in the EBV terminal, such

as LMP1 and BZLF1. These EBV VLPs elicited EBV-specific

responses in mice after immunization (45, 84). A study
Frontiers in Immunology 05
constructed an EBV VLP-based vaccine on the basis of a novel

Newcastle disease virus (NDV). The platform, named

EBVgp350/220-F, was formed by the fusion of EBVgp350/220

with the NDV fusion (F) protein (85). In vivo experiments,

EBVgp350/220-F VLPs induced a high and persistent

neutralizing antibody response in mice (85). At present, the

platform of NDV VLP is applied to developing gH/gL-EBNA1

and gB/LMP2 VLPs. LMP1, LMP2, EBNA1, and EBNA3, alone

or in combinations, are primarily used as target antigens for

anti-EBV vaccines because of their important roles in mediating

EBV infection and subsequent malignant transformation of

infected cells (50, 86–88). A clinical trial performed in 2002

showed that immunization with EBV peptide-pulsed DCs

induces tumor disappearance in patients with EBV-induced

NPC (89). Epitope-specific CD8+ T cell responses were

induced or enhanced in 9 out of 16 subjects (56%) in that

trial. In another study, 16 patients with HLA-A2-positive stage

II/III NPC were administered autologous DCs containing the

HLA-A2-restricted LMP2A peptide, and in nine of them, the

responses of circulating LMP2-specific T cells were improved

and serum EBV DNA levels were modestly reduced (66). There

was a study assessed the efficacy of Ad-DLMP1-LMP2
TABLE 1 Illustration of completed and documented EBV vaccine trials.

Vaccine Year Cohort
size Clinical outcome

Live recombinant virus
gp350 vaccinia

1995 9 Vaccination boosted EBV-neutralizing antibody titers; no vaccine efficacy (59).

Recombinant subunit gp350
EBV vaccine purified from
Chinese hamster ovary cells

2007 148 One serious adverse event occurred which was considered to be of suspected relationship to vaccination; no
vaccine efficacy (60).

Recombinant gp350 vaccine 2007 181 Recombinant gp350 showed significant efficacy (mean response rate, 78.0%) in preventing infectious
mononucleosis caused by EBV infection, but not in preventing asymptomatic EBV infection (61).

EBV peptide vaccine 2008 14 The vaccine was well tolerated,and 1/2 placebo vaccines who acquired EBV developed infectious
mononucleosis. Single-epitope vaccination did not predispose individuals to disease, nor did it significantly
influence development of a normal repertoire of EBV specific CD8(+) T-cell responses following
seroconversion (62).

Recombinant gp350 vaccine 2009 16 The vaccine was immunogenic but a prolonged vaccine schedule up to time of transplantation or improved
adjuvants are required in future trials to reduce post (63).

Adenovirus DLMP1–LMP2
transduced DC vaccine

2012 16 No increase detected in the frequency of peripheral LMP1/2-specific T cells (64).

AdE1-LMPpoly vaccine 2012 24 Adoptive immunotherapy with AdE1-LMPpoly vaccine is safe and well tolerated and may offer clinical
benefit to patients with NPC (65).

EBV-specific HLA-A2-
restricted DC vaccine

2013 16 9 patients responded to LMP2A peptides,and serum EBV-DNA level significantly decreased; The EBV-
specific HLA-A2-restricted DC vaccination is a promising treatment for EBV-related NPCs (66).

Recombinant vaccinia virus,
MVA-EL, which encodes an
EBNA1/LMP2 fusion protein

2013 18 T-cell responses to EBNA1 and/or LMP2 increased in 15 patients; MVA-EL was both safe and
immunogenic (67).

MVA-EL 2014 16 T-cell responses to EBNA1 and/or LMP2 increased in 8 patients; MVA-EL was safeand immunogenic across
diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally (68).

Adenoviral vaccine of EBV-
LMP2 (rAd5-EBV-LMP2)

2016 24 Proportion of CD3+ CD4+ cells in peripheral blood significantly increased; The rA5-EBV-LMP2 vaccine was
safe and well-tolerated, but has no vaccine efficacy (69).
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transduced DCs vaccine in total 12 patients with NPC, this

vaccine increased the activity of LMP1/2-specific T cells in vitro

(64). Furthermore, in nine out of these 12 patients, this vaccine

caused late-onset hypersensitivity reactions (64). Thus, although

the clinical efficacy of DC-based vaccines in these clinical trials

was mixed, the safety and tolerability of EBV vaccines in NPC

patients were consistently demonstrated.

Recently, recombinant viral vector vaccines, such as the one

based on modified vaccinia Ankara (MVA), have been created

(90, 91). One study showed that an MVA fusion protein could

effectively reactivate CD4+ memory T cell responses in vitro, and

the MVA fusion protein comprised both the carboxyl terminus

of EBNA1 and full-length LMP2(MVA-EL) (92). The first

human MVA-EL vaccine trial involving 18 NPC patients was

conducted in Hong Kong (67). Responses of T cells to vaccine

antigens were enhanced in fifteen out of the 18 subjects in that

study; therefore, MVA-El was safe and immunogenic. A separate

phase I study of the MVA-EL vaccine in the patients with NPC

was conducted in the United Kingdom, which demonstrated

increased CD4+ and CD8+ T cell responses to antigens in eight

out of 14 patients (68). Another two clinical trials with this

vaccine, NCT01800071 and NCT01094405, are in progress.

Recently, an mRNA vaccine has been successfully used

against SARS-CoV-2, and a synthetic mRNA vaccine against

EBV is currently in a clinical trial (phase I, NCT05164094).

Although mRNA vaccines have many advantages than

conventional vaccines, there are also potential challenges.

Thus, clinical trials demonstrated that vaccines against EBV

have substantial clinical value. Nonetheless, they also have some

limitations: DC-based vaccines have few targets and high

preparation cost, whereas although recombinant virus vectors

have broad epitopes, their immune function may be reduced

after repeated immunizations. It should be noted that different

administration routes should be systematically examined to

facilitate EBV vaccine delivery. Future vaccines containing

EBNA1, LMP1/2, gp350, gH/gL, and gB are promising

directions for EBV vaccine research.
3 Adoptive cell therapy

In recent years, ACT has become a powerful strategy in the

treatment of human cancers, especially some blood

malignancies. However, extending these therapies to solid

cancers such as NPC remains problematic. Here, we discuss

recent developments in several ACT approaches.
3.1 EBV-specific cytotoxic T lymphocyte
therapy

EBV-associated posttransplant lymphoproliferative

disorders (PTLDs) are common complications in solid organ
Frontiers in Immunology 06
and bone marrow transplant recipients (93–96). PTLDs are

related to the massive proliferation of EBV-B cells, cytotoxic T

lymphocytes (CTLs) control its expansion in immunologically

active individuals (97). Many clinical trials showed that ACT

with EBV-specific CTLs prevented and treated PTLDs in

patients with hematopoietic stem cell transplantation (98–

102). EBV-specific CTLs also effectively treated PTLDs in

patients with solid organ transplants that were on high

immunosuppression regimens (93–95, 103, 104). These results

have broadened the application of ACT in EBV-associated

cancers, and both EBNA1 and LMP1 were the targets for the

amplification of EBV-specific CTLs in the majority of studies

(65, 105–111). The clinical ACT approach used for NPC

treatment involves lymphoblastoid cell line-generated EBV-

specific T cells (Figure 3B; Table 2). A clinical trial using EBV-

specific CTLs to treat NPC patients showed that the content of

EBV DNA in plasma was decreased to an undetectable level in

all subjects (112). A clinical study published in 2004 showed that

EBV-specific CTLs can be effectively used to treat NPC patients,

and proved that EBV-specific CTLs with anticancer properties

detected in vitro could increase the LMP2-specific immune

response (113). Another study that used EBV-specific CTLs to

treat NPC showed that disease progression was controlled in 6 of

10 patients. This trial also demonstrated that EBV-targeted

autologous CTL therapy was safe and induced LMP2-specific

immune activity that controlled the disease progression in stage

IV NPC resistant to conventional therapy (107). Two clinical

trials by Straathof et al. further proved that this treatment was

safe and performed a activity for anti-tumors (108, 114).

Notably, the reaction rate varied in different clinical

studies, primarily because these trials utilized different

techniques to produce EBV-specific CTLs. In addition, these

trials involved patients at different NPC stages, which could

also have distinct previous treatments, comorbidities, and

genetic susceptibility. To raise the immunogenicity and

enhance antigen specificity, a new adenovirus vector, AdE1-

LMPpoly was generated that encoded EBNA1, which

covalently binds to multiple epitopes in CD8+ T cell (119). A

clinical study showed that AdE1-LMPpoly vector stimulated

CD8+ T cells in Hodgkin lymphoma donors, stimulating the

rapid expansion of EBNA1 and LMP1/2-specific CD8+ T cells

(120). Two studies using AdE1-LMPpoly confirmed that MVA

vaccines harboring the EBNA1 sequence prevented and treated

lymphoma (90, 121). A clinical trial to treat NPC by EBV-

specific T cells induced by the new AdE1-LMPpoly vector

showed that sixteen of 24 patients with NPC had expanded

EBV-specific T cells, whereas no effect was noted in 27.3% of

NPC cases. Furthermore, compared with the control group, the

median overall survival increased from 220 days to 523 days

(65). In subsequent studies, the same team demonstrated that T

cell therapy combined with AdE1-LMPpoly was well tolerated

in high-risk cases without residual diseases and cases with

recurrent/metastatic diseases (111).
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A phase 2 clinical trial was carried out by Chia et al. to assess

the efficacy of chemotherapy combined with EBV-specific CTLs

in 35 patients. The effective rate of combined therapy was 71.4%,

with five cases not needing further chemotherapy over 34 months

after the start of treatment with CTLs. Compared with all similar

studies, this trial achieved the best results in patients with

advanced NPC, which shows that chemotherapy combined with

EBV-specific CTL therapy is a very promising approach (116).
3.2 EBV-specific chimeric antigen
receptor T cell therapy

Chimeric antigen receptor T cell immunotherapy (CAR-T) has

been tested for many years but was only recently approved for

humans. CAR-T has shown a good efficacy in treating to acute

leukemia and non-Hodgkin lymphoma and is considered to be one

of the most promising tumor treatment modalities (Figure 4).

Currently, there are eight approved CAR-T products: six targeting
Frontiers in Immunology 07
CD19 and two targeting BCMA (B cell maturation antigen). CAR-T

is applied primarily in hematological malignancies, such as diffuse

large B cell lymphoma (DLBCL), B cell acute lymphoblastic

leukemia (B-ALL) as well as recurrent or refractory forms of

multiple myeloma, follicular lymphoma, and mantle cell

lymphoma. Although the innovative immune therapy with CAR-

T cells shows considerable efficacy in hematological malignancies,

its application in solid tumors is difficult (122). Despite the efforts of

scientists, clinical doctors, and pharmaceutical companies

worldwide, CAR-T cells have not been clinically approved to treat

any solid tumor. The lack of good target antigens is the greatest

obstacles facing in the CAR-T therapies (123, 124). Encouragingly,

there are more than 1,100 registered clinical trials evaluating the

treatment of cancers using CAR-T cells (59 have been completed),

of which approximately 200 relate to solid tumors.

As of today, six registered clinical studies are evaluating the

efficacy of NPC by CAR-T therapies (Table 3). A phase 1 trial

(NCT02915445) conducted on patients with NPC or breast cancer

aimed to evaluate the therapy with CAR-T cells specifically targeting
TABLE 2 Completed clinical trials of EBV-CTLs in NPC.

Treatment Year Cohort
size Clinical outcome

Autologous EBV-CTLs 2001 4 The treatment was safe and unaccompanied by inflammatory or other complications, but whether it
improved tumor control could not be discerned from the large tumor bulk. 3/4: EBV burden decrease; 3/4:
die of PD (9–21 months after EBV-CTLs) (112).

EBV-specific CTLs 2004 1 Adoptive transfer of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T cells with in vitro antitumor
activity boosts LMP2-specific immune response in a patient with EBV-related NPC;Preliminary data
obtained in this patient indicate that EBV-specific CTLs are safe, may exert specific killing of NPC tumor
cells in vitro, and induce antitumor effect in vivo (113).

Autologous EBV-specific
CTLs (LCL-stimulated CTL
with low-dose IL-2)

2005 10 Cell therapy with EBV-targeted autologous CTLs is safe, induces LMP-2-specific immunologic responses,
and is associated with objective responses and control of disease progression in patients with stage IV NPC
resistant to conventional treatments (107).

Autologous EBV-specific
CTLs

2005 10 Administration of EBV-specific CTLs to patients with advanced NPC is feasible, appears to be safe, and
can be associated with significant antitumor activity (114).

CTL following anti-CD45
mAb administration

2009 8 1/8: CR; 2/8: SD; 5/8: PD; Lymphodepleting mAbs prior CTL transfer may represent an alternative to
chemotherapy to enhance expansion of infused CTL (109).

EBV-specific CTLs 2010 23 Treatment of patients with relapsed/refractory EBV-positive NPC with EBV-CTLs is safe and can be
associated with significant, long-term clinical benefit, particularly for patients with locoregional disease
(108).

Higher doses of Autologous
EBV-specific CTLs(CTL
following cyclophosphamide
and fludarabine CT)

2012 11 EBV-specific CTL therapy is safe and associated with antitumor activity in patients with advanced NPC;
Preparative
lymphodepleting chemotherapy does not improve clinical results (115).

EBV-CTL following GC CT 2014 38 3/38: CR; 22/38: PR; 11/38: SD; 1/38: PD; 1/38: N/A; 3-year OS: 37.1%; These study achieved one of the
best survival outcomes in patients with advanced NPC, setting the stage for a future randomized study of
chemotherapy with and without EBV-CTL (116).

Autologous EBV-specific CTL 2014 1 After infusion, the majority of pulmonary lesions were no longer evident, although the primary tumor did
not regress (117).

AdE1-LMPpoly vector-based
CTL

2017 29 Adoptive immunotherapy with AdE1-LMPpoly-expanded T cells stabilizes relapsed, refractory NPC
without significant toxicity (118).

CR, complete response; CT, chemotherapy; CTL, cytotoxic T-cell; GC, gemcitabine and carboplatin; N/A, not available; ORR, objective response rate; OS, overall survival; PD,
progressive disease; SD, stable disease.
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epithelial cell adhesion molecule (EpCAM). EpCAM-specific CAR-T

cells were administered to different cohorts of patients

(NCT02915445). In vitro assays demonstrated that LMP1-specific

CAR-T cells kill 70% of NPC cells overexpressing LMP1.

Furthermore, injecting LMP1-specific CAR-T cells into mice with

tumors markedly reduced the number of LMP1high NPC cells.

Although it is doubtful that LMP1-specific CAR-T cells can target

cancer cells in NPC with much lower LMP1 expression, these results

are encouraging (125, 126), and a clinical trial for LMP1-specific

CAR-T cells to treat EBV-associated malignant tumors is underway

(NCT02980315). Furthermore, a phase I study designed to treat

patients with relapsed or refractory NPC is ongoing (NCT04107142).
3.3 T cell receptor-engineered T cell
therapy

T cell receptor-engineered T cell therapy (TCR-T) has

quietly arrived on the cancer therapy scene (Figure 4). TCR-T

has shown unprecedented potential in the therapy of solid
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because of its ability to target a variety of antigens within

tumors. TCR-T is similar to CAR-T in that it involves

engineering a patient’s own T lymphocytes and then injecting

back into the patient. However, the mechanisms by which TCR-

T and CAR-T recognize antigens differ. As an antigen

recognition element in T cell therapy, TCR can recognize a

wider range of potential tumor-specific antigens, especially the

ultra-sensitive recognition of low-level variation of intracellular

antigens, while CAR recognizes only tumor cell surface antigens.

The immunosuppressive tumor microenvironment and tumor-

associated antigen expression rate on the cell surface of solid

tumors are low, and most of the cell proteins are intracellular.

These factors limit the clinical application of CAR-T in solid

tumors, while TCR-T may have a more effective role against

solid tumors. In nearly two years, clinical studies of TCR-T cell

therapy in HBV-related HCC and HPV-related cervical cancer

have been reported, and good results have been achieved (127–

129). There are more and more studies on the treatment of

nasopharyngeal carcinoma by TCR-T cells. LMP2 antigens are a
FIGURE 4

Comparison of CAR-T and TCR-T cells in the treatment of NPC. Engineered immune cell therapy works by modifying immune cells so that they
can recognize disease states and respond appropriately. When engineered immune cells are transferred into patient, they are a “living drug”.
TCR-T is similar to CAR-T in that it involves engineering a patient’s own T lymphocytes and then injecting back into the patient. The procedure
mainly includes: extraction of patients’ peripheral blood, isolation of PBMC, engineering of immune cells, amplification of immune cells and cell
transfusions into patients. Figure was created with BioRender.
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potential target of TCR-T cells; targeted clearance of cells

containing LMP2 may have robust antitumor properties and

limited toxicity to normal cells. Tumor progression in LMP2-

expressing NPC cell lines implanted in mice was inhibited by

LMP2-specific TCR-T cells (130). Similar results were observed

for the LMP1-specific TCR-T cells (131). At present, there are

four ongoing clinical trials evaluating TCR-T for NPC

(NCT0 4 5 0 9 7 2 6 , NCT0 3 9 2 5 8 9 6 , NCT0 3 6 4 8 6 9 7 ,

NCT05587543) (Table 3). The first clinical study of TCR-T

therapy for NPC was launched in 2018, in which NPC patients

with high expression of LMP1, LMP2, and EBNA1 were selected

for study. The TCR targets were screened to explore the role of

EBV antigen-specific T cells (YT-E001) in RM-NPC patients

(NCT03648697). The latest clinical trial, first posted in October

2022, aims to compare the efficacy of CAR-T and TCR-T cells in

the treatment of NPC (NCT05587543). TCR-T therapy for

cancer is an exciting and rapidly developing field. The

application of TCR-T therapy has pioneered an innovation h

t o t r e a t i n g c anc e r , v i r a l i n f e c t i on s , and o th e r

immunomodulatory diseases. It is hoped that more

appropriate immune targets will be selected, and TCR-T

transfection methods will be optimized in the near future

through the unremitting efforts of researchers. TCR-T therapy
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is bound to play an significant role in cancer, infectious diseases,

or autoimmune diseases.
3.4 NK cell therapy

Our team has been actively developing new approaches and

targets for the treatment of EBV-NPC. We found that after EBV

infection, LMP2A induced the upregulation of F3 expression

and was associated with the dysfunction of NK cells in NPC (2).

We used a combination of F3 inhibitor and NK cell adoptive

therapy and achieved a considerable therapeutic effect in a

mouse model of NPC. Another study by our group was

performed to elucidate the mechanisms involved in EBV-

induced NK cell dysfunction. We found that deletion of B7-

H3 on tumor cells, in combination with anti-PD-L1

(programmed death-ligand 1) treatment, restored NK cell-

mediated antitumor activities and showed synergistic

therapeutic efficacy. This study, which is currently under

submission, aims to provide a rationale for NK cell-based

immunotherapies in combination with PD-L1 blockade for

overcoming the immunosuppression of B7-H3 to treat EBV-

associated NPC. Therefore, targeting EBV-related signaling
TABLE 3 Ongoing clinical trials of CAR-T and TCR-T in NPC.

Trial
Number Phase Estimated

enrollment Study Title Interwentions Locations

NCT03013712 Phase
1/2

60 A Clinical Research of CAR T Cells Targeting
EpCAM Positive Cancer

Biological: CAR-T cell immunotherapy China

NCT02980315 Phase
1/2

20 A New EBV Related Technologies of T Cells in
Treating Malignant Tumors and Clinical
Application

CAR-T cell China

NCT02915445 Phase 1 30 EpCAM CAR-T for Treatment of Advanced Solid
Tumors

Biological: EpCAM CAR-T cells China

NCT05239143 Phase 1 100 P-MUC1C-ALLO1 Allogeneic CAR-T Cells in the
Treatment of Subjects with Advanced or
Metastatic Solid Tumors

Biological: P-MUC1C-ALLO1 CAR-T cells
Drug: Rimiducid

United
States

NCT03648697 Phase 2 20 EBV-TCR-T(YT-E001)for Patients With EBV-
positive Recurrent or Metastatic NPC

Biological: EBV-TCR-T (YT-E001) cells China

NCT04107142 Phase 1 10 Haplo/Allogeneic NKG2DL-targeting Chimeric
Antigen Receptor-grafted gd T Cells for Relapsed
or Refractory Solid Tumour

Biological: Adoptive Cell Transfer of
NKG2DL-targetting Chimeric Antigen
Receptor-grafted Gamma Delta T cell

Malaysia

NCT04509726 Phase
1/2

20 LMP2-Specific IL12-secreting TCR-T Cells in the
Treatment of EBV-Positive Met

Drug: LMP2 Antigen-specific TCR T cells China

NCT03648697 Phase 2 20 EBV-TCR-T(YT-E001)for Patients With EBV-
positive Recurrent or Metastatic NPC

Biological: EBV-TCR-T (YT-E001) cells China

NCT03925896 Phase 1 27 Phase I Trial of LMP2 Antigen-specific TCR T-cell
Therapy for Recurrent and Metastatic NPC
Patients

Drug: LMP2 Antigen-specific TCR T cells China

NCT05587543 Phase 1 24 Clinical Study on the EBV CAR-T/TCR-T Cells in
the Treatment of Nasopharyngeal Carcinoma

Behavioral: PK Blood Collection
Drug: CAR, TCR

China
f
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pathways, combined with NK cell adoptive therapy, may be a

new direction to explore for the treatment of NPC in the future.
4 Immune checkpoint inhibitors

Patients with RM-NPC have limited treatment options,

making chemotherapy the main treatment; however, its

curative effect is unsatisfactory (34, 132–137). The emergence

of immunotherapy has turned around the therapy for RM-NPC.

Cisplatin combined with gemcitabine is the first-line therapy for

RM-NPC; however, the second-line treatment is still lacking

(138–140). Programmed death-1 (PD-1) and PD-L1 are

associated with tumor immune escape and immunotherapy,

which are critical for the tumor survival. NPC induced by

EBV often presents with high levels of PD-L1 and substantial

lymphocyte infiltration, thus, application of PD-1 blockade

immunotherapy may be beneficial (141). Indeed, preclinical

studies have shown that EBV proteins LMP1 and EBNA1/2

regulate PD-L1 levels, thereby modulating the extent of immune

escape (142–144).

Treatment of NPC by immune checkpoint inhibitors (ICIs)

is currently a hot research topic. Effective ICIs may break the

immune defense and revitalize endogenous antitumor immunity

(Figure 3C). Primary targets of ICIs include PD-1/L1 and

cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Three

clinical trials of anti-PD-1 in patients with RM-NPC reported

the objective response rates in the range of 20.5–34.1% (145–

148). To date, a considerable number of ICIs have been licensed

for use by the FDA.

Pembrolizumab has been demonstrated to have a good

antitumor activity and safety profile in previously treated

patients with RM-NPC (147, 149–151). Another ongoing

phase II trial (NCT03544099) aims to evaluate the efficacy of

pembrolizumab for NPC patients with plasma EBV DNA after

radio-chemotherapy. A study of nivolumab in patients with RM-

NPC reported promising antitumor activity and favorable 1-year

overall survival rates (145). A case of NPC was reported in which

the patient was given nivacizumab, a PD-L1 inhibitor, because of

the high PD-L1 expression in his tumor. Following this

treatment, it was found that the tumor rapidly and completely

subsided, and there was no recurrence after 22 months of

treatment. This study sets a foundation for future trials,

involving many NPC patients (152). Fan et al. showed that

camrelizumab, another anti-PD-1 inhibitor also had strong

antitumor activity and was well tolerated in patients with RM-

NPC. Based on the above results in these two papers, the authors

will start a phase III trial to treat the patients with RM-NPC by

using chemotherapy combined with PD-1 inhibitors (148). A

phase 3 trial aimed to study the effect of RM-NPC treated by

chemotherapy combined with camrelizumab in the treatment of

RM-NPC. The results showed considerable prolongation of

progression-free survival in patients that underwent
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camrelizumab and chemotherapy may become a new method

to treat NPC (153).

On February 19, 2021, an anti-PD-1 monoclonal antibody

named toripalimab was licensed by the National Medical

Products Administration in China to treat the patients with

RM-NPC whom had previously failed second-line or systemic

therapy. Thus, toripalimab has become the first anti-PD-1

monoclonal antibody approved for NPC treatment in the

world as a breakthrough in immunotherapy in this field (154).

Wan et al. reported key clinical results of treatment with

toripalizumab (POLARIS-02), which showed that the drug is

safe, controllable, and induces a lasting clinical response in

patients with refractory NPC that poorly respond to

chemotherapy (155). More than 80 clinical studies aiming to

evaluate anti-PD-1 treatments for NPC have been or are

currently being conducted, with 20 of them testing the efficacy

of toripalimab.

CTLA-4, belongs to the CD28 immunoglobulin subfamily

and functions as a receptor that suppresses T cell activation

(156). CTLA-4 and PD-1 are two of the earliest targets for which

ICIs have been developed. The immune response rate to an ICI

treatment is limited because it is a single-drug therapy, which, in

turn, restricts the clinical application of ICIs (157). After years of

clinical experience, the direction of CTLA-4 inhibitor

development has become increasingly clear: the combination

therapy of CTLA-4 inhibitor and PD-1 or PD-L1 may have the

broadest application. CTLA-4 and PD-L1 work within different

parts of the immune system and exert distinct effects. CTLA-4

acts primarily in the priming phase and is the main factor

affecting antigen presentation. PD-L1 primarily acts in the

effector phase, blocking immune checkpoints and inducing

tumor death. Therefore, blocking both CTLA-4 and PD-L1

may enhance antitumor effects. Ipilimumab is the only CTLA-

4 drugs authorized worldwide, furthermore, many anti-CTLA-4-

targeting inhibitors in development and more than 20 in clinical

trials. Ipilimumab is combined with pembrolizumab and

nivolumab for immunotherapy of highly metastatic colorectal

cancer, gastroesophageal, and other cancers (158–162).

Combination therapy is more effective than conventional

monoclonal antibody therapy and provides an opportunity for

the development and application of bi-specific antibodies. The

first PD-1/CTLA-4 bi-specific antibody product approved

worldwide was developed by Akeso, Inc. The range of this

antibody is applicable to a series of solid tumors, such as

cervical cancer, lung cancer, gastric cancer, and NPC (163).

Continuous monitoring of adverse events is required during

treatment with bi-specific blockers, as inhibiting multiple targets

simultaneously may increase the frequency of side effects.

Our team have found that anti-human CD39 antibody

increased the expression of human CD8+T cells and inhibited

human B-cell lymphoma after autologous EBV-specific T cell

metastasis (164, 165). Based on our study, we conducted the first
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human trial of anti-CD39 in patients with advanced cancer

(NCT03884556) (164, 165). These studies have provided new

targets and ideas for the immunotherapy of EBV-NPC.
5 Conclusion

Tumor immunotherapy is a new technological approach

that can overcome the disadvantages of the three traditional

methods in cancer therapy: surgery, radiotherapy, and

chemotherapy. In particular, tumor immunotherapy may

provide a better outcome in cases of incompletely surgically

removed, metastatic, and easy-to-relapse tumors. The specificity

of immunotherapy effectively kills tumor cells in the absence of

serious side effects and prolongs patient survival .

Immunotherapy controls the proliferation of tumor cells by

irritating and enhancing immune functions in endogenous

organisms, and its current main approaches are based on the

use of vaccination, ACT, and ICIs. At present, there are several

therapeutic strategies to generate EBV vaccines, including the

prevention of EBV infection, modulation of the incubation

period, and inhibition of the occurrence of EBV-associated

tumors. Development of the polymeric EBV vaccine

containing gH/gL, gB, and gp350 is a particularly promising

direction. Therapeutic vaccines against EBV are likely to be more

efficient than preventive vaccines because it takes a long time for

EBV infection to induce diseases; therefore, developing

preventive vaccines against EBV-related diseases such as NPC

may not be possible. Most therapeutic vaccine preparations

currently use EBNA1, LMP1, and LMP2 as targets. These

proteins play an important role in the malignant

transformation of EBV-infected cells. During the last few

years, many studies have achieved remarkable successes in

developing ACT against EBV antigens. EBV vaccine together

with T cell infusion may be a good way to treat NPC and this

combination can enhance the specificity of T cells. To enhance

the clinical efficacy of ACT therapy in NPC, CAR-T cells raised

against an EBV target and a surface receptor may be utilized. To

expand the efficiency of CAR-T cells, new antigen targets for

EBV-induced NPC should be urgently identified. In recent years,

many cellular immunotherapies have emerged and are

developing rapidly, undoubtedly setting off an upsurge in

cancer treatment. T cell immunotherapy in general is a hot

field in cellular immunotherapy. Both CAR-T cells and TCR-T

cells are T cells modified by genetic engineering. While TCR-T

therapy may not be as well known to the general public, it may

offer advantages over CAR-T therapy in the treatment of solid

tumors. Another possible effective strategy to treat EBV-NPC is

to combine ACT with ICIs against PD-1/L1, or CTLA-4. The

optimization of these methods is expected to render

immunotherapy the first-line therapy for various EBV-related

diseases. Tumor immunotherapy also decreases the incidence of

adverse reactions and complications arising from chemotherapy.
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It can kill two birds with one stone, thus protecting NPC

pat ients . Therefore , chemotherapy combined with

immunotherapy may increase the efficacy of the treatment and

reduce its toxicity for NPC patients. Integrative therapy that

combines NPC immunotherapy with conventional therapeutic

approach is not simply combination of existing methods but,

rather, a combination of treatments that achieves the

highest synergy.

Although most immunotherapy strategies for EBV-related

NPC are still at the clinical trial stage, the published and

emerging research results indicate that immunotherapy for

NPC may soon be used in clinical settings. Ongoing research

hopes to achieve a selection of practical immune targets and

optimized TCR-T transfection methods in the near future. We

believe that TCR-T cell therapy may currently be the most

promising approach to treatment of EBV.
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