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Tumor immunotherapy, particularly the use of immune checkpoint inhibitors,

has yielded impressive clinical benefits. Therefore, it is critical to accurately

screen individuals for immunotherapy sensitivity and forecast its efficacy. With

the application of artificial intelligence (AI) in the medical field in recent years,

an increasing number of studies have indicated that the efficacy of

immunotherapy can be better anticipated with the help of AI technology to

reach precision medicine. This article focuses on the current prediction models

based on information from histopathological slides, imaging-omics, genomics,

and proteomics, and reviews their research progress and applications.

Furthermore, we also discuss the existing challenges encountered by AI in

the field of immunotherapy, as well as the future directions that need to be

improved, to provide a point of reference for the early implementation of AI-

assisted diagnosis and treatment systems in the future.
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1 Introduction

Tumor immunotherapy is the process of controlling and eliminating tumors by

restarting the tumor immune cycle and restoring the body’s natural anti-tumor immune

response. Immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell therapy,

tumor vaccines, and peripatetic immunotherapy are the main immunotherapy modalities

currently used (1). These therapies, especially the use of ICIs such as PD-1 and CTLA-4,

have achieved success in a major fraction of the patients, greatly enriching the prevailing

clinical oncology treatments (2). However, it is still found in the clinic that some of the

population is not sensitive to these drugs, and even the treatment outcome is not as good

as traditional chemotherapy drugs. Therefore, it is crucial to screen the patients that will
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benefit from immunotherapy. While several of the current

predictors such as PD-L1, tumor mutational burden,

microsatellite instability, etc., do not sufficiently address this

issue (3, 4).

In recent years, the application of artificial intelligence (AI)

in the medical area has expanded significantly (5). Examples

include surgical robots, which have proven to offer distinctive

advantages. Scholars have made numerous attempts to apply AI

to predict the efficacy of immunotherapy, for instance, by

establishing immunotherapy prediction scores to predict

treatment efficacy and effectively screen patients who can

benefit from immunotherapy (6).
2 The overview of artificial
intelligence to predict
immunotherapy efficacy

The general strategy for using AI to predict the efficacy of

immunotherapy (Figure 1) is to set up a training cohort and a

validation cohort, take the multi-scale medical data from the

training cohort, acquire, filter, segment, extract and select

features, hand them over to the AI for learning and modeling,

and then utilize the validation cohort to verify the learning

results (7, 8). This multiscale medical data may include

pathological tissue, CT/MR imaging-omics, genomics,

proteomics, and more. The desired learning outcome is for the

AI to be able to forecast whether a patient will benefit from

immunotherapy or, at the very least, recommend which patients

require more evaluation, like WGS. It’s also used to predict

which immunotherapy drug will be most effective for the patient.
Frontiers in Immunology 02
3 The existing approaches to
predicting immunotherapy
outcomes

3.1 AI predicts immunotherapy efficacy
by histopathological features

The gold standard for tumor identification is histopathological

tissue sections, which also provide a wealth of information that can

be utilized to determine disease progression, select individualized

treatment plans, and predict patient survivorship. However, due to

the enormous labor required of experts to extract information from

complex images, traditional histopathology procedures are unable

to satisfy the demands of precision medicine (9). Currently, AI-

based digital pathology has been successfully used in tumor

diagnosis and treatment. This technology has a wide range of

future applications, including improving the accuracy of

pathological diagnosis, formulating treatment plans, predicting

patient prognosis, and reducing manual workload, and more (10).

For instance, AI can segment and identify tumor cells in pathology

slides and accurately quantify immunohistochemical staining

results (11). Thus, machine learning techniques based on

histopathological analysis provide novel strategies to predict

response to tumor immunotherapy (12). Among these,

immunohistochemical (IHC) analysis, tumor-infiltrating

lymphocyte (TIL), tumor-stroma ratio (TSR), and microsatellite

instability are extensively researched.

Tumor cells expressing PD-L1 can suppress the immune

response by binding to PD-1 on T cells, and ICIs is an anti-

tumor strategy to block this interaction. Studies have shown that

PD-L1 expression levels correlate with immunotherapy response
FIGURE 1

The workflow for using AI to predict immunotherapy efficacy. The First step is to collect multiscale medical data which include pathological
tissue, CT/MR imaging-omics, genomics, proteomics, and more. The following steps are to gather, filter, segment, extract and select features.
Then split these data into a training cohort and a validation cohort. Next, take the data from the training cohort, handing them over to the AI for
learning and modeling. And then utilize the validation cohort to verify the learning results. Finally, a clinically applicable model will be developed.
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and clinical results. Previous research has demonstrated that an

AI-driven PD-L1 tumor ratio score-based analyzer can identify

non-small cell lung cancer (NSCLC) more effectively than a

pathologist can when predicting the immunotherapy response,

and its results are objective and repeatable without human error

(13). In addition, the absence of DNA defective mis-match

repair (MMR) mechanism caused by mutations in the MMR

gene results in the accumulation of somatic genomic mutations,

which are closely associated with the ICB response (14). For

MMR-deficient and MMR-proficient colorectal tumors, Le et al.

(15) discovered immune-related objective response rates of 40%

and 0%, respectively, suggesting that MMR status can be used to

predict clinical response in patients treated with immune

checkpoint inhibitors. In further, many studies have confirmed

that higher levels of T-cell infiltration and T-cell counts are

related to improved immune checkpoint blockage (16).

Microsatellite refers to several short, repetitive DNA

sequences in the genome. Microsatellite instability is

associated with DNA mismatch repair and involved in the

development of many malignancies. Tumors with high

microsatellite instability were found to respond well to

immunotherapy (17). Kather et al. (18) demonstrated that

deep learning has the potential to rapidly and accurately

screen patients suitable for immunotherapy by precisely

identifying the microsatellite stability status of patients with

gastrointestinal cancer. Furthermore, AI can recognize

lymphocytes, tumor cells, and mesenchymal stroma in the

section and use three-dimensional reconstruction to highlight

the spatial distribution of different cell types, which is another

potential factor to evaluate the efficacy of immunotherapy (19).
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TIL is closely associated with immunotherapy, and deep

convolutional neural network models can be used to determine

its distribution from eosin-hematoxylin (HE) stained images. By

assessing the immune cell types in the tumor tissue matrix and

classifying patients into types A and B, Zheng et al. (20)

constructed a prognostic-relevant immune phenotype

classifier. Higher levels of ICB were observed in phenotype A,

which indicated a superior immunotherapy effect and prognosis.

Additionally, there is an end-to-end strategy to train DL directly

on response or outcome data, which used convolutional neural

networks (CNNs) or graph neural networks (GNNs) to predict

immunotherapy responses. According to these trials, the AUCs

for predicting responders in lung cancer and melanoma were

0.778 and 0.69, respectively (21).

Tumor mutational burden (TMB) is defined as the number

of non-synonymous single nucleotide variants (NsSNV) on

tumor cells that can be transcribed into new antigenic peptides

and presented on the cell surface, thereby activating T cells (22).

High TMB is shown to be a predictive biomarker for lung cancer

(23). Recent research suggests that deep learning systems can be

used to predict immune responses. The study used HE-stained

images to predict the status of TMB and reached an AUC of

0.78-0.98 in the external validation group, much higher than

utilizing clinical data alone (24).

AI has a promising development in predicting tumor

immunotherapy response and can examine the state of tumor

development through pathological data. Its algorithm and

analysis results can be highly standardized and shared, which

may assist advance medicine and actualizing precision

medicine (Figure 2).
FIGURE 2

AI-based evaluation of immunotherapy efficacy by histopathological features. This is an illustration of the use of AI to forecast the effectiveness
of immunotherapy. With the help of AI, more specific information can be extracted from clinical pathological tissues, including components of
the tumor microenvironment and small molecular components like receptors, ligands, cytokines, nucleic acids, etc. From these elements, AI
gathers data related to immunotherapy to forecast the efficacy.
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3.2 AI predicts immunotherapy efficacy
by imaging-omics features
With the constant advancement of medical imaging

equipment and technology, medical images are no longer

simply pictures or restricted to the traditional “computer

assisted diagnostics (CAD)”, but also contain high-throughput

mineable data that are not recognizable to the naked eye (25).

Imaging histology refers to AI-based imaging characterization

that can provide more detailed information than single graphics

can, displaying macroscopic, molecular, and cellular features (26,

27). Additionally, AI-based predictive models can provide reliable

non-invasive biomarkers for evaluating immunotherapeutic

response. Among various biomarkers, PD-L1 expression has

been well validated in immunotherapy, and a combined model

based on CT radiomics and clinical features can assess PD-L1

expression levels non-invasively (28). Sun et al. (29) selected 135

patients with tumors at different sites derived from phase I PD-1/

PD-L1 monotherapy clinical trials. They established a predictive

imaging model based on CT imaging by combining enhanced CT

images with RNA-seq genomic data from tumor biopsy tissues.

This model can analyze tumor-infiltrating CD8 signals and

distinguish between immune-infiltrating and immunodetect

types, making it an efficient method for predicting clinical

outcomes of patients with advanced solid tumors after

immunotherapy. Mu et al. (30) analyzed baseline PET/CT data

of 194 patients with stage IIIB-IV NSCLC treated with PD-1/PD-

L1 inhibitors, and they developed multiparametric imaging

histological signature models which successfully predict whether

patients would receive sustained clinical benefit from

immunotherapy. However, further research is still required to

determine whether models utilizing several data sources can

perform better than models that simply use radiomics.

TMB is also well known for being one of the important

indicators of ICI efficacy. He et al. (31) used deep learning

techniques to analyze CT images from patients with advanced

NSCLC and establish TMB radiomic biomarkers, which have

high predictive value for ICI treatment response, overall survival

(OS), and progression-free survival (PFS). Furthermore,

Trebeschi et al. (32) used AI techniques to study the pre-

treatment enhanced CT image analysis of patients with

progressive malignant melanoma and NSCLC treated with

PD-1, and they discovered that lesions with more

heterogeneous morphology, which means compact borders

and inhomogeneous density, were more likely to respond to

immunotherapy. Additionally, there is a substantial association

between imaging histological indices and mitosis-related

pathways, suggesting that higher proliferative potential may

signal better immunotherapy efficacy.

However, despite the fact that hyperprogression—rapid

tumor progression following immunotherapy—is associated

with a poor prognosis, there are no validated biomarkers to
Frontiers in Immunology 04
identify patients at risk for it (33, 34). Vaidya et al. (35)

retrospectively summarized clinical and imaging data from 109

patients with advanced NSCLC treated with PD-1/PD-L1

immunosuppressant monotherapy, 19 of whom showed hyper

progression. And researchers extracted textural features from

the patients’ baseline CT images reflecting the texture within and

around the target lesion as well as histological features

quantifying the degree of peri-lesion vascular tortuosity, which

can somewhat predict whether patients will develop

hyper progression.

In general, the majority of studies’ Radiomics Quality Scores

(RQS) ranged from 11 to 20 out of a possible maximum score of

36 points (36). It indicates that AI-based imaging-omics analysis

can delve into the spatiotemporal heterogeneity of tumors and

plays an important role in predicting immunotherapy response,

biomarker expression, and patient prognosis, particularly in the

absence of histopathological specimens. Deeper studies of

imaging histology can aid in the diagnosis of immunotherapy-

eligible patients, disease risk assessment, and precision medicine.
3.3 AI predicts immunotherapy efficacy
by genomics

Thanks to advances in sequencing technology, a large amount

of cancer genomic data has now been accumulated, providing

more precise recommendations for directing tumor

immunotherapy. The development of next-generation

sequencing (NGS) technologies has enabled comprehensive

genomic and transcriptomic screening. This allows to the

generation of datasets for analyzing tumor drivers, as well as

sequencing cancer cells, stromal cells, and immune cells within the

tumor microenvironment to reveal the characteristics of

therapeutic effects (37). The human genome contains more than

3 billion base pairs, making it a vast space of high-dimensional

data with very complicated information. Whole genome

sequencing (WGS) offers the most comprehensive information

about the genome, but sorting out the genes, phenotypes, and

their inter-regulatory relationships requires the assistance of AI,

particularly deep learning techniques. Xie et al. (38) developed a

predictive model that integrated genomic data from multiple

perspectives, such as TMB, microsatellite instability, and

somatic cell copy number variation in many different tumor

types to effectively differentiate between “cold” and “hot”

immune patients. The model was further externally validated

using data from clinical trials, showing that patients in the

hyperimmune group were more responsive to immunotherapy

and had a better prognosis. By sequencing WES and RNA

sequences from 110 patients with metastatic melanoma, Van

Allen et al. (39) found that individual response rates to anti-

CTLA4 correlated with TMB and cytolytic markers. It has also

been shown that the expression and variant levels of platelet-

related genes are closely related to the prognosis and
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immunotherapy response in patients with triple-negative breast

cancer (40). These studies provided a direction to explore the

variable response to immune checkpoint inhibitors and the

identification of prognostic biomarkers.

Moreover, some factors in the transcriptome are still

required to be added to the genomic analysis in order to fully

predict immune response and explain drug resistance (41). By

combining exome and transcriptome sequencing with mass

spectrometry, Yadav et al. (42) discovered immunogenic

mutant peptides with MHC specificity that could be useful for

individualized vaccine development. Furthermore, Mo et al. (43)

developed a high-throughput screening platform using 384-well

plates to observe tumor immune interactions by co-culturing

peripheral blood mononuclear cells (PBMC) and cancer cells in

each well to assess cellular value-added and viability and to

detect cell growth phenotypes. They also tested the effects of

multiple bioactive compounds and identified three potential

antagonists for enhancing immune activity. Some scholars

have also proved it by epigenetic profiling that the DNA

methylation landscape of patient CART19 cells influences the

efficacy of the cellular immunotherapy treatment in patients

with B-cell malignancy (44).
3.4 Others

Numerous studies have utilized AI for a variety of tumor

immunotherapy applications (Table 1). The current liquid

biopsy technology offers a more accessible and flexible

approach to tumor diagnosis and treatment, which is

represented by the detection of circulating tumor cell DNA. In

immunotherapy, liquid genetic biomarkers are increasingly

being developed to predict the therapeutic efficacy of ICIs (59),
Frontiers in Immunology 05
and molecular biological information in liquid specimens can be

automatically identified and detected by AI technology (45).

Additionally, some biomarkers are used to exclude

hyperprogressive or pseudoprogressive disease after

immunotherapy, including plasma cytokines interleukins and

circulating tumor cell DNA (60).

In addition to genomics and imaging, proteomics

technologies have been extensively explored to identify

biomarkers for the effectiveness of tumor immunotherapy

(46). An AI-based serum proteomics test model has been

developed to predict response to ICIs in patients with

metastatic melanoma (48). The application of multi-omics-

based AI models to predict tumor immunotherapy responses

is also promising. Multi-omics integrates genomics,

transcriptomics, epigenomics, proteomics, and radiomics,

allowing for a more thoroughly characterization of the disease

with data from different sources (49). Based on the multi-omics

concept, Yi Yang et al. (50) constructed a deep learning-based

90-day prediction model using age, gender, medical history,

baseline data, routine laboratory tests, and follow-up CT scans of

NSCLC patients to better distinguish immunotherapy

responders from non-responders. Similarly, Arsela Prelaj et al.

(61) used machine learning techniques to predict OS and PFS in

responders and non-responders in a real-world study.

Additionally, Peng Song et al. (51) suggested combining DNA

and RNA sequencing, immunohistochemical staining results,

demographic baseline data, medical history, and laboratory test

results to analyze the information related to efficacy and break

the limitation of relying only on PD-1 expression level and TMB

level to predict immunotherapy response, and develop a mature

model for immunotherapy response prediction for Chinese lung

cancer patients. Along with PD-L1 expression, TMB, and TIL, it

has been demonstrated that miRNA abnormalities (62), EGFR
TABLE 1 Various strategies that have been shown to predict immunotherapy outcomes with AI.

Prediction
method

Forecast indicators Outcomes References

Liquid biopsy Circulating tumor cell DNA,
cytokines, serum complement
levels, etc.

Circulating tumor cells can be used as a real-time detection system for targets such as PD-1; falling
circulating tumor DNA was positively correlated with improved overall survival; serum C1q and LDH
levels were correlated with the efficacy of immunotherapy

(45–47)

Multi-omics
data

Genomics, transcriptomics,
epigenomics, proteomics,
radiomics, etc.

Multi-omics-based AI models present a chance to comprehend the information flow behind the disease.
It can assess if each component of the model promotes the disease individually or whether they work
together to treat it.

(48–50)

Clinical data Population baseline data,
medical history, examination
results, etc.

Predictive models that distinguish immunotherapy age responders from non-responders can be
constructed using data on patient age, sex, medical history, conventional laboratory tests, and follow-up
CT scans

(51)

Tumor
organoids

Tumor microenvironment,
immune-tumor interaction,
etc.

Organoids are very similar to the original tumor tissue, which can better mimic the in vivo
immunotherapy response and observe the efficacy

(52, 53)

Others miRNA abnormalities, gene
mutations or recombination,
gut microbes, etc.

The miRNA expression levels, ALK rearrangement, EGFR mutation, and gut microbial diversity were all
related to the effect of anti-PD-1 treatment

(54–58)
fr
AI, artificial intelligence; PD-1, programmed cell death protein 1; DNA, deoxyribonucleic acid; C1q, complement component 1, q subcomponent; LDH, lactate dehydrogenase; CT,
computed tomography; miRNA, micro ribonucleic acid; ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor.
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mutations (54), TP53 mutations (63), ALK rearrangements (55),

gut microbiota (56), Fc gamma receptor (FcgR) polymorphisms

(57) and serum complement levels (58) all influence

immunotherapy response to some extent. It would facilitate

the robustness of prediction if this information could be

merged with pathological sections and imaging histology to

form multi-omics integrated data.

Moreover, tumor-like organs serve as a useful screening

model for immunotherapy because they can accurately

reproduce the tumor microenvironment while still generating

in vitro immune-tumor interactions (47). Incorporating AI into

organoids is anticipated to overcome the safety and

individualization challenges of conventional prediction by

establishing a productive platform for tissue collection, tumor

in vitro culture, growth analysis, and medication screening (52).

AI could also forecast ICB responses by focusing on antigen

presentation pathways (64) and cell necroptosis index

(CNI) (53).
4 Future directions

Although the majority of studies have proven that its models

have performed as well as or better than doctors, there are only a

few successful real-world applications (65). Lack of a uniform

database, industry standards, specialized clinical application

situations, policy and regulatory assistance, and so on may all

contribute to implementation challenges (Figure 3).

Firstly, there are relatively few prospective research and

randomized clinical trials pertaining to the use of AI in

immunotherapy, and these studies are highly biased. Therefore,

we should increase experimental design transparency, strengthen

the correlation with clinical reality, and reduce systematic error.
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Additionally, we must protect patient interests, minimize research

waste, consider the cohort’s rationality, and avoid irrationally

exaggerating research findings and potential applications.

Second, due to the scarcity of codes and data sources, AI

models are challenging to fully replicate. Additionally, it is

challenging to evaluate the stability of different models because

of various inconsistent preprocessing methods and prediction

objectives. Moreover, biomarkers may differ from primary

tumor to metastatic tumor (66), making determining the

optimal prediction for a certain tumor type much more

difficult. Therefore, we should promote code sharing across

fields and the development of standardized datasets.

Thirdly, the merging of multi-omics data must be

encouraged to create a medical system that is more precise,

individualized, and predictable. AI has a unique recognition

model that can quickly identify and combine vast amounts of

information in a way that humans cannot. An ideal AI-based

predictive model for immunotherapy should include all relevant

clinical information about the patient (genomics, imaging,

proteomics, pathological tissue, demographic information,

medical history, etc.). Since concepts like pan-cancer analysis

have been reflected in the evaluation of PD-1/PD-L1 efficacy

(67), it is important to promote the integrity and objectivity of

data collection to facilitate the sharing of large data from

multiple centers. This shows great promise for the future of

immunotherapy (68).

Fourth, we need to comprehend how patients, medical

professionals, and the general public feel about the use of AI

in the healthcare system. To encourage the application of AI in

practical uses, we should also carefully consider the fee-for-

service model and deal with the common interests of patients,

health insurance, doctors, and information engineers.

Additionally, a strong management and supervision system
FIGURE 3

The dilemmas and solutions in predicting immunotherapy efficacy with AI. The left side outline the current difficulties AI encountered, and the
right side proposes possible solutions. And only the excellent cooperation of artificial intelligence and human intelligence can achieve the best
prediction effect.
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must be established to reduce actual hazards and guarantee the

security of this developing system (69, 70).

Last but not least, a reasonable legal and ethical environment

should be established to facilitate the sharing of big data and the

multi-regional and multi-centered use of AI systems, ensuring

that they are ethical and that the corresponding responsibilities

of each sector are clear.

In summary, due to the complexity of immunotherapy

prediction, scientific researchers, enterprises, and clinicians

must collaborate to build databases and industry standards,

remove technical barriers, and support the development of AI-

assisted systems that can precisely identify the target population

of immunotherapy, accurately predict the efficacy and prognosis,

and promote the implementation of AI-assisted treatment while

winning the trust of both doctors and patients.
5 Conclusion

With the aid of artificial intelligence, a cutting-edge

technology, it is now possible to treat tumor patients on an

individual basis by automating the prediction of tumor

immunotherapy effects based on constructed models.

However, it still faces many challenges and dilemmas. Future

AI-assisted systems are anticipated to be better able to model

tumor biological behavior and medication treatment response,

which would ultimately help the vast majority of tumor patients

and enhance medical effectiveness and quality.
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