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Humoral and T-cell response 12
months after the first BNT162b2
vaccination in solid organ
transplant recipients and
controls: Kinetics, associated
factors, and role of
SARS-CoV-2 infection
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Introduction: We investigated humoral and T-cell responses within 12 months

after first BNT162b2 vaccine in solid organ transplant (SOT) recipients and controls

who had received at least three vaccine doses. Furthermore, we compared the

immune response in participants with and without previous SARS-CoV-2 infection.

Methods: We included adult liver, lung, and kidney transplant recipients, and

controls were selected from a parallel cohort of healthcare workers.

Results: At 12th-month, the IgG geometric mean concentrations (GMCs) (P<0.001),

IgA GMCs (P=0.003), andmedian IFN-g (P<0.001) were lower in SOT recipients than in
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controls. However, in SOT recipients and controls with previous infection, the

neutralizing index was 99%, and the IgG, and IgA responses were comparable. After

adjustment, female-sex (aOR: 3.6, P<0.009), kidney (aOR: 7.0, P= 0.008) or lung

transplantation (aOR: 7.5, P= 0.014), and use of mycophenolate (aOR: 5.2, P=0.03)

were associated with low IgG non response. Age (OR:1.4, P=0.038), time from

transplantation to first vaccine (OR: 0.45, P<0.035), and previous SARS-CoV-2

infection (OR: 0.14, P<0.001), were associated with low IgA non response. Diabetes

(OR:2.4, P=0.044) was associated with T-cell non response.

Conclusion: In conclusion, humoral and T-cell responses were inferior in SOT

recipients without previous SARS-CoV-2 infection but comparable to controls in

SOT recipients with previous infection.
KEYWORDS

SARS-CoV-2, BNT162 vaccine, mRNA vaccine, humoral immune responses, cellular
immune response, organ transplantation
1 Introduction

Vaccination is an effective and evidence-based strategy to curb the

severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic (1).

However, it has been shown that the immune response to SARS-CoV-2

vaccination in immunocompromised persons is lower than in controls

(2–5), and solid-organ transplant (SOT) recipients have impaired

immune response to SARS-CoV-2 vaccination even after the third or

fourth vaccine doses (3, 6–11). Previous studies that investigated the

immune response to SARS-CoV-2 vaccination in SOT recipients have

focused on humoral immune responses, mainly on anti-SARS-CoV-2

IgG antibodies, with longitudinal follow-ups shorter than six months

after first or second vaccine doses (12–17). In a previous study on SOT

recipients from Denmark, anti-SARS-CoV-2 IgG antibodies were

measured nine months after the second vaccine dose (18). However,

there is currently no data about the IgG response in SOT recipients with

longer follow-ups after first or second vaccine doses.

IgA antibodies are part of the first-line defense against SARS-CoV-2

infection. It has been shown in controls and SOT recipients that lower

serum IgA antibody concentrations after mRNA vaccination are

associated with a higher risk of breakthrough infections (19, 20). At

present, IgA responses in SOT recipients are less well studied, and there is

no information about anti-Spike (S) and receptor-binding domain (RBD)

IgA antibodies with follow-up longer than sixmonths after first or second

mRNA vaccine doses (21–23).

Besides the humoral immune response, the T-cell response is

essential in preventing severe SARS-CoV-2 infection (24–26). It has

been shown in controls that the T-cell response lasts for some months

after BNT162b2 vaccination, and 73% of controls have detectable T-cell

response nine months after the second vaccine dose (25, 26). In SOT

recipients, the proportion of T-cell responders within the first month

after the second vaccine dose is substantially lower than in controls (27).

In the study by Yahav et al., the T-cell response to SARS-CoV-2 spike

antigen was measured, and an increase >50 pg/ml interferon-g (IFN-g)
from baseline was considered positive or adequate. Yahav et al. reported

that only 13% of SOT recipients have an adequate T-cell response five

months after the second vaccine dose (28). Miele et al. used a SARS-CoV-
02
2 ELISpot Assay to measure T-cell response and a third dose was not

found to improve the T-cell response (20).

Vaccination before or after natural infection substantially

improves the humoral immune response in controls (29–31).

However, studies in SOT recipients that investigated the effects of

natural infection on antibody responses had conflicting results (20,

32). Miele et al. reported that natural SARS-CoV-2 infections after a

third vaccine dose do not boost IgG and IgA responses (20). Chang

et al. found that IgG antibodies in vaccinated SOT recipients who had

SARS-CoV-2 infection, was higher than those who did not have

infection (32). Therefore, further studies are needed to find the impact

of SARS-CoV-2 infection on the humoral and T-cell responses

to vaccination.

We aimed to investigate the humoral and T-cell response within 12

months after the first BNT162b2 vaccine dose in SOT recipients who

received at least three BNT162b2 vaccine doses and compare the

response to the controls. Furthermore, we aimed to compare the

immune response in SOT recipients and controls with and without

previous SARS-CoV-2 infection. Finally, we aimed to investigate factors

associated with humoral and T-cell non response in SOT recipients.
2 Materials and methods

2.1 Study design

In this prospective observational cohort study, we followed SOT

recipients twelve months after the first BNT162b2 vaccine dose.

SARS-CoV-2 vaccination in Denmark was initiated on December

27th, 2020, and SOT recipients were prioritized for early vaccination.

All adult liver, lung, and kidney transplant recipients followed at

Copenhagen University Hospital, Rigshospitalet, were invited to

participate in this study. From January 2021 through April 2021,

the study was open for inclusion for SOT recipients who did not

receive the first BNT162b2 vaccine dose or those who received the

first dose but not the second dose. From July 2021, all liver, lung, and

kidney transplant recipients followed at Copenhagen University
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https://doi.org/10.3389/fimmu.2022.1075423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rezahosseini et al. 10.3389/fimmu.2022.1075423
Hospital, Rigshospitalet, were invited to participate regardless of

vaccination status. Participation in the study was voluntary and did

not interfere with the Danish vaccination strategy. Controls were

selected from a parallel study of healthcare workers at Rigshospitalet

and Herlev-Gentofte Hospital, as previously described (33, 34). We

excluded participants who were vaccinated with less than three doses

and those who were vaccinated with vaccines other than the

BNT162b2. Furthermore, due to the risk of cross reactivity between

IgG antibodies generated after vaccination and the IgG antibodies

administrated for SARS-CoV-2 treatment, participants who received

monoclonal antibody treatment were excluded from IgG analyses, but

not from IgA or T-cell analyses. It has been suggested that

monoclonal antibodies clear or block antigens, hide antigen-

epitopes from immune cells, and result in a hindered endogenous

IgG response but not the T cell response (35–37).

The study was performed in accordance with the declaration of

Helsinki. All participants provided written and oral informed

consent, and the institutional review board approved the study at

the Regional Scientific Ethics Committee of the Capital Region of

Denmark (H-20079890).
2.2 Clinical information

Information on demographics, transplantation-related variables,

medication, comorbidities, and treatment for acute rejections was

collected from medical records. Information on vaccinations was

collected from the Danish Vaccination Register (DDV) (38). Since

2015, it has been mandatory to register all vaccinations administered

in Denmark in DDV. Data on SARS-CoV-2 RT-PCR results were

collected from the Danish Microbiology Database (MiBa) (39), which

has complete national coverage, including information from samples

collected in the primary sector, hospitals, and SARS-CoV-2

test centers.
2.3 Blood sampling

Blood samples were part of the Vaccination Clinic for

Immunocompromised (VACCIM) project, following anti-SARS-

CoV-2 vaccine responses in patients and health care personnel

from the Capital Region of Denmark, which were collected at

baseline, three weeks, two months, six months, and twelve months

after administrating the first BNT162b2 vaccine dose. The second

BNT162b2 vaccine dose was injected at least 14 days after the first

dose. Therefore, baseline samples were collected before or up to 13

days after the first vaccine dose. Furthermore, to include as many

participants as possible, the 3rd-week, 2nd-month, 6th-month, and

12th-month samples were collected from days 14 to 33, 34 to 90, 91 to

273, and 274 to 456 after administrating the first BNT162b2 vaccine

dose, respectively.

We previously described and reported data on anti-RBD IgG

kinetics from the first six months of follow-up and T-cell responses

from the six-month follow-up point only (34).
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2.4 Determination of antibodies

The anti-RBD IgG and anti-RBD IgA concentrations in venous

blood were measured using an in-house direct ELISA as previously

described (33, 34, 40). The RBD of the SARS-CoV-2 Spike protein

plays a crucial role in the cell entry-mechanism necessary for viral

replication (41). This means that the RBD of the SARS-CoV-2 Spike

protein is an important functional target of anti-SARS-CoV-2

antibodies (42). By measuring antibodies binding to the SARS-

CoV-2 Spike protein RBD we measure antibodies with potential to

neutralize SARS-CoV-2 virus replication (42, 43). Furthermore, an in-

house pseudo neutralization ELISA was used to estimate the

neutralizing capacity of antibodies against the ancestral (Wuhan)

strain of SARS-CoV-2 as previously described (33, 34, 43). Specific

antibodies against the SARS-CoV-2 nucleocapsid (N) antigen not

included in the vaccines used in Denmark were measured using the

Elecsys® Anti-SARS-CoV-2 immunoassay (Roche Diagnostics

GmbH, Germany) and a Cobas 8000 analyzer system (Roche

Diagnostics), according to the manufacturer’s instructions.
2.5 Determination of T-cell response by
interferon gamma releasing assay

To determine the T-cell response, T-cells from fresh whole blood

were stimulated with SARS-CoV-2 spike protein 1 (S1) using a

commercial kit (ET 2606-3003, EUROIMMUN, Lübeck, Germany).

Then, we measured interferon-g (IFN-g) release after stimulation

using a commercial kit (EQ 6841-9601, EUROIMMUN, Lübeck,

Germany), according to manufacturer’s instructions and as

described previously (33, 34).
2.6 Definitions

A positive anti-RBD IgG response was defined as more than 25%

inhibition in the pseudo-neutralizing assay and concurrent anti-RBD IgG

concentration above 225 arbitrary units per milliliter (AU/mL) (44). A

positive anti-RBD IgA response was defined as having an anti-RBD IgA

concentration above 100 AU/mL. These cutoffs were determined based

on a receiver operating characteristic curve (ROC) as was described by

Hansen et al. (40). A positive T-cell response was defined as an IFN-g
concentration above 200 milli-international units per milliliter (mIU/

mL), according to the manufacturer’s instructions.

Sampling time was defined as the time from the first BNT162b2

vaccine dose to the blood sample collection.

SARS-CoV-2 infection within 12 months was defined as either the

presence of nucleocapsid (N)-antibodies in the 12th-month sample

and/or a positive SARS-CoV-2 RT-PCR prior to the 12th-

month sample.

Monoclonal antibody treatment was defined as treatment with

sotrovimab (GlaxoSmithKline pharmaceutical and biotechnology

company, London, England) or REGN-COV2 (Roche pharmaceutical

company, Basel, Switzerland) within 90 days of the 12th-month sample.
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To apply similar and comparable criteria for all SOT recipients,

we considered the immunosuppressive regimen at the first BNT162b2

vaccination as the maintenance immunosuppressive therapy.

Fourteen days after the third, or the fourth dose of BNT162b2, a

participant was considered vaccinated with three, or four vaccine

doses, respectively.
2.7 Statistics

Continuous data were reported as medians with interquartile

range (IQR), and categorical data were reported as numbers and

proportions. The normality of data distribution was assessed using

quantile-quantile plots.

To compare anti-RBD IgA geometric mean concentrations

(GMCs), we matched 204 SOT recipients with 204 controls on age

and sex (Supplementary Tables).

We then fitted a two-part linear mixed model with log-

transformed anti-RBD IgA concentration as the dependent variable

and sampling time, SOT recipient or control status, and previous

SARS-CoV-2 infection (yes/no) as fixed effects allowing for

interaction between these variables. SOT recipients and controls

were divided into those with- or without previous SARS-CoV-2

infection from the first sample with evidence of infection (positive

N-antibodies or SARS-CoV-2 RT-PCR). The two-part mixed model

was composed of a zero-inflation model, which models the

probability of an observation being zero, and a conditional model,

which models the anti-RBD IgA concentration for non-zero

observations (45). The model and the residuals were checked using

the DHARMa package.

Twenty-three out of 204 SOT recipients received monoclonal

antibodies and therefore were excluded from comparisons for anti-

RBD IgG analyses. To compare the anti-RBD IgG GMCs between

SOT recipients and controls, matching was done on 181 SOT

recipients and 181 controls, and then the two-part linear mixed

model was run as described above (Supplementary Tables).

It was impossible to extract p-values from the two-part linear

mixed model and statistically compare the groups of infected/non-

infected participants. Therefore, we compared the observed anti-RBD

IgG and anti-RBD IgA antibody GMCs between infected/non-

infected groups at 12th-month using the Mann-Whitney U test. In

sensitivity analyses modeling of anti-RBD IgG and anti-RBD IgA

GMCs and Mann-Whitney U test were repeated after excluding SOT

recipients who received four doses of vaccine.

Due to the missing data for baseline, 3rd-week, and 2nd-month

after the first vaccine dose, running a mixed model for IFN-g
concentration was impossible. IFN-g concentration at 12th-month

was available for 169 SOT recipients and was compared to 169 age-

and sex-matched controls using the Mann-Whitney U test

(Supplementary Tables).

We used uni- and multivariable logistic regression models to

investigate variables associated with anti-RBD IgG, anti-RBD IgA, or

IFN-g non responses in SOT recipients. The multivariable models were

adjusted for sex, transplant type, time from transplantation to

vaccination, number of vaccine doses, prior SARS-CoV-2 infection,

antimetabolite treatment, corticosteroid treatment, and diabetes mellitus.
Frontiers in Immunology 04
A p-value <0.05 was considered significant. Analyses were

performed using R version 4.0.3 (R Core Team, 2020, Vienna,

Austria) and package glmmTMB (45).
3 Results

3.1 Characteristics of SOT recipients

We included 204 SOT recipients; of those, 93 (46%) were kidney,

74 (36%) liver, and 37 (18%) lung transplant recipients.

Characteristics of SOT recipients are presented in Table 1. The

median age at the first BNT162b2 vaccine dose was 59 years (IQR

55-64), and 118 (58%) were male. The median (IQR) time from

transplantation to the first vaccine dose was 6.3 years (2.8-

11) (Table 1).

Within the 12 months after the first BNT162b2 vaccine dose, 173

(85%) out of 204 SOT recipients received three vaccine doses, and 31

(15%) received four vaccine doses. All 204 controls received three

vaccine doses.

Forty-nine (24%) and 59 (29%) out of 204 SOT recipients and 204

controls, respectively, had at least one episode of SARS-CoV-2

infection before the 12th-month (P=0.313).

Twenty-three (11%) out of 204 SOT recipients received

monoclonal antibodies and were excluded from IgG analyses. One

SOT recipient received REGN-COV2, and 22 SOT recipients

received Sotrovimab.
3.2 Kinetics of anti-RBD IgG antibodies

In order to determine differences in the anti-RBD IgG GMCs in SOT

recipients and controls with and without previous SARS-CoV-2

infections 12 months after the first vaccine dose, the development in

anti-RBD IgG GMCs from baseline to 12 months after the first vaccine

dose was analyzed. Modeled anti-RBD IgG GMCs were lower in SOT

recipients than in controls at all-time points. Figure 1 shows that the

modeled baseline anti-RBD IgG GMCs were 1.4 (95% CI: 1.3-1.7) AU/

mL and 4.7 (95% CI: 3.5-6.5) AU/mL for SOT recipients and controls,

respectively (p=0.008). At 12th-month, the GMCs were 2,171 (95% CI:

1405-3213) AU/mL and 15,003 (12,100–18,511) AU/mL for SOT

recipients and controls, respectively (p<0.001).

We compared the modeled anti-RBD IgG GMCs in SOT

recipients and controls with and without SARS-CoV-2 infection. In

SOT recipients and controls without previous SARS-CoV-2 infection

anti-RBD IgG GMCs were lower in SOT recipients than in controls at

all-time points. In SOT recipients and controls with previous SARS-

CoV-2 infections, anti-RBD IgG GMC were similar at all-time points

except from 2 months after the first vaccine dose. As Figure 2 shows,

in SOT recipients and controls with the previous infection, modeled

anti-RBD IgG GMCs were 146 (95% CI: 24-555) AU/mL and 142

(95% CI: 82-230) AU/mL (p=0.327) at baseline, while modeled anti-

RBD IgG GMCs were 51,294 (95% CI: 30,092-87,428) and 36,480

(95% CI: 27,856-48,164) (p=0.436), respectively, 12 months after first

vaccine dose. At baseline SOT recipients and controls without

previous SARS-CoV-2 infection had modeled anti-RBD IgG GMCs
frontiersin.org
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of 1.2 (95% CI: 1.1-1.4) AU/mL and 3.4 (95% CI: 2.7-4.8) AU/mL,

respectively (p=0.038) while modeled anti-RBD IgG GMCs were 1223

(95% CI: 762-1842) and 11,190 (95% CI: 8994-13,791) 12 months

after first vaccine dose (p<0.001). No controls received four vaccine

doses; therefore, sensitivity analyses excluding SOT recipients who

received four doses of vaccine was done. The modeled antibody

concentrations remained within the confidence intervals of the

reported values.
3.3 Kinetics of anti-RBD IgA antibodies

In order to determine differences in the anti-RBD IgA GMCs in

SOT recipients and controls with and without previous SARS-CoV-2

infections 12 months after the first vaccine dose, the development in

anti-RBD IgA GMCs in from baseline to 12 months after the first

vaccine dose was analyzed. Modeled anti-RBD IgA GMCwas lower in

SOT recipients than in controls 12 months after the first vaccine dose

and similar at all other time points. As Figure 3 shows, The baseline

anti-RBD IgA GMCs were 1.1 (95% CI: 1.1-1.3) AU/mL and 1.2 (95%

CI: 1.1-1.3) AU/mL for SOT recipients and controls, respectively

(p=0.083). At 12th-month, the GMCs were 15 (95% CI: 10-21) AU/
Frontiers in Immunology 05
mL and 31 (22–44) AU/mL for SOT recipients and controls,

respectively (p=0.002).

In SOT recipients and controls without previous SARS-CoV-2

infection anti-RBD IgA GMC was lower in SOT recipients than in

controls 12 months after the first vaccine dose and similar at all

other time points. In SOT recipients and controls with previous

SARS-CoV-2 infections, anti-RBD IgG GMC were similar at all-

time points. As Figure 4 shows, in SOT recipients and controls

with previous infection, modeled anti-RBD IgA GMCs were 2.7

(95% CI: 1.6-5.6) AU/mL and 2.9 (95% CI: 1.7-6.0) AU/mL

(p=0.377) at baseline while modeled anti-RBD IgA GMCs were

390 (95% CI: 230-628) and 375 (95% CI: 256-532) (p=0.597) 12

months after first vaccine dose. At baseline SOT recipients and

controls without previous SARS-CoV-2 infection had modeled

anti-RBD IgA GMCs of 1.1 (95% CI: 1.0-1.1) AU/mL and 1.1 (95%

CI: 1.0-1.2) AU/mL, respectively (p = 0.170) while modeled anti-

RBD IgG GMCs were 5.3 (95% CI: 3.9-7.5) and 12 (95% CI: 8.0-17)

12 months after first vaccine dose (p<0.012). No controls received

four vaccine doses; therefore, sensitivity analyses excluding SOT

recipients who received four doses of vaccine was done. The

modeled antibody concentrat ions remained within the

confidence intervals of the reported values.
TABLE 1 Patients characteristics.

Total
(n=204)

Kidney transplant
recipients (n=93)

Lung transplant
recipients (n=37)

Liver transplant
recipients (n=74)

Age (years), median (IQR 59 (55-64) 57 (52-64) 59 (55-64) 58 (51-64)

Sex (male), n (%) 118 (58) 56 (60) 17 (46) 45 (61)

Time from transplantation to first vaccine dose, median
(IQR)

6.3 (2.8-
11)

7.7 (3.0-12) 4.1 (1.8-7.9) 6.2 (3.3-11)

Comorbidities (n) (%)

Cardiovascular disease † 138 (68) 81 (87) 27 (73) 30 (41)

Pulmonary disease 22 (11) 7 (7.5) 5 (14) 10 (14)

Diabetes mellitus 42 (21) 20 (22) 5 (14) 17 (23)

Immunosuppressive
treatment, n (%)

No antimetabolites 33 (16) 11 (12) 10 (27) 12 (16)

Mycophenolate 147 (72) 68 (73) 22 (60) 57 (77)

Azathioprine 24 (12) 14 (15) 5 (14) 5 (6.8)

Calcineurin inhibitor
(Ciclosporin, Tacrolimus)

168 (82) 80 (86) 25 (68) 63 (85)

mTOR inhibitor (Sirolimus,
Everolimus)

21 (10) 11 (12) 0 (0.0) 10 (14)

CNI and mTOR inhibitor † 12 (5.9) 1 (1.1) 11 (30) 0 (0.0)

Corticosteroids † 153 (75) 85 (91) 33 (89) 35 (47)

Vaccine doses prior to 12-
month sample, n (%)

Three 173 (85) 80 (86) 34 (92) 59 (80)

Four 31 (15) 13 (14) 3 (8.1) 15 (20)

Time from last vaccine dose, days, median (IQR)
127 (113-

137)
126 (115-137) 130 (123-137) 123 (82-137)

High-dose methyl-prednisone ‡ 5 (2.5) 2 (2.2) 3 (8.1) 0 (0.0)

SARS-CoV-2 infection prior to 12-months sample, n (%) 49 (24) 22 (24) 8 (22) 19 (26)

† P<0.001.
‡ High-dose methyl-prednisone was defined as per protocol high dose steroid for treatment of acute rejection or suspected acute rejection, P=0.029.
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3.4 Neutralizing index

The median neutralizing index in SOT recipients and controls in

the 12th-month sample was 98.9% (IQR: 93.0-99.4) and 99.3% (IQR:

98.6-99.6) (p<0.001). In SOT recipients and controls with previous

SARS-CoV-2 infection, the median neutralizing index was 99.3%

(IQR: 98.6-99.5) and 99.4% (IQR: 98.6-99.6) (p=0.285), respectively.

In SOT recipients and controls without previous infection, the

median neutralizing index was 98.7% (IQR: 71.9-99.4) and 99.2%

(IQR: 98.6-99.6) (p<0.001), respectively.
3.5 T-cell response

To determine differences in the T-cell responses between SOT

recipients and controls with and without previous SARS-CoV-2

infections, we compared spike-specific IFN- g concentrations 12

months after the first vaccine dose. Twelve months after the first

vaccine dose, 77 (46%) out of 169 SOT recipients and 117 (69%) out

of 169 controls had an IFN-g response higher than the cut-off

(p=0.005). The median (IQR) IFN-g was 110 mIU/mL (IQR 0-831)

and 1156 mIU/mL (IQR: 488-2,918) for SOT recipients and controls,

respectively (p<0.001). Forty-three of 169 SOT recipients and 40 of

169 controls had SARS-CoV-2 infection prior to the 12th month
Frontiers in Immunology 06
sample, with median IFN-g of 775 mIU/mL (IQR 61-3,509) and 2,657

mIU/mL (IQR 758-5,511), respectively (p=0.018).

In 34 of 169 SOT recipients and 77 of 169 controls without

previous infection, median IFN-g was 59 mIU/mL (IQR: 0-475) and

1,020 mIU/mL (IQR: 456-1,984) (p<0.001). Figure 5 shows IFN-g
concentrations at 12th-month in SOT recipients and controls with

and without previous SARS-CoV-2 infection.
3.6 Risk factors for anti-RBD IgG non
response in SOT recipients

To determine risk factors of anti-RBD IgG non-response 12

months after first vaccine dose, logistic regression analyses were

performed. The univariable models are showed in Table 2. In the

multivariable model, female SOT recipients and SOT recipients with

diabetes mellitus had an OR of 3.6 ([95% CI, 1.4-9.5], P=0.009), and

4.8 ([95% CI, 1.6-15], P= 0.006) for anti-RBD IgG non response.

Moreover, in comparison with liver transplant recipients, kidney and

lung transplant recipients had an OR of 7.0 ([95% CI, 1.7-29], P=

0.001), and 7.5 ([95% CI, 1.5-37], P= 0.014) for anti-RBD IgG non

response, respectively. SOT recipients who received mycophenolate

had an OR of 5.2 ([95% CI, 1.6-15], P=0.006) for anti-RBD IgG non

response (Table 2).
FIGURE 1

Kinetics of the modeled anti-receptor-binding domain (RBD) Immunoglobulin G (IgG) geometric mean concentrations (GMCs) in solid organ transplant
(SOT) recipients and controls within 12 months after the first BNT162b2 dose and observed anti-RBD IgG concentrations. The data include 189 SOT
recipients (red) and 189 age and sex matched controls (blue). The modeled anti-RBD IgG GMCs in AU/mL with 95% confidence intervals are plotted on
top of each individual sample’s measured anti-RBD concentration in AU/mL. The y-axis is on a log10 scale. The dashed horizontal lines indicate modeled
anti-RBD IgG GMC values for SOT recipients and controls at baseline and 12 months after the first BNT162b2 dose.”
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3.7 Risk factors for anti-RBD IgA non
response

To determine risk factors of anti-RBD IgA non-response 12 months

after first vaccine dose, logistic regression analyses were performed. The

univariable models are showed in Table 3. In the multivariable model,

older age, increase in time from transplantation to first vaccine dose, and

having SARS-CoV-2 infection before the 12th-month sample had an OR

of 1.4 per ten-year increase ([95% CI, 1.02-1.9], p = 0.038), 0.95 per one

year ([95% CI, 0.91-0.99], P=0.035) and 0.14 ([95% CI, 0.07-0.30],

P<0.001) for anti-RBD IgA non response, respectively (Table 3).
3.8 Risk factors for IFN-g non response

To determine risk factors of T-cell non-response 12 months after

first vaccine dose logistic regression analyses were performed. In the

uni- and multivariable logistic regression models, only diabetes

mellitus (adjusted OR 2.4 [95% CI, 1.02-5.5], P=0.044) was

associated with a IFN-g non response (Table 4).
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4 Discussion

In this prospective study, we included a large cohort of SOT

recipients and matched controls and followed them 12 months after

the first BNT162b2 vaccine dose. All participants received at least

three doses of BNT162b2. During the entire follow-up, anti-RBD IgG

GMCs were lower in SOT recipients than in controls. However, anti-

RBD IgG in participants with prior SARS-CoV-2 infection was higher

than in uninfected participants, and anti-RBD IgG GMC in SOT

recipients with prior SARS-CoV-2 infection was comparable to that

of controls with previous infection. For anti-RBD IgA, differences in

response between SOT recipients and controls were less pronounced,

although the anti-RBD IgA GMC was lower in SOT recipients than in

controls at 12th-month. SOT recipients and controls with previous

SARS-CoV-2 infection had comparable anti-RBD IgA GMCs at 12th-

month. Importantly, inferior T-cell response was found in SOT

recipients at 12th-month, even in participants with previous SARS-

CoV-2 infection. Risk factors associated with immune non response

varied. Previous SARS-CoV-2 infection was associated with lower risk

of immune non responses, while the most important risk factors for
FIGURE 2

Kinetics of the modeled anti-receptor-binding domain (RBD) Immunoglobulin G (IgG) geometric mean concentrations (GMCs) in solid organ transplant
(SOT) recipients and controls with and without previous infection within 12 months after the first BNT162b2 dose and observed anti-RBD IgG
concentrations. The data include 189 SOT recipients (red) and 189 age and sex matched controls (blue). A sample is defined as previously infected when
an individual has a positive SARS-CoV-2 PCR test prior to the sample or SARS-CoV-2 Nucleocapsid antibodies are present in the sample or a previous
sample from the same individual. The modeled anti-RBD IgG GMCs in AU/mL with 95% confidence intervals are plotted on top of each indiviudal
sample’s measured anti-RBD concentration in AU/mL. The y-axis is on a log10 scale. The dashed horizontal lines indicate modeled anti-RBD IgG GMC
values for SOT recipients and controls with and without prior infection at baseline and 12 months after first BNT162b2 dose.
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FIGURE 3

Kinetics of the modeled anti-receptor-binding domain (RBD) Immunoglobulin A (IgA) geometric mean concentrations (GMCs) in solid organ transplant
(SOT) recipients and controls within 12 months after the first BNT162b2 dose and observed anti-RBD IgG concentrations. The data include 204 SOT
recipients (red) and 204 age and sex matched controls (blue). The modeled anti-RBD IgA GMCs in AU/mL with 95% confidence intervals are plotted on
top of each indiviudal sample’s measured anti-RBD concentration in AU/mL. The y-axis is on a log10 scale. Dashed horizontal lines indicate modeled
anti-RBD IgA GMC values for SOT recipients and controls at baseline and 12 months after first BNT162b2 dose.
FIGURE 4

Kinetics of the modeled anti-receptor-binding domain (RBD) Immunoglobulin A (IgA) geometric mean concentrations (GMCs) in solid organ transplant
(SOT) recipients and controls with and without previous infection within 12 months after the first BNT162b2 BNT162b2 and observed anti-RBD IgG
concentrations. The data include 204 SOT recipients (red) and 204 age and sex matched controls (blue). A sample is defined as previously infected,
when an individual has a positive SARS-CoV-2 PCR test prior to the sample or SARS-CoV-2 Nucleocapsid antibodies are present in the sample or a
previous sample from the same individual. The modeled anti-RBD IgA GMCs in AU/mL with 95% confidence intervals are plotted on top of each
indiviudal sample’s measured anti-RBD concentration in AU/mL. The y-axis is on a log10 scale. The dashed horizontal lines indicate modeled anti-RBD
IgA GMC values for SOT recipients and controls with and without prior infection at baseline and 12 months after first BNT162b2 dose.

https://doi.org/10.3389/fimmu.2022.1075423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rezahosseini et al. 10.3389/fimmu.2022.1075423
FIGURE 5

SARS-CoV-2 Spike protein specific T-cell response 12 months after first BNT162b2 dose in solid organ transplant (SOT) recipients and controls with and
without previous SARS-CoV-2 infection. Boxplots of spike-specific interferon gamma concentration in mIU/mL in solid organ transplant (SOT) recipients
and controls with and without previous infection 12 months after first vaccine dose. The y axis shows spike-specific interferon gamma concentration in
mIU/mL on a log10 scale and the x axis the number of SOT recipients and controls in each group. Differences between SOT recipients and controls was
tested with Mann-Whitney U test and p values shown on the plot.
TABLE 2 Risk factors for anti-RBD IgG non response.

Unadjusted model Adjusted model*

OR 95% CI P-value OR 95% CI P-value

Age per ten years 1.27 0.90-1.8 0.178 1.7 0.99-2.7 0.053

Female sex 2.6 1.2-5.7 0.012 3.6 1.4-9.5 0.009

Transplantation type
(Liver Tx as reference)

Kidney
Lung

8.58
9.43

2.5-30
2.3-38

0.001
0.002

7.0
7.5

1.7-29
1.5-37

0.008
0.014

Time from transplantation to first vaccine dose (per one year increase) 0.96 0.91-1.02 0.157 0.99 0.92-1.1 0.786

Number of vaccines before the infection (Three doses as reference)

- Four 0.54 0.18-1.7 0.286 0.84 0.22-3.2 0.797

Time from last vaccine dose (more than 120 days as reference) 0.88 0.40-1.9 0.752 – – –

SARS-CoV-2 infection prior to 12th month-sample 0.14 0.02-1.1 0.060 0.12 0.01-1.04 0.054

Immunosuppressive treatment

Antimetabolite
(None as reference)

- Mycophenolate
- Azathioprine

1.7
1.4

0.56-5.4
0.30-6.2

0.340
0.683

5.2
1.3

1.2-23
0.23-7.6

0.030
0.771

Corticosteroids 4.8 1.4-16 0.013 3.1 0.68-14 0.145

(Continued)
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immune non responses were age, female sex, being kidney or lung

transplant recipient, diabetes mellitus, mycophenolate treatment, and

time from transplantation to the first vaccine dose.

Anti-RBD IgG response was generally lower in SOT recipients

than in controls, which aligns with current knowledge about antibody

response to SARS-CoV-2 vaccination in SOT recipients (12, 46).
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Anti-SARS-CoV-2 antibodies increase after the third vaccine dose in

SOT recipients (12, 47), but due to decay in short-lived plasma cells,

the serum antibody concentrations usually decline in some months

(48). Intriguingly, we found that the anti-RBD IgG response in SOT

recipients with previous SARS-CoV-2 infection was higher than in

SOT recipients without infection at 12th-month after the first vaccine
TABLE 2 Continued

Unadjusted model Adjusted model*

OR 95% CI P-value OR 95% CI P-value

CNI or mTOR
(CNI as reference)

mTOR 0.17 0.02-1.3 0.092 – – –

Comorbidities

Cardiovascular disease 1.5 0.66-3.5 0.336 – – –

Diabetes mellitus 2.7 1.2-6.0 0.020 4.8 1.6-15 0.006

*Adjusted for sex, transplant type, time from transplantation, number of vaccine doses, prior SARS-CoV-2 infection, antimetabolite treatment, corticosteroid treatment, and diabetes mellitus.
P-values for the bold values were <0.05 (statistically significant).
fron
TABLE 3 Risk factors for anti-RBD IgA non response.

Unadjusted model Adjusted model**

OR 95% CI P-value OR 95% CI P-value

Age per ten years 1.2 0.94-1.6 0.145 1.4 1.02-1.9 0.038

Female sex 1.4 0.76-2.4 0.312 1.4 0.70-2.7 0.356

Transplantation type
(Liver Tx as reference)

- Kidney
- Lung

1.7
2.4

0.92-3.2
1.02-5.7

0.093
0.043

1.5
1.8

0.67-3.3
0.64-5.0

0.324
0.267

Time from transplantation to first vaccine dose 0.95 0.92-0.99 0.021 0.95 0.91-0.99 0.035

Number of vaccines before the infection
(Three doses as reference)

- Four 1.01 0.46-2.2 0.975 0.93 0.37-2.3 0.876

Time from last vaccine dose (more than 120 days as reference) 0.68 0.37-1.2 0.208 – – –

SARS-CoV-2 infection prior to 12th-months sample 0.15 0.07-0.31 <0.001 0.14 0.07-0.30 <0.001

Immunosuppressive treatment

Antimetabolite
(None as reference)

- Mycophenolate
- Azathioprine

0.68
0.72

0.30-1.5
0.24-2.2

0.329
0.570

-
-

-
-

-
-

Corticosteroids 1.9 0.98-3.6 0.057 1.5 0.66-3.6 0.319

CNI or mTOR
(CNI as reference)

mTOR 1.6 0.60-4.4 0.344 – – –

Comorbidities

Cardiovascular disease 1.3 0.73-2.4 0.341 – – –

Diabetes mellitus 0.98 0.49-2.0 0.958 – – –

**Adjusted for age, sex, transplantation type, time from transplantation, number of vaccine doses, prior infection and corticosteroid treatment. P-values for the bold values were <0.05 (statistically
significant).
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dose. Importantly in SOT recipients with previous SARS-CoV-2

infection, anti-RBD IgG responses were comparable to that in

controls. In line with our finding, previous studies showed that

SARS-CoV-2 infection before or after vaccination boosts the

humoral immune response and elicits broader immunity than

vaccination alone (13, 29, 30, 49). In our study, only 15% of SOT

recipients received the fourth vaccine doses, and the proportions of

participants with previous SARS-CoV-2 infection were comparable

between SOT recipients and controls. Thus, higher exposure to SARS-

CoV-2 antigens in SOT recipients is unlikely to be a

major confounder.

At baseline, there was a difference in anti-RBD IgG GMCs

between SOT recipients and controls without previous infections.

There may be several reasons for this finding. First, there is a

difference in the timing of the first vaccine dose between the two

groups. Second, it is possible that some participants had SARS-CoV-2

asymptomatic infections or had the infection in the spring of 2020

when there was limited testing capacity for SARS-CoV-2 in Denmark.

It has been shown that the half-life of N-antibodies is shorter than the

half-life of S-antibodies (50, 51). Therefore, it is possible that few

participants tested negative in the N-antibody and did not have a
Frontiers in Immunology 11
positive SARS-CoV-2 PCR test, although they were infected during

the spring of 2020.

The neutralizing capacity of antibodies is an important factor in

preventing symptomatic SARS-CoV-2 infection and severe COVID-

19 disease (52–54). Although the neutralization index at 12th-month

was close to 99%, it was significantly lower in SOT recipients than in

controls. Combined infection- and vaccination-derived immunity has

been shown to induce high-quality antibodies and neutralize SARS-

CoV-2 strains (54–56). Importantly, the neutralizing indices were

comparable between SOT recipients and controls with the previous

SARS-CoV-2 infection but not in participants without previous

infection, highlighting the role of combined infection and

vaccination (hybrid) immunity.

IgA has an important role in mucosal immunity against SARS-

CoV-2 infection, and there is a positive association between serum

and mucosal IgA concentrations (19, 57, 58). We measured serum

anti-RBD IgA; 12 months after the first vaccine dose, and the anti-

RBD IgA GMCs were lower in SOT recipients than in controls, albeit

the differences were not as pronounced as for anti-RBD IgG. The anti-

RBD IgA GMCs were higher in participants with previous SARS-

CoV-2 infection than those without previous infection, again
TABLE 4 Risk factors for T-cell non response.

Unadjusted model Adjusted model**

OR 95% CI P-value OR 95% CI P-value

Age per ten years 1.1 0.84-1.5 0.490 1.1 0.82-1.5 0.531

Female sex 1.4 0.75-2.6 0.295 1.3 0.68-2.5 0.425

Transplantation type
(Liver Tx as reference)

- Kidney
- Lung

0.75
1.5

0.38-1.5
0.61-3.5

0.412
0.395

0.72
1.4

0.35-1.5
0.55-3.4

0.359
0.509

Time from transplantation to first vaccine dose 0.97 0.93-1.02 0.195 0.98 0.93-1.02 0.298

Number of vaccines before the infection
(Three doses as reference)

- Four 0.82 0.32-2.1 0.672 0.99 0.37-2.7 0.988

Time from last vaccine dose (more than 120 days as reference) 1.3 0.64-2.5 0.497 – – –

SARS-CoV-2 infection prior to 12th month-sample 0.84 0.42-1.7 0.618 0.86 0.41-1.8 0.673

Immunosuppressive treatment

Antimetabolite
(None as reference)

- Mycophenolate
- Azathioprine

1.02
1.2

0.45-2.3
0.37-3.1

0.955
0.804

-
-

-
-

-
-

Corticosteroids 1.7 0.79-1.7 0.120 – – –

CNI or mTOR
(CNI as reference) 0.69 0.25-1.9 0.465 – – –

mTOR

Comorbidities

Cardiovascular disease 1.2 0.65-2.4 0.523 – – –

Diabetes mellitus 2.4 1.05-5.3 0.038 2.4 1.02-5.5 0.044

**Adjusted for age, sex, transplant type, time from transplantation, number of vaccine doses, prior infection and diabetes mellitus. P-values for the bold values were <0.05 (statistically significant).
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highlighting the impact of hybrid immunity. Considering the role of

IgA antibodies in local protection, participants with hybrid immunity

may have a lower risk of new SARS-CoV-2 infection and person-to-

person transmission of SARS-CoV-2 (19, 58).

As part of adaptive immunity, T-cells have an important role in

the clearance of SARS-CoV-2, preventing infection even without

seroconversion, helping to mount a robust memory, and

recognizing viral variants (24, 59, 60). It has been reported that on

a median of five months after the second mRNA vaccine dose, only

13% of SOT recipients had T-cell response (28). In a previous paper,

we reported that 13% of SOT recipients and 59% of controls receiving

two vaccine doses were T-cell responders six months after the first

vaccine dose (34). However, in the present study, with 12 months of

follow-up, we showed that 46% and 69% of SOT recipients and

controls were T-cell responders respectively. It should be noted that

many of the participants had SARS-CoV-2 infection after the second

vaccine dose and received one or two extra vaccine doses. SOT

recipients with previous SARS-CoV-2 infection had higher T-cell

responses than uninfected SOT recipients, although responses

remained lower than in controls. The lower T-cell response in SOT

recipients could be partly explained by the fact that most

immunosuppressants inhibit T-cells (61). A delayed and inadequate

T-cell response to SARS-CoV-2 infection has been reported to be

associated with early inflammation and poor clinical outcome (24).

Therefore, strategies to improve T-cell response in SOT recipients

are warranted.

The adaptive immune response to vaccines is a complex process

which is resulted from the interactions between antigens, antigen-

presenting cells, cytokines, B cells, and T cells (48). A factor can affect

the whole process or just a part, resulting in humoral or T-cell non

responses. We identified factors associated with humoral or T-cell non

responses. We showed that the female sex was associated with a lower

likelihood of anti-RBD IgG response but not associated with anti-RBD

IgA and T-cell responses. The association between sex and antibody

response to SARS-CoV-2 vaccination has been reported in a number of

previous publications, and data is conflicting (12, 62–65). In a recent

meta-analysis including 26 studies on SOT recipients, the male gender

was associated with a higher likelihood of antibody response after two

doses of SARS-CoV-2 mRNA vaccines (12). Although, another recent

meta-analysis by Zong et al. including 29 studies found that gender was

not associated with antibody response after two doses of SARS-CoV-2

mRNA vaccines (64). In the study by Meunier et al., two-thirds of SOT

recipients received more than three vaccine doses, and male gender was

associated with a higher likelihood of positive (>260 BAU/ml) antibody

response (63). However, females are known to havemore robust immune

responses to antigens due to the effects of sex hormones and X-linked

genes (66, 67), and we cannot exclude that our finding is due to

confounding factors that we have not accounted for. Kidney or lung

transplant recipients were associated with the humoral non response but

not with the T-cell non response, which corroborates well with previous

reports (10, 18, 34, 68, 69). In our study, kidney transplant recipients had

the highest proportion of cardiovascular diseases, and lung transplant

recipients more commonly received CNI/mTOR inhibitors and

corticosteroids, which could partly explain the differences in the

immune response. In line with previous studies, mycophenolate

treatment was associated with a higher chance of anti-RBD IgG non
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response (63, 64, 70). Mycophenolate potently inhibits antibody

production, which can explain the higher chance of low anti-RBD IgG

after vaccination (71). Age, time from transplantation to the first vaccine

dose, and previous SARS-CoV-2 infection were factors that only affected

the likelihood of anti-RBD IgA response. Finally, diabetes was the only

factor associated with a decreased T-cell response. Hyperglycemia,

glycemic variability, and some antidiabetic medications can affect T-cell

function, increase the number of senescent T-cells, reduce T-cell lysis,

and impair T-cell migration (72). Information about T cell response to

vaccines other than SARS-CoV-2 in patients with diabetes is scarce. It has

been reported that T cell response to primary protein antigens such as

diphtheria toxoid is reduced in patients with diabetes (73).

Long-term follow-up of a large cohort of SOT recipients,

inclusion of matched controls, and providing data on both anti-

RBD IgG, anti-RBD IgA, neutralizing index, and T-cell response

within 12 months after the first vaccine dose were the strengths of this

study. Furthermore, results about anti-RBD IgA and T cell response

in participants who had previous SARS-CoV-2 infection have not

previously been reported in the literature. However, our study also

had limitations; we could not match our controls on the number of

vaccine doses and infections. Moreover, we could not investigate the

kinetics of T-cell response.

In conclusion, the humoral and T-cell responses to at least three

BNT162b2 vaccine doses were inferior in SOT recipients when

compared to controls 12 months after the first vaccine dose.

However, the antibody response was comparable in SOT recipients

and controls with previous SARS-CoV-2 infection, while the T-cell

response remained lower even in SOT recipients with previous SARS-

CoV-2 infection. Factors associated with immune non response

include transplant type, diabetes , and treatment with

mycophenolate. Thus, increased attention toward maintaining high

vaccination adherence in SOT recipients and toward the risk of

breakthrough infections in this group is warranted.
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