
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hyun Ho Park,
Chung-Ang University, Republic of
Korea

REVIEWED BY

Hyung Ho Lee,
Seoul National University, Republic of
Korea

*CORRESPONDENCE

Sunghark Kwon
naritsuru@kku.ac.kr

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 20 October 2022
ACCEPTED 22 November 2022

PUBLISHED 08 December 2022

CITATION

Kwon S (2022) Molecular dissection of
Janus kinases as drug targets for
inflammatory diseases.
Front. Immunol. 13:1075192.
doi: 10.3389/fimmu.2022.1075192

COPYRIGHT

© 2022 Kwon. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Mini Review
PUBLISHED 08 December 2022

DOI 10.3389/fimmu.2022.1075192
Molecular dissection of Janus
kinases as drug targets for
inflammatory diseases

Sunghark Kwon*

Department of Biotechnology, Konkuk University, Chungju, Chungbuk, Republic of Korea
The Janus kinase (JAK) family enzymes are non-receptor tyrosine kinases that

phosphorylate cytokine receptors and signal transducer and activator of

transcription (STAT) proteins in the JAK-STAT signaling pathway. Considering

that JAK-STAT signal transduction is initiated by the binding of ligands, such as

cytokines to their receptors, dysfunctional JAKs in the JAK-STAT pathway can

lead to severe immune system-related diseases, including autoimmune

disorders. Therefore, JAKs are attractive drug targets to develop therapies

that block abnormal JAK-STAT signaling. To date, various JAK inhibitors have

been developed to block cytokine-triggered signaling pathways. However,

kinase inhibitors have intrinsic limitations to drug selectivity. Moreover,

resistance to the developed JAK inhibitors constitutes a recently emerging

issue owing to the occurrence of drug-resistant mutations. In this review, we

discuss the role of JAKs in the JAK-STAT signaling pathway and analyze the

structures of JAKs, along with their conformational changes for catalysis. In

addition, the entire structure of the murine JAK1 elucidated recently provides

information on an interaction mode for dimerization. Based on updated

structural information on JAKs, we also discuss strategies for disrupting the

dimerization of JAKs to develop novel JAK inhibitors.

KEYWORDS

janus kinase, signal transducer and activator of transcription, cytokine, autoimmune
disorder, kinase inhibitor
Introduction

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT)

signaling pathway is involved in various cellular phenomena, such as cell division,

apoptosis, inflammatory reactions, and carcinogenesis (1–8). The initial reaction in the

JAK-STAT signaling pathway is triggered by binding of extracellular ligands, such as

cytokines, to transmembrane type I and II cytokine receptors, which causes receptor

dimerization. This multimeric state induces access of JAKs to the dimeric receptor,

resulting in autophosphorylation of JAKs. Activated JAKs add phosphate groups to their
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receptors, enabling STATs to recognize the phosphorylated

receptors. The binding of STATs to their receptors facilitates

STAT phosphorylation by JAKs. These activated STATs form

dimers and translocate to the cell nucleus. Finally, STATs bind to

specific DNA regions, causing transcription of target genes.

Because these target genes are associated with many cellular

processes, including immunity, the JAK-STAT signaling

pathway plays a vital role in immune response (2, 6–8).

JAK proteins are non-receptor tyrosine kinases that are

classified into four groups: JAK1, JAK2, JAK3, and tyrosine

kinase2 (TYK2) (9, 10). While JAK1, JAK2, and TYK2 are

produced in most cell types, JAK3 is produced only in

hematopoietic and lymphoid cells (11). Regardless of JAK

isoforms, however, JAKs are responsible for immune responses

including interferon signaling (12, 13). To perform their

biological functions, JAKs form homodimers or heterodimers

by binding to the same isoform or other forms. The binary

combination of JAKs differs depending on specific receptors that

bind their own ligands (7, 14). Each dimeric JAK is involved in

specific biological functions, most of which correspond to

immune response (7, 14). Accordingly, dysfunctional JAKs can

cause severe immune disorders by precluding normal

downstream signaling in the JAK-STAT pathway.

Owing to their importance in the JAK-STAT pathway, JAKs

have been attractive drug targets to develop inhibitors that block

cytokine signaling. Starting with ruxolitinib approved in 2011

(15, 16), numerous JAK inhibitors have been approved and

launched in the global pharmaceutical market (17–32). They

target one or more than one kinases among JAK1, JAK2, JAK3,

and TYK2, accordingly aiming at different indications such as

myelofibrosis, rheumatoid arthritis, atopic dermatitis, and

psoriasis (13, 14, 33). Several review papers provide valuable

information on JAKs and their inhibitors in the treatment of

specific indications. Roskoski Jr. introduced JAK inhibitors with

a focus on the treatment of neoplastic and inflammatory

disorders, along with depiction of structural features of JAKs

(13). Huang et al. summarized JAK inhibitors in clinical trials of

COVID-19 (14). Inhibition of JAK activities constitutes an

effective treatment strategy, in that JAKs are key molecules

associated with upstream signal transduction in the JAK-STAT

pathway. They also have diverse isoforms and dimeric

combinations, depending on specific ligands, including

cytokines. In particular, JAK3 can be a suitable drug target to

treat adaptive immune disorders, considering that JAK3 kinases

are produced in specific cells such as hematopoietic cells and

lymphocytes (11).

Although various inhibitors targeting JAKs have been

approved and launched, JAK inhibitors have two intrinsic

limitations as therapeutic agents, i.e., a lack of selectivity and

potential drug resistance. These issues have commonly been

raised with other kinase inhibitors (34, 35). Considering that all

kinases require an ATP molecule as one of their two substrates,

assuming that spatial features of the ATP-binding site are shared
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to some extent among kinases is reasonable. Indeed, approved

JAK inhibitors competitively bind to the ATP-binding site (36–

39), which signifies that JAK inhibitors can target not only JAKs

but also other kinases. Moreover, mutations in JAK genes can

create structurally altered JAK proteins, leading to drug

resistance to JAK inhibitors by weakening the affinity of JAK

inhibitors. Therefore, understanding the mode of inhibition of

JAK inhibitors and structural features of JAKs is indispensable

for developing novel and specific JAK inhibitors. In addition, the

entire structure of murine JAK1 was elucidated recently. This

structure showed a unique dimerization mode of JAK1. This

structural information can lead to a new approach to the

development of JAK inhibitors.

In this review, we describe previously known structures of

JAKs to obtain structural insight into their inhibitory

mechanisms. We also discuss conformational changes of JAKs

for catalysis. Based on updated structural information on JAKs

including the entire structure of murine JAK1, the potential

inhibitor-binding sites of JAKs are explored to develop novel

and specific inhibitors. This review enables us to profoundly

understand the molecular biology of JAKs, which can ultimately

lead to the development of novel anti-inflammatory agents.
Architecture of JAKs

In general, JAKs consist of seven JAK homology (JH1-7)

domains from the C terminus to N terminus (2, 40, 41). The JH1

and JH2 domains correspond to kinase and pseudokinase

domains, respectively. The JH3-5 domains form an Src

homology 2 (SH2) domain, and the JH6-7 domains

correspond to a band-4.1 protein, ezrin, radixin, and moesin

(FERM) domain. The SH2 and FERM domains are directly

involved in the binding of JAKs to cytokine receptors.

Recently, the entire structure of murine JAK1 in complex

with part of the interferon lambda receptor (IFNlR) was

determined as a homodimeric form using cryo-electron

microscopy (PDB ID: 7T6F) (Figure 1A) (42). Although JAK1

was known to form a heterodimer with other types of JAKs such

as JAK2, JAK3, and TYK2 in the cellular environment (14, 43),

this dimeric structure provides valuable information on the

entire architecture of JAK1 as a snapshot of its active form.

Of the seven domains of JAKs, the JH1 and JH2 domains are

directly associated with catalytic function as kinases, although

they exhibit different catalytic activities (10, 44, 45). These two

domains are structurally similar, along with similarities in amino

acid sequences (46). Since all four JAK family members (JAK1-3

and TYK2) are kinases, they share structural features common

with those of all kinases. The structure of the JH2 domain of

JAK2 (PDB ID: 5I4N) (47) containing an ATP molecule (one of

its two substrates) at the active site provides structural

information on the ATP-binding mode. The JH2 domain

consists of two parts: a small N-terminal lobe and a large
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FIGURE 1 (Continued)

Structural analysis of JAK. (A) The entire structure of murine JAK1 as a dimeric form (PDB ID: 7T6F) is represented as cartoon. IFNLR is omitted
for clarity. The JH1 (magenta), JH2 (marine), SH2 (green), and FERM (salmon) domains are shown. The SH2-JH2 linker is located between the
JH2 and SH2 domains. (B) The ATP-binding site of the JH2 structure of JAK2 (PDB ID: 5I4N). The JH2 domain is divided into the N- and C-
terminal lobes. The ATP molecule is depicted as sticks. (C) Different conformations of the P-loop. The ATP-bound form (cyan; PDB ID: 5I4N) is
superimposed onto the ADP-bound form (brown; PDB ID: 4GVJ). The adenosine moiety of ATP and ADP is colored green and gray, respectively.
(D) Two conformations of the C-helix. The aC-in state form (cyan; PDB ID: 5CSW) is superimposed onto the aC-out state form (violet; PDB ID:
5L3A). (E) Gatekeeper residues. The four JH1 (PDB ID: 6HZU, 6X8G, 7Q6H, and 7REE) and three JH2 (PDB ID: 4L01, 7AX4, and 7JYQ) domain
structures are superimposed onto each other. Met and the other residues are colored yellow and gray, respectively. (F) Two conformations of
the A-loop: active (red) and inactive (cyan) conformations. The structure of the JH1 domain of JAK1 (limon; PDB ID: 6HZU) is superimposed onto
that of an ABL kinase (gray; PDB ID: 1IEP). The A-loops of JAK1 and ABL are colored red and cyan, respectively. Imatinib is represented as sticks.
(G) Two conformations of the DFG-motif. The DFG-in form (limon; PDB ID: 1IEP) is superimposed onto the DFG-out form (gray; PDB ID: 5L3A).
(H) Potential inhibitor-binding sites of JAKs. The entire structure of murine JAK1 as a dimeric form is shown in the center, and represented as
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C-terminal lobe. The N-terminal lobe is linked to the C-terminal

lobe by a hinge region (Figure 1B). These two lobes create a cleft

in the linkage region, which constitutes the active

site (Figure 1B).

An ATP molecule binds to the active site, which is

surrounded by a b-sheet in the N-terminal lobe and the a2
helix in the C-terminal lobe (Figure 1B). A loop connecting the

b1 and b2 strands is located next to the a1 helix (Figure 1B).

This loop is known as P-loop or G-loop (i.e., a Gly-rich loop).

The a1 helix in the N-terminal lobe is called the C-helix (aC)
(Figure 1B). The b7 strand in the C-terminal lobe is linked to a

relatively long loop (Figure 1B). This loop is called A-loop (i.e.,

an activation loop). The A-loop can adopt different

conformations, including a helical form, in response to

substrates binding to the active site.
Conformational changes of JAKs
for catalysis

As other kinases have several flexible regions in the

proximity of active sites, the active sites of JAKs are also

surrounded by several loops along with the C-helix, which

undergo conformational changes in response to their

substrates or inhibitors. The P-loop is directly associated with

positioning of the phosphate groups of ATP. Specifically, the

Gly554, Thr555, and Thr557 residues in the P-loop form

hydrogen bonds with phosphates. However, owing to the

substantial flexibility of this loop, this region appears

disordered in several crystal structures. Compared with the

ATP-bound form (PDB ID: 5I4N) (47), the P-loop opens

outwards in the ADP-bound form (PDB ID: 4GVJ) (48)

(Figure 1C). Namely, the P-loop residues do not interact with

ADP as tightly as that with ATP. This structural difference seems

reasonable, in that ADP, as a product of catalysis needs to be

released from the active site.

The C-helix also plays an important role in JAK catalysis.

A Lys residue of the conserved AXK motif (X = any amino acid)

in the b3 strand can form a salt bridge with a Glu residue in the

C-helix at an appropriate position (aC-in state) (Figure 1D;
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cyan). The Lys residue is a key residue in JAK catalysis, which

corresponds to K908 (JAK1), K882 (JAK2), K855 (JAK3), and

K930 (TYK2). However, spatial distortion of the C-helix gives

rise to a deviation from the C-helix-in state, thereby disrupting

the salt bridge (aC-out state) (Figure 1D; violet). Therefore, the
C-helix-in state facilitates catalysis by rendering correct position

of the Lys residue.

A residue in the b5 strand adjacent to the hinge region is

called ‘gatekeeper’. The gatekeeper plays a vital role in

controlling the access of ATP or inhibitors to the hydrophobic

backpocket. This residue varies depending on the type and

domain of JAKs. Specifically, JH1 domains of all four JAKs

(JAK1, JAK2, JAK3, and TYK2) retain a Met residue as the

gatekeeper (Figure 1E). In contrast, Glu (JAK1), Gln (JAK2), and

Thr (TYK2) residues are assigned to the same position in JH2

domains (Figure 1E). This gatekeeper is critical for sensitivity to

inhibitors. Mutation of the gatekeeper to other residues, such as

bulkier residues, can decrease the affinity of inhibitors by causing

steric hindrance to inhibitor binding (49).

Remarkably, the A-loop shows two distinct conformations.

In the ATP-bound form, the A-loop is located distantly from the

P-loop (active conformation) (Figure 1F). This conformation

renders the active site constructed, thereby facilitating the

binding of ATP and its target protein substrate to the active

site. Because this conformation provides the architecture of the

ATP-binding pocket, numerous inhibitors have been developed

to bind to the ATP-binding site in this active conformation (49).

In contrast, in the “rest period” of kinases, the A-loop exhibits a

form moved towards the P-loop (inactive conformation)

(Figure 1F). However, JAK structures in the inactive

conformation have not yet been determined. The inactive

conformation of Abl, a tyrosine-protein kinase (PDB ID: 1IEP)

(50), is described in this review (Figure 1F). This conformation

does not form an ATP-binding pocket. Alternatively, this

inactive conformation renders the space between the A-loop

and C-helix wider, which implies that this region can be another

target site for inhibitors. Indeed, the structure of Abl shown

here (PDB ID: 1IEP) contains imatinib as an inhibitor in

the inactive conformation (50) (Figure 1F). Consequently, the

conformational change in the A-loop is the most striking
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structural phenomenon concerning kinase catalysis, which is

noteworthy in that this structural information can lead to the

development of novel JAK inhibitors.

The conserved DFG-motif is another significant part of the

conformational changes involved in catalysis (49). This motif is

located at the N terminus of the A-loop. In the active

conformation, the Asp residue of the DFG-motif orients

inward the ATP-binding site and coordinates with a Mg ion

(DFG-in) (Figure 1G; gray). In the inactive conformation, the

Asp residue orients outwards from the ATP-binding site, where

it cannot coordinate with a Mg ion in the ATP-binding site

(DFG-out) (Figure 1G; limon). Therefore, the DFG-motif

regulates the catalytic activity of kinases by suitably adopting

their respective conformations.
Development strategies for novel
JAK inhibitors

In general, kinase inhibitors are classified into six types

depending on their binding sites and kinase conformations

(types I-VI) (51). Type I inhibitors bind to the ATP binding

site in the active conformation (DFG-in and aC-in). Type I1/2

inhibitors bind to the same site in an incomplete and inactive

conformation (DFG-in and aC-out). Type II inhibitors bind in

the inactive conformation (DFG-out and aC-out). In contrast to

types I and II, the binding site of type III inhibitors is located

near the ATP binding site. Type IV inhibitors bind to an

allosteric site far from the ATP binding site. Accordingly, type

III and IV inhibitors target allosteric sites, in that they do not

bind to the ATP binding site. Type V inhibitors bind to the ATP-

binding or allosteric site. Lastly, type VI inhibitors covalently

bind to the ATP binding or allosteric site.

To date, all JAK inhibitors launched into the pharmaceutical

market are type I inhibitors, except for inhibitors unidentified in

the PDB (13). Information on launched JAK drugs is

summarized in Table 1. However, type I inhibitors compete

with ATP for the same binding site. This signifies that type I

inhibitors can bind to other unintended kinases which have

ATP-binding sites. Nonspecific binding usually results in

unexpected side effects. Therefore, discovering target sites

other than the ATP-binding site is of recent interest in

developing new inhibitors for a specific kinase. Accordingly,

although the current JAK drugs are type I inhibitors, other types

of JAK inhibitors can be designed and developed to enhance

JAK-binding specificity.

Notably, two monomeric JAKs also form a dimer when two

monomeric cytokine receptors form a dimer upon binding a

cytokine (13, 14, 43). The resulting JAK dimer facilitates the

trans-phosphorylation of its counterpart (13, 14, 43).

Dimerization of JAKs is a prerequisite for JAK-STAT signaling

transfer; therefore disturbing JAK dimerization may constitute a

novel strategy for blocking the JAK-STAT signaling pathway at
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the upstream level. Hubbard proposed a putative mechanism for

JAK2 activation (52). In this review, the author explained JAK2

activation with vast conformational changes. According to this

hypothesis, monomeric JAK2 exists in the inactive conformation

in the equilibrium state (52). Namely, the JH1 domain is attached

to the JH2 domain, thereby maintaining the autoinhibited state.

When a cytokine binds to its receptor, dimerization of the

receptor by the cytokine induces JAK2 dimerization. V617F, a

JAK2mutant in the JH2 domain, which causes myeloproliferative

neoplasms, has been previously identified (53–56). This mutant

may induce a substantial conformational change in the JH1

domain, resulting in the active conformation of JAK2, despite

the absence of a cytokine (52). Moreover, the V617F mutant may

reinforce the interface between monomers owing to the bulkier

side chain. Consequently, the V617F mutant leads to abnormal

JAK-STAT signaling by maintaining its active dimeric form

without external stimuli.

The V617 residue of human JAK2 corresponds to the V660

residue of the murine JAK1, which is associated with the

dimerization of murine JAK1. The substitution of V660 with

Phe presumably increases the hydrophobic interaction between

the two Phe residues through p- p stacking. However,

determining the extent to which this hydrophobic interaction

affects the dimerization is challenging.

As JAK dimerization is a critical step for the trans-

phosphorylation of the JH1 domain, blocking the dimerization

of JAKs may constitute a new paradigm for developing JAK

inhibitors. The entire structure of JAK1 (PDB ID: 7T6F) (42)

provides structural insight into potential inhibitor-binding sites

to block dimerization. However, this structure is that of murine

JAK1, not human JAK. Several clefts (PS1-6), which could be

novel inhibitor-binding sites, were identified between the JH2

domain and adjacent domains (Figure 1H). The PS1 and PS2

clefts comprise part of the FERM, SH2-JH2 linker, and JH2

domains, whereas the PS3 cleft consists of part of SH2-JH2

linker and JH2. The PS4 cleft corresponds to the ATP-binding

site of the JH2 domain. The PS5 cleft, which comprises part of

the FERM and JH2 domains, is located at the rear of the JH2

interface. Lastly, the PS6 cleft consists of part of FERM, SH2,

SH2-JH2 linker, and JH2. These clefts appear relatively large and

sufficiently deep to accept small molecules. Furthermore, all

clefts except PS3 are located at the interface of the domains. This

implies that the binding of suitable small compounds to the PS

clefts might trigger a conformational change in the JH2 domain,

thereby affecting and obstructing its dimerization. However,

whether these sites induce significant conformational changes

remains to be determined.
Discussion

To date, several JAK inhibitors have been approved and

launched in the pharmaceutical market. Structures of the
frontiersin.org
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TABLE 1 Human JAK inhibitor profilesa.

Generic
name

Brand
name

Target Type First Approval
year

Approval
country

PDB IDb Chemical structure

Ruxolitinib Jakafi/Jakavi JAK1, JAK2, JAK3,
TYK2

I 2011 US 6VGL

Tofacitinib Xeljanz JAK1, JAK2, JAK3,
TYK

I 2012 US 3EYG, 3FUP, 3LXK,
3LXN

Baricitinib Olumiant JAK1, JAK2, TYK2 I 2017/2022 EU/US 6WTO

Peficitinib Smyraf JAK1, JAK2, JAK3,
TYK2

I 2019 Japan 6AAH, 6AAJ, 6AAK,
6AAM

Fedratinib Inrebic JAK2 I 2019 US 6VNE

Upadacitinib Rinvoq JAK1 – 2019 US –

Filgotinib Jyseleca JAK1 I 2020 US/Japan 4P7E, 5UT5

(Continued)
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JAK-inhibitor complexes have also been reported (36–39). Such

structural information provides insight into the inhibitor-

binding modes. However, considering that the affinity of many

kinase inhibitors has decreased owing to the occurrence of drug

resistance (49), the inhibitory ability of the JAK drugs may also

reduce eventually.

The mutation of key residues in the active site of kinases is

one of the most prevalent molecular mechanisms underlying

inhibitor resistance (49). One of the most common mutation

sites is the gatekeeper residue. The size and shape of the

gatekeeper residue regulate the access of a molecule binding to

the hydrophobic back pocket; therefore mutations in the

gatekeeper residue can reduce the affinity of kinase inhibitors

to the ATP-binding site. Gatekeeper mutations have also been

identified in several kinases (57–60). The A-loop is another

mutation site for kinase inhibitor resistance (49). Mutations in

the A-loop are more variable than those in gatekeeper

mutations. Such mutations affect the binding of inhibitors to

kinases in the inactive conformation of the A-loop (49).

Mutations in the A-loop typically lower the affinity of the

inhibitors for the inhibitor-binding site in the inactive

conformation by maintaining the active conformation of the

A-loop. Therefore, mutations in the A-loop appear to be

critically related to the conformation.

Natural JAK-related mutations associated with inhibitor

resistance in patients have not been reported. However, a

recent study indicated that several mutations in JAK2 induce
Frontiers in Immunology 07
resistance to ruxolitinib at the cellular level (61). In this study,

the authors reported that the Y931C, L983F, and G993A

mutants of murine JAK2 cause acquired resistance to

ruxolitinib (61). These residues were associated with the ATP/

ruxolitinib binding site. Although these residues may not

constitute naturally occuring mutation sites for resistance to

ruxolitinib, these in vitro results may provide valuable

information for developing novel JAK2-inhibitors.

The entire structure of murine JAK1, which was recently

elucidated (42), helped us understand the detailed molecular

mechanisms of its receptor binding and dimerization. Notably,

the dimerization mode of the JH2 domain suggests novel

strategies for JAK-inhibitor development. In the JAK-STAT

signaling pathway, diverse heterodimers of JAKs except for the

JAK2 homodimer are associated with downstream signaling.

These combinations include JAK1-JAK2, JAK1-JAK3, and

JAK1-TYK2. Although these heterodimeric structures have not

been determined, the respective JH2 domains are probably

involved in dimerization. If each dimerization mode is the

same as in the murine JAK1, the dimerization mode of murine

JAK1 may be generalized to all JAK heterodimers. This

assumption means that strategies for disrupting dimerization

can be applied to these heterodimers. However, the potential

inhibitor-binding sites discussed in the previous section are

based on the premise that such binding induces significant

conformational changes in the JH2 domain to destabilize

dimerization. Therefore, future studies should focus on the
TABLE 1 Continued

Generic
name

Brand
name

Target Type First Approval
year

Approval
country

PDB IDb Chemical structure

Delgocitinib Corectim JAK1, JAK2, JAK3,
TYK2

I 2021 Japan 7C3N

Abrocitinib Cibinqo JAK1 I 2021/2022 EU/US 6BBU, 6BBV

Pacritinib Vonjo JAK2 – 2022 US –
a Ref. (13, 14, 33).
b Inhibitor-complex structure.
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discovery of potential inhibitor-binding sites and factors that

affect conformational changes to obstruct dimerization.
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