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Background: The most commonly acknowledged non-scarring alopecia are

androgenetic alopecia (AGA) and alopecia areata (AA). Previous studies have

revealed various risk factors associated with alopecia. However, the relationship

between leukocyte telomere length (LTL) and non-scarring alopecia remains

unclear.

Methods: A two-sample Mendelian randomization (MR) analysis was performed to

evaluate the causality between genetically predicted LTL and the risk of non-

scarring alopecia. MR analyses were performed using the inverse variance-

weighted (IVW) method and complemented with other MR methods.

Results: The summary statistics of the genome-wide association studies (GWAS)

for AGA and AA were obtained from the FinnGen biobank, which included 119,185

and 211,428 individuals, respectively. A total of 126 single nucleotide

polymorphisms (SNPs) with genome-wide significance were selected as the

instrumental variables for LTL. The MR analyses suggested a causal relationship

between LTL and AGA, and the risk of AGA increased by 3.19 times as the

genetically predicted LTL was shortened by one standard deviation in log

transformed form under the IVW method (OR = 4.19, 95% CI = 1.20–14.61,

p = 0.024). The other MR methods also demonstrated a similar trend of the

effect of LTL on AGA. There was no causal relationship between LTL and AA

(p > 0.05). Sensitivity analyses further demonstrated that the current results were

less likely to be affected by confounders and bias.

Conclusion:Our results suggested a potential causal relationship between LTL and

AGA, and shortened LTL was associated with an increased risk of AGA.

KEYWORDS

androgenetic alopecia, alopecia areata, non-scarring alopecia, Mendelian randomization,
leukocyte telomere length
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1072573/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1072573/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1072573/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1072573/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1072573/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1072573&domain=pdf&date_stamp=2023-01-30
mailto:yuanyang@smu.edu.cn
https://doi.org/10.3389/fimmu.2022.1072573
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1072573
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2022.1072573
Introduction

The two most commonly known non-scarring alopecia are

androgenetic alopecia (AGA) and alopecia areata (AA). Although

known as male pattern baldness (MPB), AGA is one of the most

common types of chronic hair loss for both sexes, which affects at

least 80% of men and half of women at the age of 70 years, with the

incidence increasing with age (1, 2). AGA is characterized by an

alteration of the hair growth cycle, which includes a reduced anagen

phase duration and an increased telogen phase duration, resulting in

gradual transformation of terminal hair into intermediate or vellus

hair and, finally, balding. The most common forms of AGA consist of

the representative receding of the frontal hairline for men together

with the thinning of the hair between the frontal and the vertex scalp,

but a maintained frontal hairline for women (2–4).

AA is a chronic hair follicle-specific autoimmune disorder

characterized by patches of non-scarring alopecia, which influences

approximately 2% of the population (5, 6). Nevertheless, the exact

mechanisms remain under investigation, but a common feature is the

collapse of the immune privilege of the hair follicles induced by

immunological mechanisms (7). Telogen effluvium (TE) is also one of

the important subtypes of non-scarring alopecia (8). However, due to

the lack of existing summary data from the results of genome-wide

association studies (GWAS), we excluded TE from this study.

Complicated genetic susceptibility, oxidative stress injury,

environmental factors, lifestyle, and advanced age cooperatively

contribute to the occurrence and severity of hair loss, among

which, aging may play an important role in its pathological

changes. Telomeres are the special nucleoprotein structures located

at the ends of linear chromosomes that could protect their integrity

(9, 10). The leukocyte telomere length (LTL) is shortened gradually

with cellular divisions, and gene mutations or DNA damage

sometimes occurs during this process, resulting in alterations in the

cellular life span and senescence (11). Therefore, LTL has become

widely recognized as a measure of an individual’s biological age and as

a biomarker for certain age-related diseases (12). Previous

observational studies have revealed some risk factors for alopecia;

however, the relationship between aging and non-scarring alopecia

has not been well studied. Therefore, we applied the Mendelian

randomization (MR) method to determine whether there is a causal

relationship between LTL and the two main subtypes of non-

scarring alopecia.

MR is a method of instrumental variable (IV) analysis that uses

single nucleotide polymorphisms (SNPs) from GWAS as instruments,

which are representative of the exposure characteristics, to reveal

causal relationships between complex characteristics, provided that

the necessary assumptions have been satisfied (13). IVs are not
Abbreviations: AGA, androgenetic alopecia; AA, alopecia areata; LTL, leukocyte

telomere length; MR, Mendelian randomization; IVW, inverse variance weighted;

GWAS, genome-wide association study; SNPs, single nucleotide polymorphisms;

MPB, male pattern baldness; TE, telogen effluvium; IVs, instrumental variants;

ENGAGE, European Network for Genetic and Genomic Epidemiology; MR-Egger,

Mendelian randomization-Egger; LD, linkage disequilibrium; MR-PRESSO,

Mendelian randomization pleiotropy residual sum and outlier; DHT,

dihydrotestosterone; FAGA, female androgenetic alopecia.
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correlated with random error (existence of deviation, such as age,

sex, and weight, which need to be matched in observational studies)

because SNP allocation follows the Mendelian inheritance rule,

suggesting random allocation during the formation of a fertilized

ovum. Therefore, based on SNP acting as the IV, the basic principle of

MR research is comparable to that of randomized controlled trials

(RCTs). This strategy is relatively convenient, cost-effective, and less

likely to be confounded by covariables (14–17). Therefore, in this

study, we used available summary statistics from open-access GWAS

databases to perform a two-sample MR analysis and evaluated the

causality between LTL and non-scarring alopecia. The results of the

current study may partly explain the underlying mechanism of non-

scarring alopecia and may offer support in the future development of

prevention and intervention strategies.
Materials and methods

Mendelian randomization study design

MR is a statistical method used to evaluate causality without potential

bias caused by confounders (18). Genetic variant is themost important and

effective IV in an MR study. Eligible IVs should satisfy three important

assumptions according to theMR theory: 1) the IVs are strongly correlated

with the interested exposure factor; 2) the IVs follow the rule of random

assignment and do not affect the outcome through confounders; and 3) the

IVs do not exert influence on the outcome directly, but indirectly through

the hypothesized causal pathway of exposure under investigation (19). The

detailed flowchart of this MR study is shown in Figure 1A, while the MR

assumptions are depicted in Figure 1B.

In this study, we selected SNPs closely associated with LTL as the

IVs using summary data from open-access GWAS databases to

evaluate the potential causal effect of the exposure (i.e., LTL) on the

outcomes (i.e., AGA and AA). Moreover, the data for exposure and

outcomes were obtained from different independent samples. Ethical

approval was provided in the preliminary studies and was no longer

required for this study.
Instrument variable selection

The summary statistics were obtained from the European

Network for Genetic and Genomic Epidemiology (ENGAGE),

which involved 472,174 European participants in the GWAS

project for LTL. Quantitative polymerase chain reaction (PCR)

analyses were performed to obtain LTL measurements for these

participants from the UK Biobank (UKB) (9). The UKB recruited a

prospective cohort of more than 500,000 volunteers aged 40–69 years

(20). A total of 197 SNPs showed independent associations with LTL,

as identified by the above-mentioned GWAS meta-analysis.

SNPs with genome-wide significance were selected as the IVs of

telomere length for further study (p < 5 × 108). Linkage disequilibrium

(LD) was used to determine whether the SNPs were genetically linked

or not, and the threshold was set as r2 < 0.001, with a window size of

10,000 kb. SNPs associated with potential confounding factors of
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AGA and AA were removed from the final MR analyses according to

the PhenoScanner V2 database (http://www.phenoscanner.medschl.

cam.ac.uk/), an open-access database for genotype–phenotype

associations. The palindromic variants were also excluded from this

study, and the directions of the effects of SNPs on LTL and AGA, as

well as AA, were harmonized. Eventually, a total of 126 eligible SNPs

were included for the final MR analyses. Information on these SNPs is

detailed in Supplementary Table S1.
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Summary data sources for the subtypes of
non-scarring alopecia

The aggregated data of the GWAS for AGA and AA were

obtained from the open-access GWAS website (https://gwas.mrcieu.

ac.uk/), with 119,185 and 211,428, respectively, European participants

from the FinnGen biobank. The mean age at the first event was

47.7 years for AGA and 41.9 years for AA. The data for AGA and AA
A

B

FIGURE 1

(A) Detailed flowchart of the current two-sample Mendelian randomization study. (B) Mendelian randomization assumptions. GWAS, genome-wide
summary association study; LTL, leukocyte telomere length; AGA, androgenetic alopecia; AA, alopecia areata; SNP, single nucleotide polymorphism; MR,
Mendelian randomization; MR-Egger, Mendelian randomization-Egger; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier.
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were obtained from participants from another independent

consortium different from those in the GWAS for LTL. However,

these SNPs were all derived from GWAS on European ancestry to

minimize potential bias caused by population heterogeneity.
Statistical analyses of the MR study

For this study, the inverse variance-weighted (IVW), theMendelian

randomization-Egger (MR-Egger), the weighted median, the penalized

weighted median, the simple median, and the maximum likelihood

estimation methods were adopted to evaluate the risk association

between shortened LTL and AGA, as well as AA (15, 21). Of the

above methods, IVW is the most commonly used variant-specific

causal estimations in a two-sample MR analysis, especially when all

the enrolled IVs were of robust validity. Therefore, we adopted IVW as

the primary and most efficient analysis method in this study (22).

When heterogeneity was statistically significant in the research studies,

a random effects IVW model was applied; otherwise, a fixed effects

IVW model was adopted.

Other supplementary methods were also used for validation of the

consistency and efficiency of the MR results. The MR-Egger

regression is mainly used to evaluate horizontal pleiotropy and may

provide causal estimation in the case of weaker IVs (23, 24). The

penalized weighted median estimation is a new analytic method

modified from the original weighted median method; thus, the IVs

substantially contributing to the heterogeneity would be penalized,

but the results would still be reliable provided that at least half of the

IVs were valid (25). The maximum likelihood method was used to

estimate the probability distribution by maximizing the likelihood

function with low standard errors (26). Furthermore, the simple

median method has also been applied in many other studies (21,

27). Moreover, scatter, forest, and funnel plots were drawn to visualize

the results and the efficiency and stability of the MR study.
Sensitivity analyses

Sensitivity analyses were performed, including heterogeneity,

pleiotropy, leave-one-out tests, and the Mendelian randomization

pleiotropy residual sum and outlier (MR-PRESSO). The

heterogeneity of the IVs applied in the IVW method was assessed

using Cochran’s Q test. A p-value smaller than 0.05 was considered to

suggest statistically significant heterogeneity. And the MR result

should be carefully interpreted under this circumstances. Pleiotropy

refers to a single locus possibly affecting multiple phenotypes. The

MR-Egger intercept analysis was applied to evaluate directional

pleiotropy, and the pleiotropy effect could be ignored when

p > 0.05 (24). In addition, the MR-PRESSO analysis was performed

to assess the influence of outliers. The leave-one-out test was

performed by removing the SNPs one by one. When there is no

great change to the remaining results from such a removal process

(the result lines remained on the same side of the zero point), the

causal relationship is stable and reliable.

All statistical analyses were performed using the “Two-Sample

MR” and “MRPRESSO” packages in R software (version 4.1.1).
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Results

Genetically predicted shorter LTL is
associated with increased risk of AGA
instead of AA

In the two-sample MR analysis, after removal of the SNPs

associated with confounding factors and outcomes, along with

removal of the SNPs of the incompatible alleles or those that are

palindromic with intermediate allele frequencies, a total of 126 LTL-

related SNPs that met the three main assumptions of the MR study

were retained for further MR analysis. The scatter plots revealed the

effects of the above 126 SNPs on LTL and AGA, as well as on AA

(Figures 2A, B). The funnel plots showed the distribution of the effect

of a single SNP (Figures 3A, B), while the forest plots visualized the

effect of an individual SNP on the estimation of the outcomes

(Supplementary Figures S1A, B).

The potential causal relationship between LTL and AGA was

evaluated using the two-sample MR method. Table 1 shows that there

was no clear evidence of a heterogeneity between the LTL-related

SNPs, as the MR-Egger test had a Cochran’sQ statistic of 112.0, with a

p-value greater than 0.05 (MR-Egger method, p = 0.771) for AGA.

Therefore, the IVW method with a fixed effects model was adopted

primarily for causal estimation. The MR analyses suggested a causal

relationship between LTL and AGA, and the risk of AGA increased by

3.19 times as the genetically predicted LTL was shortened by one

standard deviation in log transformed form under the fixed effects

IVW method (OR = 4.19, 95% CI = 1.20–14.61, p = 0.024). This

causal association was confirmed by maximum likelihood estimation

(OR = 4.25, 95% CI = 1.21–14.90, p = 0.023) and the simple median

method (OR = 7.14, 95% CI = 1.04–49.29, p = 0.046) (Figure 4).

Moreover, the results from the MR-Egger, the weighted median, and

the penalized weighted median estimations demonstrated a similar

trend of the effect of LTL on AGA, although there was no statistical

significance. As mentioned above, the IVW method was adopted as

the primary and most efficient method for analysis in this study;

therefore, the conclusion that the genetically predicted shorter LTL

was associated with an increased risk of AGA was drawn.

We also assessed the relationship between LTL and AA using the

same MR methods. There was no significant heterogeneity detected,

with a Q statistic of 113.15 (p = 0.747) using the MR-Egger method

(Table 1). However, the results of the fixed effects IVW, the MR-

Egger, the weighted median, the penalized weighted median, and the

simple median methods, as well as the maximum likelihood

estimation, suggested that there was no clear causal relationship

between genetically predicted LTL and risk of AA, with all p-values

greater than 0.05 (Figure 5).
Sensitivity analysis

No clear evidence for significant statistical heterogeneity was

found among the LTL-related SNPs on the effects of AGA and AA,

as mentioned previously. In addition, no evidence for directional

pleiotropy was found according to the MR-Egger intercept analysis

(intercept = 0.028, SE = 0.032, p = 0.37), indicating that the exposure–
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outcome relationship was unlikely to be affected by potential

confounding factors through other pathways. The MR-PRESSO

analysis suggested no directional pleiotropy and no outliers for the

IVs (p-global test = 0.795). The leave-one-out analysis yielded
Frontiers in Immunology 05
comparable results to that of the primary MR studies and indicated

that no single SNP has had significant effects on the results, suggesting

the robustness and reliability of the MR studies (Supplementary

Figures S2A, B).
A B

FIGURE 2

Scatter plots for the effects of single-nucleotide polymorphisms (SNPs) on telomere length and non-scarring alopecia. The x-axis represents the effects of
each genetic variant on telomere length, and the y-axis represents the effects of each genetic variant on androgenetic alopecia (A) or alopecia areata (B).
A B

FIGURE 3

Funnel plots of leukocyte telomere length genetic variants and non-scarring alopecia. (A, B). Funnel plots for androgenetic alopecia (A) and alopecia
areata (B).
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Discussion

Hair loss has a significant negative impact on body image, social

perceptions, and the quality of life of patients and may result in

psychological disorders (7, 28, 29). New research works have revealed

that complicated factors may contribute to the etiopathogenesis of

hair loss, including genetic susceptibility, advanced age,

autoimmunological changes, oxidative stress injury, skin

microbiome alterations, and epigenetic factors, among other factors

(30). To our knowledge AA has affected approximately 2% of the

general population, including all sex- and age-based groups (29),

while the incidence of AGA has revealed an increasing trend with

advanced age. Therefore, this study was performed to assess whether

there is an association between non-scarring alopecia, special types of

hair loss, and LTL, a well-recognized marker for biological age, rather

than chronological age, which may be involved in the pathogenesis of

some age-related disorders. In this study, we applied the two-sample

MR method to evaluate a potential causal association, which may

minimize the bias resulting from confounding factors and reverse

causality. The results suggested that, for the European population, the

genetically predicted shortened LTL was correlated with a higher risk

of AGA, but not of AA.

AA is an autoimmune disorder characterized by non-scarring

hair loss on the scalp or any hair-bearing skin. To date, the specific

pathogenesis of AA remains unknown, although it has been mainly

recognized to be caused by immune disorders and genetic factors.

Research studies have revealed that melanocytes may be the trigger

point that leads to the hair follicles being attacked by the immune

system through oxidative stress injuries or apoptosis (31). On the

other hand, different immune cells cooperatively contribute to the

progression of AA (32, 33). The infiltration of T helper cells and

cytolytic CD8+ cells may lead to the disruption of the hair growth

cycle. T cells, natural killer (NK) cells, and plasmacytoid dendritic

cells surround the lower part of the hair bulb during the anagen and

growth phases, and their immunological activities may cause the

collapse of the immune privilege of hair follicles and therefore lead to

alopecia (7, 34, 35). This process is different from the natural aging

process of hair follicles, which may partly account for the result that

no association was found between LTL and AA risk.

AGA, a progressive thinning of scalp hair with specific patterns

characterized by the hairline receding at the temples (the widow’s

peak) and the hair eventually left on the sides and the back of

head (the Hippocratic wreath), is now commonly regarded to be

correlated with polygenic susceptibility, increased sensitivity to
Frontiers in Immunology 06
dihydrotestosterone (DHT) of the hair follicle, and chronic scalp

inflammation (36). DHT affects hair growth and leads to hair loss

through binding to the receptors located in the oil glands of hair

follicles, therefore causing the affected follicles to shrink and

shortening their anagen cycles, eventually inhibiting the ability of

the hair to grow (37, 38). The conversion of testosterone to DHT is

catalyzed by 5-a-reductase, an enzyme stored in the oil glands located

in hair follicles. Based on the above theories, one recent important

treatment strategy emphasizes the suppression of DHT and 5-a-
reductase (39, 40); therefore, injuries of the hair follicles may be

alleviated and hair loss may be reduced. Previous epidemiological

studies suggested that serum DHT and the estradiol (E2) level are

correlated with LTL independently of age in men (41), while the

testosterone level is not associated with LTL (42).

Observational studies also suggested that, compared with AGA in

men, the onset of female androgenetic alopecia (FAGA) occurs in

those of more advanced ages and is particularly more common

among those undergoing menopause, and the role of androgens

remains uncertain in FAGA (1). However, the incidence increasing

with age has been observed in both sexes. Advanced age is

accompanied by an accumulation of health conditions and the

shortening of chromosomal telomere length, signifying an

individual’s biological aging. In this study, the results revealed a

causal relationship between shortened LTL and a higher AGA risk,

which is in accordance with previous observational results. However,

aging may be just one of the underlying mechanisms of alopecia, and

more studies are still needed to investigate the mechanisms of its

onset. One significant strength of the MR method is that the bias

resulting from the effects of confounders are removed from the final

results. In this study, no SNPs correlated with the DHT concentration

were found; therefore, the relationship between telomere length and

the risk of AGA was less likely to be affected by the influence of DHT.

We also excluded the SNPs related to baldness, hyperthyroidism, and

hypothyroidism in order to avoid confounding effects.

As mentioned in other published MR research studies (17, 21, 43),

causal inference is considered to be significant if the following criteria

were satisfied: 1) the p-value using the IVW method is statistically

significant (p < 0.05); 2) the directions of estimates by the IVW and

other methods are all the same (in the current study on AGA, all ORs

were greater than 1, prompting the conclusion that the genetically

predicted shortened LTL was associated with an increased risk of

AGA); and 3) in the sensitivity analyses, the MR-Egger intercept test

and the MR-PRESSO global test are not significant (p > 0.05).

Sensitivity analysis is one of the most important components of
TABLE 1 Heterogeneity analysis of the leukocyte telomere length-related genetic variants in the androgenetic alopecia and alopecia areata GWAS
datasets.

Exposure Outcomes MR methods Q statistic Q-dif p-value

Leukocyte telomere length

AGA
IVW 112.79 125 0.775

MR–Egger 112.00 124 0.771

AA
IVW 114.02 125 0.749

MR–Egger 113.15 124 0.747
fron
GWAS, genome-wide association study; AGA, androgenetic alopecia; AA, alopecia areata; MR, Mendelian randomization; IVW, inverse-variance weighted; MR–Egger, Mendelian randomization–
Egger.
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MR research, which is designed to detect whether the results are

influenced by confounders and bias. In this study, the above criteria

were all satisfied; therefore, the conclusion that there might be a

causal relationship between LTL and AGA was drawn.

The major strengths of the current MR study are as follows.

Firstly, the eligible IVs were obtained from the largest GWAS study

from the European Network for Genetic and Genomic Epidemiology

(ENGAGE), which satisfied the three main important principles for

MR investigation, allowing for reasonable causal estimations.

Secondly, the results were valid and consistent in the different MR
Frontiers in Immunology 07
methods and remained stable in the sensitivity analyses, suggesting

the validity and consistency of the causal results. However, this study

has several limitations. Firstly, all enrolled individuals in the

preliminary GWAS studies were of European ancestry; thus,

whether or not the current results could be extended to other

populations remains unknown, which needs further investigation.

Secondly, we only investigated the relationship between telomere

length and the risk of AGA and AA, and due to the lack of summary

data for other types of alopecia, the stratification statistics for the

degree of AGA, and the stratification data based on sex, further
FIGURE 4

Forest plot of the association between genetically predicted telomere length and androgenetic alopecia. OR refers to the change of alopecia risk
associated with a one standard deviation (SD) decrease in telomere length. IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval.
FIGURE 5

Forest plot of the association between genetically predicted telomere length and alopecia areata.
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studies were limited. Thirdly, there are also other factors, such as the

limitations of the already known phenotype characteristics and LTL

determined by genetic factors and that may be affected by

environmental factors and potential epigenetic modifications, that

have not been thoroughly investigated yet and therefore might

contradict the current causal assumptions in future practice.

However, these potential effects should not be ignored, and the

current conclusions were drawn on the basis of the existing statistics.

Our study suggests that genetically predicted LTL may have a

causal effect on the onset of AGA, but not of AA, and that shortened

LTL may be one of the risk factors for AGA. The results may offer new

insights into the mechanisms of AGA. However, future high-quality

randomized controlled studies based on large sample sizes are still

needed to further verify this association.
Conclusion

This MR study suggested that the shortening of the LTL has a

negative effect on AGA, while LTL has no association with the risk of

AA. Further exploration into the role of LTL on AGA will promote an

understanding of the pathogenesis of AGA. A new insight put

forward is that preventing the loss of the leukocyte telomere may

be a novel target to reduce the risk of AGA.
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