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Tuberculosis (TB) remains one of the deadliest infectious diseases in the world

and every 20 seconds a person dies from TB. An important attribute of human

TB is induction of a granulomatous inflammation that creates a dynamic range

of local microenvironments in infected organs, where the immune responses

may be considerably different compared to the systemic circulation. New and

improved technologies for in situ quantification and multimodal imaging of

mRNA transcripts and protein expression at the single-cell level have enabled

significantly improved insights into the local TB granuloma microenvironment.

Here, we review the most recent data on regulation of immunity in the TB

granuloma with an enhanced focus on selected in situ studies that enable

spatial mapping of immune cell phenotypes and functions. We take advantage

of the conceptual framework of the cancer-immunity cycle to speculate how

local T cell responses may be enhanced in the granulomamicroenvironment at

the site of Mycobacterium tuberculosis infection. This includes an exploratory

definition of “hot”, immune-inflamed, and “cold”, immune-excluded TB

granulomas that does not refer to the level of bacterial replication or

metabolic activity, but to the relative infiltration of T cells into the infected

lesions. Finally, we reflect on the current knowledge and controversy related to

reactivation of active TB in cancer patients treated with immune checkpoint

inhibitors such as PD-1/PD-L1 and CTLA-4. An understanding of the underlying

mechanisms involved in the induction and maintenance or disruption of

immunoregulation in the TB granuloma microenvironment may provide new

avenues for host-directed therapies that can support standard antibiotic

treatment of persistent TB disease.
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Introduction

Mycobacterium tuberculosis (Mtb) is an intracellular

bacterium with a remarkable ability to manipulate immune

pathways in the human host to escape from the local defense

in the lung or other infected organs. The hallmark of human

tuberculosis (TB) is the formation of granulomas, which is

defined as aggregates of immune cells, particularly Mtb-

infected macrophages in response to chronic inflammation.

The typical morphology of the TB granuloma is well-

established including a core of modified macrophages such as

epithelioid cells, foamy macrophages and multinucleated giant

cells and more or less organized layers of lymphocytes and

granulocytes with varying degrees of fibrosis and caseous

necrosis (1). However, these structures are highly dynamic and

less is known about the role of the granuloma microenvironment

(GME) in regulating immune cell function and controlling

bacterial growth. While it is widely accepted that cell-mediated

immunity including activated macrophages and IFN-g
producing T cells is imperative to achieve immune control of

intracellular Mtb, it is debated whether immunoregulatory

subsets such as anti-inflammatory macrophages, myeloid-

derived suppressor cells (MDSCs) and regulatory T cells

(Tregs) are required to dampen chronic pathological

inflammation or if the induction of immunosuppressive cells

contribute to an impaired antimicrobial effector response. This

controversy has escalated by the findings that cancer patients

who receive therapy with immune checkpoint inhibitors

targeting the PD-1/PD-L1 pathway, seem to have an increased

risk of reactivating latent TB infection (2, 3). Immune

checkpoint inhibition has in many ways revolutionized cancer

therapy by blocking primarily the inhibitory molecules, PD-1 or

CTLA-4, that are expressed by exhausted effector T cells or Treg

cells (4). In this Review, we will attempt to provide a deepened

view on the most recent findings of selected in situ studies
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related to the GME and how we can learn more about the

phenotype and function of the GME by comparisons to studies

on the tumor microenvironment (TME). Interestingly, TB

granulomas share many similarities with solid tumors,

including tissue remodeling, regions of hypoxia and necrosis,

extensive fibrosis, and local immunosuppression (5). Our

intention is not to provide a broad overview on the GME, but

to touch base with some of the most recent studies using

multiparametric imaging methods and single-cell RNA

sequencing (scRNA-seq) to discover the different micro-

milieus of the granuloma lesions with a focus on human and

primate tissues. We believe this is important to enhance our

understanding about protective as well as non-protective

immune mechanisms identified in the GME and in what way

we can manipulate the human immune response at the site of

Mtb infection with relevance for host-directed or immune

enhancing therapies in TB.
Innate and adaptive immune cells as key
players in cancer and TB immunity

The immune microenvironment is crucial for the prognosis

and outcome of localized diseases that require cell-mediated

immunity including chronic infections and different tumor

types. The importance of the immune response in preventing

active TB as well as cancer is highlighted by the increased

frequency of clinical TB (6–8) and different malignancies (9–11)

in immunosuppressed and immunodeficient patients.

Immunologically, granulomatous TB lesions are in many ways

similar to tumors (Figure 1) in that immune cells are persistently

exposed to specific antigens and bystander stimuli that result in

potent inflammation and immune cell activation, but also

exhaustion, functional inactivation or local immunosuppression

(12–14). Antigen-specific T cells are found at the local site of
FIGURE 1

The TB granuloma versus solid tumor microenvironment. Shown are relevant immune cells involved with a focus on myeloid cells and T cell subsets,
several with immunosuppressive functions that are controlled by checkpoint molecules. Light purple cells in the TB granuloma depict epithelioid cells
and multinucleated giant cells, while dark purple cells depict fibroblasts. GME, granuloma microenvironment; TME, tumor microenvironment.
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disease and in the peripheral circulation of patients. A central role

of both conventional and unconventional CD4+ and CD8+ T cells

have been described in TB infection (15) and cancer (16)

including complementary as well as overlapping functions of

CD4+ and CD8+ T cells (17). CD4+ T cells are considered

mandatory to support activation of other immune cells such as

macrophages, CD8+ T cells and B cells by production of Th1

effector cytokines IFN-g and TNF-a (18). Instead, CD8+ T cells

are primarily involved in contact-dependent killing of target cells

either via death receptor/ligand ligation or granule-mediated

exocytosis of cytotoxic effector molecules such as perforin,

granzymes and granulysin (19, 20). However, under specific

circumstances CD4+ T cells are activated to express cytotoxic

killing functions and correspondingly, CD8+ T cells are important

producers of Th1 cytokines that can stimulate immune cells

present in the local granuloma or tumor microenvironment

(18). As such, Th1 cells are responsible for activation of cell-

mediated immunity that is required to combat intracellular

pathogens and malignant cells (17, 21). This involves activation

of dendritic cells (DCs) and macrophages, but also persistence of

cytotoxic natural killer (NK) cells and cytotoxic CD8+ T cells

(CTLs) as well as Th1 effector CD4+ T cells (13, 22). In contrast,

Th2 cells producing IL-4, IL-5 and IL-13 are associated with

activation of granulocytes involved in allergic reactions as well as

activation of B cells and humoral immunity that are usually not

effective in intracellular infections such as Mtb nor in anti-tumor

responses (21). Similarly, immune inhibition mediated by

MDSCs, anti-inflammatory macrophages and Treg cells may

skew the intended tissue repair response towards active

immunosuppression at the local site of disease (13).

Innate and adaptive cells involved in cellular immune

responses communicate to recognize and control or destroy

Mtb-infected cells and cancer cells. NK cells and gamma-delta

(gd) T cells are innate lymphocytes that have been shown to be of

importance in the early defense against infected cells (23, 24) or

tumor cells (25, 26). Mtb-infected macrophages or tumor-

associated macrophages (TAMs) derive from both tissue-

resident cells and from peripheral blood monocytes that are

recruited to the disease site in response to inflammation (27).

Th1 cytokines including IFN-g, promote polarization of

classically activated M1 macrophages that secrete pro-

inflammatory cytokines such as IL-1b, IL-6 and TNF-a and

have potent antigen processing and presenting abilities as well as

cytotoxic and antimicrobial activities and are considered anti-

tumorigenic (28, 29). Proinflammatory M1 macrophages are

capable of killing Mtb-infected cells or tumor cells via release of

lysosomal enzymes, reactive nitrogen intermediates (RNI) and

reactive oxygen species (ROS). In contrast, Th2 or anti-

inflammatory cytokines including IL-4, IL-10 and TGF-b,
polarize alternatively activated M2 macrophages that express

arginase-1 and have poor cytotoxic activities but are instead

associated with wound healing processes (29, 30). Anti-
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inflammatory M2 macrophages support angiogenesis and

extracellular matrix remodeling and are involved in

suppression of Th1 and CTL responses (31). Alveolar

macrophages are the main host cell to become infected with

Mtb in the early stage of infection (32) and bacteria are likely

allowed to replicate in these cells because of their inherent anti-

inflammatory or tolerant function in lung homeostasis (33).

Polarization of anti-inflammatory or immunoregulatory

macrophages may be considered an immune evasion

mechanism used by virulent strains of Mtb to promote long-

term persistence in the GME (34–37). TAMs are the most

abundant population of tumor-infiltrating immune cells in the

TME (38) and typically belong to the M2-like macrophage

population (29, 39) that are associated with poor prognosis in

different cancers (40, 41). Accordingly, M2-polarized

macrophages are permissive to intracellular Mtb growth (34,

42) and also promote tumor growth and metastasis (27). It is

worth noticing the emerging data uncover the M1/M2

classification as an oversimplification of macrophage

polarization. The complexity of monocytes/macrophages in the

tissue microenvironment in vivo show a poor correlation with

the M1/M2 designation, which suggest that distinct populations

play specific roles in Mtb infection or tumor progression (33,

43–45).

Modern single-cell sequencing and tracer technologies have

enabled identification of diverse subsets of macrophages in tissues

such as the lung with relevance for different disease conditions (33,

43). These include tissue-resident and monocyte-derived alveolar

macrophages as well as interstitial macrophages in Mtb-infected

lungs (46, 47) and several functionally distinct monocyte/

macrophage populations that predicted the prognosis of lung

adenocarcinoma (48). Recent evidence also points to a role of

inflammation-driven metabolic reprogramming of macrophages

that contribute to the regulation of immune functions in the GME

(49). It was recently reported that Mtb infection of macrophages

can prevent glycolysis in pro-inflammatory macrophages and

limit metabolic reprogramming over time to favor bacterial

growth (50). Correspondingly, inhibition of fatty acid oxidation,

promoted antimicrobial functions and reduced Mtb replication in

macrophages (51). Likewise, a key mitochondrial fatty acid b-
oxidation enzyme was recently shown to be involved in

progression of aggressive prostate cancer including enhanced

risk of metastasis and poor clinical patient outcome (52).

Overall, macrophages have a key role in balancing the

inflammation in the GME as well as the TME involving a

combination of pro- and anti-inflammatory responses to

combat Mtb-infected macrophages and tumor cells and to

control tissue pathology as is also discussed below (53, 54).

However, up to date there is no coherent consensus around

macrophage heterogeneity and classification and the role of

specific subsets at sites of disease and during different phases

of disease.
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Immune features in the TME that
resembles the GME: Local
immunosuppression mediated by
myeloid cells and regulatory T cells

Treg cells are usually represented by a heterogenous sup-

population of CD4+ T cells with a specialized function in

suppression of effector cells via cell contact-dependent

mechanisms or secretion of anti-inflammatory cytokines such

as IL-10, TGF-b and IL-35 (55, 56). Although Treg cells have a

protective function to reduce pathological inflammation in

tissue, these cells also have an inhibitory effect on specific anti-

Mtb as well as anti-tumor responses. Different factors such as

immature or tolerogenic DCs or high TGF-b or IL-10

production may drive expansion of Treg cells (56), which

could have an unfavorable impact on the local ratio of Treg to

effector T cells in the TME (57, 58) and in the GME (59, 60). A

typical trait of chronic infections and cancer is exhausted T cells

in the local microenvironment that lose robust effector

functions, express multiple inhibitory receptors and are

defined by an altered transcriptional program (14). Such

dysfunctional T cells express diverse sets of inhibitory

receptors and/or immunosuppressive cytokines to regulate

immunopathology but are often associated with ineffective

control of persisting TB infection (61, 62) and tumors (63, 64).

While therapeutic interventions targeting exhausted T cells to

restore cellular immunity has been well described in the cancer

field, it is debated whether similar approached would be effective

in chronic TB infection. Previous findings in the mouse model of

TB infection demonstrated that absence of the immune

checkpoint molecule PD-1 exacerbated CD4+ T cell mediated

immunopathology, which enhanced bacterial load and reduced

survival (65). It was recently demonstrated that inhibition of

PD-1 in Mtb-infected non-human primates also worsened TB

disease, but with a dissimilar T cell pathology compared to mice

(66). Granulomas in anti-PD-1 treated primates contained

higher bacterial loads and were associated with enhanced

levels of pro-inflammatory cytokines and functional CD8+ T

cells while CD4+ T cells up-regulated CTLA-4 and displayed

reduced trafficking in the GME (66). Other studies have shown

that depletion of CD25-postive Treg cells in TB infected mice

did not alter the course of infection (67, 68), while depletion of

FoxP3-postive Treg cells was shown to ameliorate TB disease

(69) and adoptive transfer of CD25+FoxP3+ Treg cells

prevented effective CD4+ T cells responses and bacterial

clearance (70). These results would suggest that some type of

negative regulation of the T cell response to Mtb is required to

avoid overt inflammation, however, induction of active

immunosuppression in the GME is likely not appropriate to

obtain immune protection in TB.

High expression of immune checkpoint molecules such as

CTLA-4 on Treg or conventional effector T cells can result in an

impaired expression of co-stimulatory molecules on DCs and
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macrophages and instead promote the expression of the

inhibitory enzyme indoleamine 2, 3-dioxygenase (IDO) that

result in tryptophan starvation and cell cycle arrest of effector

T cells (55, 71). Another enzyme involves the arginase-1

pathway that limits arginine availability for NO synthesis (30)

and arginase-mediated depletion of arginine in the local

microenvironment may induce a profound suppression of

human T cell proliferation and cytokine synthesis (72).

MDSCs are a heterogenous population of myeloid cells that

expand in response to low-grade chronic inflammation and

together with Treg cells contribute to an immunosuppressive

tissue microenvironment and disease progression of different

infections (5) as well as cancer (73). MDSCs expressing IDO or

ag ina s e -1 p romot e immune to l e r anc e and loca l

immunosuppression in cancer (74, 75) via direct inhibition of

effector T cells (76) or by expansion of Treg cells (77).

Correspondingly, MDSCs have been demonstrated to induce

Treg cells in a cell-contact dependent manner (78). Increased

frequencies of MDSCs in the lung of TB patients were found to

be similar to lung cancer patients, and involved inhibition of

proliferation, and cytokine production by CD4+ and CD8+ T

cells and modulation of T-cell trafficking (79, 80). Both TB

infection (81) and cancer (82) have been associated with an

impaired expression of perforin and granzymes in CD8+ T cells,

which may result in reduced target cell killing. Interestingly,

Treg cells in the TME have also been reported to express

granzyme B and perforin that kill NK cells and CD8+ T cells

(55, 83), which suggest that Treg cells can suppress granule-

associated effector molecules in NK and T cells but also kill

effector cells via granule-mediated killing.
Immune features in the TME that
resembles the GME: Immunometabolism,
vascularization and tissue repair

It has been argued if T cell mediated resistance in chronic

infections such as TB would ever be successful in complete

eradication of the pathogen, but immune tolerance and control

of tissue damage may be as important in host defense in the

chronic phase of disease (49). Accordingly, it has been

discovered that apart from local immunosuppression, Treg

cells have a function in tissue repair and regeneration (84),

either indirectly or directly in a tissue-specific manner (85).

Excessive inflammation caused by immune cells may result in

extracellular matrix (ECM) degradation and tissue injury (37)

and subsequent pathological fibrosis that hampers tissue

function and may lead to organ failure (85). In the lung, Treg

cells inhibit M1 macrophage inflammatory activity and

encourage proliferation and differentiation of damaged

alveolar epithelial cells (85). Treg cells further promote M2

macrophage polarization via the release of anti-inflammatory

cytokines (86) that may contribute to the wound healing process
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but are ineffective in mounting cellular immunity (87). Notably,

enhanced levels of granulocytic MDSCs showed an association

with low-intermediate chest X-ray findings in patients with

active TB, which may suggest a beneficial role of these cells in

the limitation of inflammation-induced tissue damage (88).

Overall, Treg- or MDSC-mediated suppression of immune cell

activity seems to be beneficial for tissue repair and regeneration,

but detrimental for maintenance of antigen-specific

cellular immunity.

Metabolic pathways (89) and angiogenesis (90) could also

influence immune cell function and cellular persistence in chronic

infections and cancer by altering the inflammatory processes in

the tissue microenvironment. As such, inducible nitric oxide

synthase (iNOS) and arginase-1 compete for the same cellular

substrate, L-arginine, to produce NO or ornithine, respectively

(30). While NO-producing macrophages are microbicidal and

anti-tumorigenic, arginase-expressing and ornithine-producing

macrophages promote collagen synthesis and tissue-remodeling

processes essential for wound healing (30). M2 macrophages have

been shown to release anti-inflammatory cytokines and promote

angiogenesis and fibrosis (91). Anti-inflammatory M2

macrophages that produce TGF-b promote tissue fibrosis,

which may reduce treatment efficacy of standard therapy (12).

Hypoxic microenvironments in granulomas as well as solid

tumors could also contribute to pro-inflammation and

production of vascular endothelial growth factor (VEGF) that

promotes angiogenesis and M2 polarization (12). It was

previously shown in the zebrafish model that mycobacteria

induce granuloma-associated angiogenesis, which promoted

bacterial growth and dissemination to new tissue sites via

permeable blood vessels (92). Likewise, Mtb-infected mice

displayed a subpopulation of granuloma macrophages that

produced high levels of VEGF that correlated with granuloma

size, hypoxia, and necrosis, suggesting that VEGF regulates

granulomatous inflammation (93). Studies in Mtb-infected

rabbits revealed a functionally abnormal vasculature that only

permitted distribution of small molecules in the peripheral regions

of the granulomatous lesions (94). Pharmacological inhibition of

the VEGF pathway suppressed granuloma-associated

angiogenesis and reduced bacterial burden in infected animals

(92, 93) likely by normalizing blood vessel formation, which

reduced hypoxia and improved small drug transportation (94).

Similar to the effect in solid tumors, decreased vascularization

during mycobacterial infection increased the T cell to neutrophil

ratio in the lesions, which may be considered correlates of

protective immunity (95). To regulate inflammation and to

promote tissue repair in the chronic phase of TB infection, pro‐

inflammatory glycolytic macrophages with antimicrobial

properties may skew polarization towards anti‐inflammatory

macrophages that rely on oxidative phosphorylation metabolism

but lack antimicrobial activities (49). It has been suggested that

spatial compartmentalization during granuloma maturation

involve such pro‐inflammatory macrophages that attempts to
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restrict Mtb growth in the granuloma center, while anti‐

inflammatory macrophages balance the inflammatory response

and limit bacterial dissemination as well as tissue pathology in the

granuloma periphery (49, 96). Whether the coexistence of such

spatially organized inflammatory and tissue repair responses exist

in the human GME or TME remains to be determined.
The basics of cellular immunity and
granuloma formation in human TB

A schematic outline of the GME and the diverse immune cell

pathways in the granuloma milieu that can be altered by virulent

Mtb is illustrated in Figure 2. The TB granuloma may have

diverse functions depending on the phase of Mtb infection.

Immature granulomas formed in the early infection phase, may

contain cells that are not fully activated and can contribute to

seeding of Mtb bacilli from infected macrophages to uninfected

monocytes (97). Later on, productive granulomas form that

contain modified macrophages such as epithelioid cells and

multinucleated giant cells as well as varying levels of immune

cell infiltrates including granulocytes and/or antigen-specific T

cells with the function to contain and seal-off the infection (98).

Small, innate non-epithelioid granulomas may promote bacterial

dissemination and seed Mtb infection (97), while formation of

mature epithelioid granulomas with varying levels of fibrosis or

central caseous necrosis may confine the infection and

simultaneously provide a niche for bacterial replication (99).

Antimicrobial effector mechanisms in macrophages act as a first-

line defense in bacterial clearance involving NO (100),

antimicrobial peptides such as human cathelicidin, LL-37

(101), and induction of autophagy (102). Failure of innate

immune cells to eradicate Mtb bacilli results in activation and

recruitment of adaptive CD4+ Th1 and cytotoxic CD8+ T cells

that typically surround Mtb-infected macrophages at the site of

infection forming the granuloma (53, 103). Recently, it was

demonstrated that help from CD4+ T cells improved CD8+ T

cell effector functions and prevented exhaustion, which

enhanced intracellular Mtb growth restriction (104). Thus,

both CD4+ and CD8+ T cells are required to generate

protective T cell responses in TB (104). While CD4+ Th1 cells

producing IFN-g are important to activate macrophages and T

cells (105, 106), eradication of Mtb and infected macrophages

has been shown to be dependent on CD8+ T cells and granule-

mediated killing by perforin and granulysin (20, 107–112). A

coordinated expression of Th1 cytokines/chemokines and

cytotoxic effector molecules in multifunctional T cells have

been proposed to be associated with protective immunity in

TB (113) as well as other chronic infections (114, 115). Here,

polycytotoxic CD4+ (116) and CD8+ (117) T cells, producing

IFN-g and co-expressing perforin, granzymes B and granulysin,

were associated with immune control in persons with latent TB

compared to patients with active TB. These studies suggest that
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effector molecules could cooperate to enter infected cells and kill

intracellular pathogens (118, 119), and that not only the

magnitude, but the quality of the T cell response is crucial to

disease outcome. Importantly, human cytotoxic granules

contain the adaptive antimicrobial peptide granulysin, which

lack a homologue in rodents such as mice that is a commonly

used experimental model to assess TB pathogenesis (120). Mice

seems to be more dependent on innate immune responses

including NO for control of TB infection (121, 122). Although

the importance of CD8+ T cells in protective TB immunity have

been demonstrated in different knockout mouse strains (123),

there are considerable differences in TB disease pathogenesis

comparing different species also regarding the structure and

organization of TB granulomas (124, 125). Therefore, the

specific model used should be carefully selected and the results

obtained should be evaluated against human data. Here, the

non-human primate is an important model for human

immunology and disease that display features of human TB

pathology including Mtb susceptibility and the full spectrum of

disease including the various types of pathological lesions

observed during human TB infection (126).

Numerous studies provide evidence that TB granulomas have

dysfunctional CD4+ and CD8+ T cell responses and restricted

infiltration and access of T cells to the central core of Mtb-infected
Frontiers in Immunology 06
cells where the bacilli reside (60, 127–129). It is not known why T

cells are organized in periphery of the granuloma; perhaps as a

lymphocytic cuff trying to seal off the infection or as a

consequence of deficient T cell migration in the collagen-rich

areas of the granuloma. It may also be due to the dynamic tissue

repair responses in the peripheral regions of the TB lesions as

discussed above. Complete eradication of Mtb in this stage of

infection is rare but may instead denote a transition from immune

resistance to tolerance and induction of latent or persistent

TB (130).

Mtb has evolved successful strategies to undermine cellular

immunity, by hiding in infected cells causing down-regulation

of effector mechanisms but also blockade of effective antigen-

presentation by DCs and subsequent T cell activation including

inhibition of crucial chemoattractants and Th1 cytokines

(131). In tissue biopsies from lungs or lymph nodes obtained

from patients with active pulmonary TB (101, 132) or local TB

lymphadenitis (60, 133), respectively, we have observed that

severely impaired immune functions involve down-regulation

of perforin and the antimicrobial peptides LL-37 and

granulysin that are necessary to kill Mtb via osmotic lysis.

Instead, we and others have shown that persistent Mtb

infection promotes expansion of CD4+FoxP3+ Tregs (60, 69,

101, 134), M2-type macrophages (133, 135), or Th2 cells (136,
FIGURE 2

TB control depends on cellular immunity induced in the local GME. Schematic summary of the immune cell alterations and deficient immune
pathways that have been described related to induction and maintenance of cellular immunity in the TB granuloma microenvironment. Note
that the illustration shows some of the major alterations of cellular immunity in the GME and should not be considered complete.
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137), as well as MDSCs (133, 138, 139) with suppressive or

anti-inflammatory functions in granulomatous TB lesions.

While CD8+ T cells are not necessarily lower in numbers in

gross Mtb-infected tissues such as lung or lymph nodes, CD8+

T cells are particularly scarce in the GME (60, 132). The fact

that especially CD8+ T cells are low in numbers in the

granulomas may be explained by the immunosuppressive

microenvironment of the granulomas or by a physical barrier

preventing the influx or trafficking of CD8+ effector T cells into

the GME. We have also found that the few CD8+ T cells

present in the granuloma are functionally impaired with low

co-expression of perforin and granulysin, which may suggest

that bacterial and host factors in the GME have a negative effect

on effector CD8+ T cells. This suggests that Mtb evades cellular

immunity and creates a bacteria-permissive environment in

the granulomas that may reduce the ability of the host to clear

the infection. Whether the different anti-inflammatory or

regulatory cell subsets are a cause or consequence of TB

disease is unknown.

Poor control of pro-inflammatory and Th1 immune responses

promotes pathological tissue destruction and is generally

considered to favor TB disease progression (140). However,

while excessive inflammation would fuel lung pathology and

tissue damage, a too weak response associated with enhanced

immunosuppression would result in bacterial replication and

spread in the local granuloma microenvironment (Figure 3)

(141). The question is whether inhibition of immunosuppressive

subsets would protect the host or promote pathogen growth?

Perhaps more inflammation and effector T cells are not required

to eradicate Mtb, whereas restricted but appropriately activated T

cells located at the right place in the GME would enhance

bacterial killing.
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Recent advances in regulation of TB
immunity in the GME

The dynamic nature and complexity of TB granulomas is

highlighted by the fact that GMEs with distinct phenotypical and

functional properties can exist simultaneously in an infected

individual (133, 142). Several studies have been published in the

past year aiming to define the different immune landscapes of

the Mtb granuloma by mapping the cellular and functional

diversity at the local site of infection. New advanced

technologies for spatial transcriptomics and high-content

imaging have enabled deep-profiling of immune cells in tissue

with unprecedented resolution. MIBI-TOF (multiplexed ion

beam imaging by time of flight), a multiplex imaging platform

that relates cellular phenotype to tissue structure, was used to

quantify expression and spatial distribution of 36 proteins in

lung tissue sections obtained from patients with pulmonary TB

(143). Distinct types of granulomas were identified and defined

by structured immune cell compositions and immune cell

frequencies that were associated with TB disease status (143).

The granuloma composition containing 19 different cell subsets

did not differ much comparing pulmonary and extrapulmonary

sites, but higher CD8+ T cell frequencies were found in resected

lung biopsies from patients who received pre-surgical

antimicrobial treatment compared to postmortem lung

biopsies (143). This elegant study further demonstrated eight

representative microenvironments within the TB granulomas

including features of local immunosuppression, such as high

expression of the inhibitory enzyme IDO-1 and the immune

checkpoint molecule PD-L1 on myeloid cells, but also

proliferative Treg cells and high levels of TGF-b in the absence

of IFN-g (143). While most T cell subsets were accumulated in
FIGURE 3

Schematic illustration of the TB granuloma microenvironment. Activation (arrows) and inhibition (closed lines) of immune cells must be strictly
controlled to maintain immune balance and prevent TB disease progression.
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the lymphocytic cuff of the granulomas, CD3+CD4+Foxp3+

Treg cells infiltrated the myeloid-rich core and displayed a

positive correlation with IDO+PD-L1+ macrophages that also

colocalized with TGF-b (143). Further analyses revealed that

PD-L1 expression was associated with active TB progression and

treatment response, which suggests that myeloid cells with

suppressive properties could promote local expansion of Treg

cells and consequently prevent the recruitment and activation of

effector CD8+ T cells (143).

Serial intravascular staining was used in combination with

intracellular staining and multiparametric flow cytometry to

quantify trafficking of blood leucocytes to lung granulomas of

Mtb-infected non-human primates (144). Granulomas were

found to be dynamic with a slow but continuous cellular influx

of primarily T cells and CD11b+ cells, but on average, >90% of the

cells from an individual lung granuloma were tissue-localized and

not intravascular (144). In contrast to findings in the mouse

model of TB, most immune cells and cytokine-producing T cells

in TB granulomas remained tissue-localized in primate lungs

(144). There was a negative correlation between high bacterial

burden and recruitment of immune cells into the granuloma

(144). These findings disclose that continual surveillance by

relatively low numbers of circulating leucocytes to lung

granulomas is important for immune control in TB and that

Mtb may restrict recruitment and trafficking of immune cells to

the GME. In this context, a systems biology approach using non-

human primate data suggested that the structural organization of

granulomas as well as recruitment of predominately non-specific

T cells likely contribute to reduced responsiveness as <10% of T

cells within granulomas have been found to be Mtb-specific in

terms of cytokine production (145). There may be several

explanations for reduced T cell responsiveness, including

exhaustion of T cells in the GME, direct downregulation of

antigen presentation by Mtb within infected macrophages, the

spatial organization of granulomas that may affect the ability of T

cells to reach macrophages and become activated, and/or

recruitment of primarily non-Mtb-specific T cells to lung

granulomas (145).

Another recent study set out to explore different granuloma

trajectories in Mtb-infected non-human primates by comparing

the cells and immune pathways involved in high- versus low-

Mtb burden granulomas obtained from one and the same

infected lung (146). Here, it was suggested that coordinated

cell interactions among multiple T cell and macrophage cell

subsets are required for successful Mtb control. Combining PET/

CT imaging with scRNA-seq of granuloma cells obtained from

individual lesions formed early (detected at 4 weeks post-

infection) or late (detected at 10 weeks post-infection) revealed

that early-appearing, high-burden granulomas were

characterized by a type 2 wound healing response driven by

IL-4 and IL-13 producing cells and transcripts implicated in

fibrosis, TGF-b signaling and tissue remodeling (146). Instead,

late-appearing, low-bacterial-burden granulomas were
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associated with a type 1 response and a higher proportion of a

cytotoxic subcluster consisting of conventional ab CD8+ T cells

that expressed genes encoding different effector molecules and

functions including perforin and granzymes as well as other

genes relevant for motility, migration, tissue residency

(CX3CR1, TGFBR3, and S100A10), and regulators of cell state

(AHNAK, KLF3, and ZEB2) (146). In addition, bacterial control

correlated with CXCR3+CCR6+ T cells with mixed Th1-Th17

traits such as transcripts for TNF-a and IFN-g, and transcription
factors associated with Th17 differentiation (146). These data are

consistent with a protective role of Th1-associated T-bet

expressed in both CD8+ and CD4+ T cells at later stages of

Mtb infection in non-human primates (147). Contrary, FoxP3+

Treg cells expressing CTLA-4, was not associated with bacterial

control (146). Importantly, low-burden granulomas reflected

more effective bacterial killing rather than reduced bacterial

growth, which may indicate that functionally cytotoxic CD8+

T cells could eradicate Mtb-infected cells more effectively in low-

burden compared to high-burden granulomas (146). Of note,

relatively lower proportions of the cytotoxic CD8+ subcluster

was detected in high-bacterial-burden granulomas that showed a

skewing towards type 2 tissue repair responses that could inhibit

macrophage antimicrobial activity as well as the cytolytic

functions of CD8+ T cells in the GME (148, 149). While type

2 responses in early-appearing granulomas have a function to

limit pathology, such responses may have the side-effect of

preventing and shutting out adaptive T cells that are required

for elimination of Mtb-infected cells. Additional information on

the spatial distribution of immune cells and granuloma structure

in low- versus high-bacterial-burden granulomas may provide

additional information on potential protective responses.

Furthermore, scRNA-seq and mass cytometry analyses of

immune cells in another non-human primate model of latent

versus active TB infection demonstrated that increased lung as

well as circulating NK cells expressed cytolytic effectors,

including perforin, granzymes and granulysin, which suggest a

key protective role for NK-cell mediated cytotoxicity during TB

latency in the lung compartment (129). Instead, type I IFN-

responsive macrophages as well as plasmacytoid DCs and

activated T cells did not seem to contribute to immune control

in animals with active TB (129), perhaps because Th1 and Th17

cells are not properly localized close to Mtb-infected

macrophages. It is speculated that the early type I IFNs

responders is represented by inflammatory monocytes that are

recruited from the circulation and differentiate to CD163+IDO-

1+ macrophages at the site of infection that recruits Mtb-

permissive myeloid cells such as neutrophils and MDSCs,

while mediating a T cell suppressive environment in lung

granulomas (128). It has previously been shown that IDO-1

expression was particularly high in the macrophage-rich inner

layer of TB granulomas that correlated with higher Mtb burden

(128). Macrophages co-expressing the M2-marker CD163

together with IDO-1 localized within the suppressive rim of
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necrotic lung granulomas in non-human primates and humans

and may prevent Mtb-specific T cells from reaching infected

cells within the necrotic centers, which would promote Mtb

persistence (128). Interestingly, inhibition of IDO-1 activity in

Mtb-infected primates reduced bacterial growth and lung

pathology and allowed translocation and access of granzyme-

expressing CD3+ T cells from the peripheral lymphocyte cuff

into the core of the granuloma (128). In addition, high

expression of the inhibitory molecule LAG-3 in lung

granulomas (150), possibly produced by plasmacytoid DCs,

may contribute to this immunosuppressive environment that

can actively limit T cell protective mechanisms (129).

Altogether, majority of these findings are consistent with our

recent report providing evidence that arginase-expressing

MDSCs are elevated in TB granulomas from TB/HIV co-

infected patients (133). Although we detected high expression

of IDO-1 in macrophages in the center of granulomas from TB

as well as TB/HIV co-infected tissues, arginase-1 expression was

mostly confined to the T cell rich areas localized at the periphery

of the TB granulomas, surrounding the cores of the lesions (133).

High numbers of granulocytic MDSCs in peripheral blood

correlated with Mtb antigen load in tissue, suggesting that

enhanced bacterial replication may nurse the expansion of

suppressive MDSCs in the granulomas (133). Chronic

inflammation coincided with compromised Th1 and CD8+

CTL responses whereas Th2/Treg cytokines ie. IL-13, TGF-b
and IL-10, and several inhibitory checkpoint molecules such as

IDO, LAG-3 and TIM-3 were enhanced in Mtb-infected tissues,

supportive of an immunosuppressive environment in the TB

lesions (133). Furthermore, a consistent finding from our in situ

image analyses clearly show extensive collagen deposition and

fibrosis in granulomatous tissue from patients with progressive

TB disease (60, 133). An enhanced proportion of granulocytic

MDSCs was also found in Mtb-infected non-human primate

granulomas, and similar to our observations in humans, the

MDCSs were specifically located in the outer lymphocytic cuffs

at the periphery of TB granulomas (138). Similar to the potential

organization of anti-inflammatory macrophages to the

periphery of the granuloma (49), this localization of MDSCs

may have a function to restrict T cell access to the core of the TB

granuloma and/or contribute to dysfunctional myeloid and T

cell responses in the GME. A recent study on SIV/TB co-infected

non-human primates found that CD4+ T cells are rapidly

depleted from the inner core and outer cuff of lung

granulomas and the remaining CD4+ T cells display reduced

motility in the GME (151). Furthermore, spatial transcriptomics

of 36 markers in granulomas from Mtb-infected C3HeB/FeJ

mice, revealed increased levels of Foxp3 and IL-10 mRNA in

encapsulated granulomas close to regions with Mtb-infected

activated macrophages and high bacterial density (152). Such

encapsulated granulomas contained a hypoxic necrotic core

surrounded by a thick fibrotic capsule separating the lesion

from other lung areas (152). This is also in line with our previous
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findings from human lymph node granulomas where

computerized image analysis demonstrated that CD8+ T cells

expressing perforin and granulysin were scarce in the

granulomatous lesions while CD4+FoxP3+ T cells co-

expressing CTLA-4 and GITR accumulated inside the

granulomas together with iNOS-expressing macrophages and

high express ion of TGF-b (60) , suggest ing act ive

immunosuppression at the local site of Mtb infection. These

studies provide evidence that compartmentalization and

skewing of the immune response toward a regulatory

phenotype may result in an uncoordinated myeloid and

effector T cell response that reduces granule-mediated killing

of Mtb-infected cel ls and subsequently reduce TB

disease control.

Recently, scRNA-seq analysis of cells obtained from

zebrafish granulomas revealed the expression of mixed type 1-

(IFN-g, IL-12, IL1-b) and type 2-associated transcripts (IL-4 and

IL-13), which challenge the current dogma that mycobacterial

granulomas exclusively originate from type 1 responses (153).

These findings support the notion that macrophage

epithelialization and necrotic granuloma formation are

dependent on type 2 responses and expression of arginase,

while type 1 cytokines and iNOS-expressing macrophages are

not involved in epithelioid granuloma formation (153). This

type 2-mediated epithelioid transformation and granuloma

organization was dependent on down-stream Stat6/IL-4R

signaling as zebrafish deficient in these pathways failed to

promote epithelialization and necrotic granulomas, which

correlated to significantly higher bacterial burden (153). In

addition, in situ imaging of non-human primate granulomas

confirmed abundant presence of arginase-1 expressing

epithelioid-like cells in the more distal cell layers from the

necrotic core of the granulomas (153). This is also consistent

with the spatial compartmentalization of pro- and anti-

inflammatory responses associated with tissue repair functions

in the GME (49, 96). Instead, these results are in contrast with

the above-described study on multimodal profiling of lung

granuloma responses in non-human primates (146), which

highlights the complexity of the immune milieu in the GME

that is also dependent on the experimental model used. More

detailed studies on the roles of wound-healing responses and

tissue remodeling in TB would shed additional light on

these controversies.
Immune features in the TME that
resembles the GME: The
cancer-immunity cycle

As described above, chronic TB lesions display multiple

similarities with solid tumors including the dynamic changes

of macrophage and T cell responses in the local tissue

microenvironment as well as regions of hypoxia and necrosis,
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extensive fibrosis, and local immunosuppression (12–14) (12, 53,

103, 154). Like Mtb-infected macrophages in the GME, TAMs

are key cells that can promote an immunosuppressive TME that

downmodulates imperative T cell responses (154, 155).

Cytotoxic CD8+ T cells are considered to play a major role in

granule-mediated killing of cancer cells (156), while a greater

focus has been put on CD4+ T cells as well as Mtb-infected

macrophages to understand immune control in TB. Although, T

and NK cells with cytotoxic functions have been relatively

underexplored in Mtb infection, the recent reports described

above suggest that CD8+ T cells are important to achieve

protective TB immunity in the GME.

Immune scoring of tumors is built on a conceptual framework

involving factors that influence the so-called cancer-immune set

point (157). This includes tumor classification into one of three

basic immunophenotypes based on the spatial distribution of

cytotoxic T cells in the TME: immune-desert, immune-excluded

and immune-inflamed phenotypes (from cold to hot tumors)

(154, 157). The cancer-immunity cycle is described as a cyclic

process that is regulated by a balance between stimulatory and

inhibitory signals (154, 157). Below, we mirror the cancer-

immunity cycle to the corresponding Mtb infection-immunity

cycle as follow: 1.) Release of tumor-antigens/Mtb-antigens, 2.)

Presentation of tumor-antigens/Mtb antigens by DCs, 3.) Priming

and activation of T cells, 4.) Trafficking of T cells to tumor/

granuloma via the bloodstream to the disease site, 5.) Infiltration

of T cells into tumor/granuloma from the vasculature or

periphery, 6.) Recognition of cancer cells/Mtb-infected cells by

T cells, 7.) Killing of cancer cells/Mtb-infected cells by cytotoxic T

cell destruction via granule exocytosis (perforin, granzymes and/

or granulysin) (154, 157, 158). Dying tumor/Mtb-infected cells

release additional antigens, allowing the tumor/infection-

immunity cycle to continue. Notably, tumors with the immune-

desert phenotype cannot pass steps 1-3 due to the absence of T

cells in both the tumor and its margins. Tumors with the immune-

excluded phenotype cannot exceed steps 4-5 due to a lack of T

cells in the tumor mass. Tumors with the immune-inflamed

phenotype cannot exceed steps 6-7 due to T cell exhaustion or

immunosuppression due to Tregs and/or MDSCs and up-

regulation of immune checkpoint inhibitors such as PD1-PD-

L1, CTLA-4 or IDO.Whether the cancer-immunity cycle can also

be applied to Mtb infection is yet to be determined, but it is also

possible that TB immunity follows separate paths or branches

where the granuloma immunophenotypes exist as diverse entities

in the infected organ. The schematic in Figure 4, illustrate the

conceptual notion of hot or immune-inflamed versus cold or

immune-excluded TB granulomas that like hot and cold tumors,

exhibit varying degrees of T cell infiltration. Occasionally, the term

hot and cold granulomas have been used when referring to the

level of bacterial replication or metabolic activity (159), but here

we use this term to define the relative infiltration of T cells into the

infected lesion.
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In a similar model that is based on the distribution and

number of CD3+ and CD8+ T cells in the center and edge of

tumors and also on the expression level of PD-L1, tumors are

divided into hot, cold, and intermediate tumors (including

immune-suppressed and isolated) (160). Immune evasion

mechanisms in tumor immunology involves factors that

inhibit T cells and T cell recruitment, which prevents cytotoxic

T cells from entering the TME (160). In immune-desert tumors,

CD8+ T lymphocytes are absent from the tumor and its

periphery, while in immune-excluded tumors, CD8+ T cells

localize only at invasion margins and do not efficiently penetrate

the tumor. Inflamed tumors (158) are featured by the presence of

T cells in the tumor parenchyma or at the peripheral margin of

the tumor (161), but these may consist of both effector and

regulatory subsets to maintain immune homeostasis (162). This

phenotype also contains proinflammatory cytokines and

chemokines that could benefit T cell activation, expansion, and

cellular influx. Contrary, non-inflamed tumors generally express

cytokines and Treg cell and/or MDCSs that are associated with

immune suppression or tolerance, as well as inactivated or M2-

polarized tumor-associated macrophages. Ultimately, the

numbers, function, distribution, and migratory abilities of T

cells are considered key factors that influence the outcome of

tumor development in multiple cancers. Thus, there is a strong

incitement to turn cold tumors into hot tumors by improving T

cell infiltration that could improve the clinical response to

immunotherapy (154). As such, understanding the

pathological mechanisms involved in defective T cell migration

is essential. Correspondingly, Mtb-induced limitations of

granuloma-infiltrating T cells should be further investigated to

provide better insights on the potential contribution of T cell-

based immunotherapy in TB. Mechanisms that could control T

cell migration in cancer as well as TB infection are defects in T

cell priming (lack of antigens, insufficient antigen processing/

presentation and/or co-stimulation) and deficient T cell homing

to the lesions (aberrant chemokines or deficient expression of

adhesion molecules, hypoxia) (154). Here, CXCL12 production

by fibroblasts or IL-8 production by myeloid cells have been

shown to prevent Th1 cells and cytotoxic T cells to enter the

tumor parenchyma (163, 164) and also downregulation of the

antigen-presentation machinery (164).
Immune features in the TME that
resembles the GME: Extracellular
matrix remodeling

Importantly, T cell migration through the tumor stroma is

considered a rate-limiting step in the cancer-immunity cycle for

the immune-excluded phenotype. The stroma surrounding the

tumor parenchyma is enriched in ECM proteins and fibroblasts

that may impede the ability of T cells and other immune cells
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that enter the tissue from the blood, to migrate effectively within

this complex environment to reach the tumor cells. A pre-

existing anti-tumor response might have been present but was

rendered ineffective by a block in tumor penetration through the

stroma or by the retention of immune cells in the stroma. This

reflects a similar scenario as recently demonstrated in the

tertiary lymphoid structures close to the human TB granuloma

(143) and could explain the peripheral localization of T cells that

is often observed in the GME (60, 127–129). As described above,

high TGF-b expression and collagen deposition is characteristic

of human TB granulomas and such high-density collagen matrix

could likely affect the ability of T cells to reach and kill Mtb-

infected cells in the necrotic core of the lesions. Interestingly,

cytotoxic T cell release of the granule-associated serine protease

granzyme B, can result in degradation of ECM proteins

including collagen and promote an immune-inflamed
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compared to an immune-excluded tumor phenotype (165,

166). There are also other proteases such as the matrix

metalloproteinases (MMPs) and CD206+ M2-polarized

macrophages that contributes to the ECM degradation, which

results in the deposition of a tumor-specific ECM with altered

composition and increased stiffness, creating a tumor-supportive

environment (167). A matrix-degrading phenotype

characterized by elevated expression levels of several MMPs in

sputum samples from TB patients correlated with higher TB

disease severity scores and a delayed treatment response (168).

ECM remodeling and fibrotic activity by ie. fibroblasts in the

TME or GME, could therefore emerge as a real threat for the

immune response to achieve productive T cell protection as

excessive collagen deposition affects the location and migration

of T cells that becomes trapped in the fibroblast- and collagen-

rich stroma (169). As recently described in human TB, some
A

B

FIGURE 4

Putative TB granuloma phenotypes. (A) Immune-inflamed or hot TB granuloma (left) is characterized by intermediate-high T cell infiltration.
These may include both effector T cells and Treg cells at various ratios. Immune-excluded or cold TB granuloma (right) is characterized by low-
absent T cell infiltration. T cells are mostly localized around the fibrotic capsule of the lesion. Based on the spatial distribution of CD3+ T cells in
the GME, a gradient of these immunophenotypes may be observed. (B) Microscopic images illustrating immunhistochemical staining of CD3+
or CD8+ T cells in the GME of selected granulomas from two patients with a local lymph node TB. Representative of immune-inflamed, hot
granulomas (left) and immune-excluded, cold granulomas (right). Magnification is x25.
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lung granulomas exhibited a fibrotic wound-healing response

including CD36+ fibroblasts and CD163+ M2-like macrophages

that were colocalized with collagen-1 within the fibrotic regions

of the GME (143). Little is known about the processes that

regulate fibrosis in GME including peripheral versus central

granuloma-associated fibrosis , a lthough high, local

concentrations of TGF-b and IL-10 likely enhance fibroblast

proliferation (170). Computational modeling based of human

and non-human primate granulomas has also suggested that

myeloid cells are drivers of fibrotic disease via macrophage-to-

myofibroblast transformation (171). While it is a subject of

continued debate whether fibrotic granulomas may be

beneficial or detrimental to the host, fibrotic granulomas

simulated using computational modeling were associated with

high bacterial burden (170).

There are several potential drug candidates that can

modulate ECM composition to reduce immune-mediated

tissue damage and improve TB outcomes and that may be

explored as host-directed therapy for TB together with

standard antibiotic treatment. Our previous findings in a

human organotypic lung tissue model demonstrated that

global inhibition of MMPs in the Mtb-infected tissue reduced

both granuloma formation and bacterial load (172), suggesting

that MMP-targeted intervention could ameliorate TB disease.

Accordingly, MMP inhibitors could alter ECM deposition in

Mtb-infected tissues and reduce immunopathology and bacterial

burden (173, 174). Instead, treatment of Mtb-infected mice with

the anti-inflammatory and antifibrotic drug pirfenidone together

with the first-line antibiotics rifampin and isoniazid was shown

to worsen TB disease, likely by blocking the antibacterial effects

of rifampin (175). These findings highlight the importance to

study possible drug interactions in different experimental

models of TB infection to enhance our understanding about

diverse ECM proteins in tissue and the potential beneficial effects

from pharmacological interventions targeting ECM remodeling.
Immune features in the TME that
resembles the GME: Relevance of
immune checkpoint inhibition

Understanding the complex structure and immunoregulation

of the GME is essential to promote drug accessibility, but also for

the development of adjunct immunotherapies that could enhance

immune cell functions effective in eradication of persistent

bacteria. As in the TME, immune cells in the GME exhibit large

phenotypic and functional heterogeneity including expression of

both inhibitory and stimulatory immune checkpoint molecules as

depicted in Figure 5 (176, 177). Blockade of checkpoint inhibitors,

primarily CTLA-4 and PD-1/PD-1L, has in many ways

revolutionized cancer therapy by unleashing effector T cell

responses resulting in enhanced tumor cell killing in the local

tissue environment (178). Engagement of PD-L1, primarily
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expressed on antigen-presenting cells, with its receptor PD-1 on

T cells delivers a signal that inhibits TCR-mediated activation of

IL-2 production and T cell proliferation. As cytolytic T cells are

also required to kill Mtb-infected cells, modulation of checkpoint

molecules could be considered as adjunct TB treatment (179).

However, the effects on checkpoint inhibition or activation on the

pathophysiology of Mtb infection is poorly understood. Several

case reports show that checkpoint inhibition of T cell subsets

using PD-1 blockers reactivates active TB in cancer patients with

latent TB (180, 181), which suggest that some of these checkpoints

are required to control the immune balance in the GME.

Contrary, fewer cases of Mtb reactivation have been reported in

cancer patients receiving other checkpoint inhibitors such as PD-

L1 (ligand of PD-1) or CTLA-4 (182). Importantly, similar to

immunostimulatory treatment with immune checkpoint

inhibitors, immunosuppressive treatment such as inhibition of

proinflammatory TNF-a in autoimmune diseases, also reactivates

TB in latently infected individuals (110). This highlights the

complexity in this field and the urge to examine the large

heterogeneity of regulatory cell subsets in terms of checkpoint

molecule expression to fully appreciate the role of different sub-

populations in ongoing, active TB disease (Figure 5).

The functions of CTLA-4 and PD-1 seems to be non-

redundant, as CTLA-4 has a function to limit early T cell

activation in the lymphoid organs, while PD-1 mainly affects T

cell activation in the peripheral tissues (176). It has been proposed

that inhibition of PD-1 in TB accelerates Mtb growth via excessive

TNF-a secretion and increased pulmonary TNF-a
immunoreactivity (183). Additionally, PD-1 may facilitate host

resistance to Mtb by preventing the over-production of IFN-g by
CD4+ T cell that could result in lethal immune-mediated

pathology (184). On the other hand, PD-1 and PD-L1

expression on bronchoalveolar lavage-derived CD3+ T cells and

CD14+ monocytes obtained from TB patients, suggested that PD-

1 was associated with a diminished number of cells producing

IFN-g and TNF-a and IL-2, and blocking the PD-1/PD-L

pathway could restores protective T cell responses (185).

Furthermore, it was recently discovered that PD-1 blockade

induced recovery of dysfunctional PD-1+CD8+ effector T cells

but also enhanced immunosuppressive functions of PD-1+ Treg

cells, suggesting that the relative proportion of effector

PD-1+CD8+ T cells compared to PD-1+ Treg cells in the local

TME is very important for the clinical outcome of PD-1

checkpoint inhibition (186). The presence of actively

proliferating PD-1+ Treg cells in tumors is therefore a reliable

marker for hyperprogressive disease (186). Accordingly, PD-1

blockade may facilitate the proliferation of highly suppressive PD-

1+ Treg cells in hyperprogressive cancer, which results in

inhibition of effector T cells in tumor tissues (187).

A recent retrospective review that investigated adverse

events caused by the group of five FDA-approved PD-1/PD-L1

inhibitors, reported 72 cases of active TB and 13 cases of atypical

mycobacterial infections out of a total of 73,886 adverse events
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(3). Out of the 72 TB cases, 63 were caused by reactivation of

latent TB upon treatment with PD-1 inhibitors, while 9 cases

were caused by PD-L1 inhibitors (3). Nivolumab, a PD-1

blocking antibody, caused the highest frequency of TB

reactivation, while avelumab, which is one of the blocking

antibodies of PD-L1, did not cause any events of TB or

atypical infections (3). High expression of PD-L1 and IDO1 in

the GME (143), also indicates that the efficacy of PD-L1 (or

IDO) blockade could differ substantially from PD-1 blockade. In

the retrospective study, 44/72 cases occurred in patients with

lung cancer that was the most common indication for which use

of PD-1/PD-L1 inhibitors leads to TB reactivation (3). Although,

TB as a complication in cancer patients treated with PD-1/PD-

L1 inhibitors is considered rare, this study found a significantly

enhanced risk of TB reactivation in this group of patients (3).

Considering around 25% latent TB in any given population, of

whom 10% would develop active TB disease, the estimated

statistical risk could likely have been higher. Especially because

cancer itself is a risk factor for active TB and this patient group

are in many ways immunocompromised already before the start

of immune checkpoint inhibition. Furthermore, the effects of

combination therapy of conventional antibiotics and selected

immune checkpoint inhibitors on TB disease outcome is

currently not known. Here, it will be important to continue to

dissect different immune pathways that could be relevant for

checkpoint modulation of both T cell subsets as well as myeloid

subsets in the GME and define how the expression of checkpoint
Frontiers in Immunology 13
molecules are regulated by diverse host or bacterial interactions

(Figure 5). This is an area of adjunct host-directed therapy that

should be further explored in the future using clinically relevant

TB disease models.
Defining disease-specific endotypes
that can guide immunotherapy in
cancer or TB

Despite the general success of immune checkpoint blockade

in human cancers, only 40-60% of cancer patients respond to

checkpoint therapy (188). Importantly, the phenotypic immune

scores obtained using the cancer-immune set point described

above, are becoming particularly important in guiding clinical

treatment options as part of precision medicine in cancer. The

immune set point is the threshold that must be overcome to

generate effective immunity. Thus, a patient with a low set point

will be more responsive to ie. immunotherapy, while a high set

point will make treatment more difficult. Hierarchical clustering

of melanoma patients based on ECM remodeling assessed in

liquid biopsies identified three putative endotypes, A-C.

Endotype A identified patients with an overall high and

differentiated ECM turnover profile who experienced poor

outcome when treated with CTLA-4 inhibitors (189). Disease

endotypes have recently been described also in TB that can be

used to support decision making in future choices of host-
FIGURE 5

Checkpoint molecules dictate TB control. Schematic of potential immune checkpoint molecules of relevance in TB that can contribute to
activation (green) or suppression (red) in the granuloma. Note that selected receptor-ligand pairs are shown and does not represent a global
description immune checkpoint molecules. Cell-cell interactions between CD3+ T cells and host macrophages are illustrated. ICOS, Inducible
T-cell COStimulator; GITR, glucocorticoid-induced TNFR-related protein; CRTH2, Prostaglandin D2 receptor 2; KLRG1, Killer cell lectin-like
receptor subfamily G member 1; CCR4, C-C chemokine receptor type 4; PD1, Programmed cell death protein 1; PD-L1, PD1 ligand; CTLA-4,
cytotoxic T-lymphocyte-associated protein 4; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; LAG3, Lymphocyte-activation
gene 3; MHCII, major histocompatibility complex II; FoxP3, forkhead box P3; IDO, Indoleamine 2,3-dioxygenase; Arg, arginase; FATP2, Fatty acid
transport proteins,.
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directed therapy (190–192). Especially since heterogeneity in TB

should not be subtyped simply based on disease phenotype

(observable traits such as severity, tissue pathology, and

bacillary burden), but diverse endotypes (functional traits

based on distinct molecular profiles such as specific metabolic,

epigenetic, transcriptional, and immune phenotypes)

representing distinct disease states may also require different

treatment options (190). As such, TB endotypes can be

characterized by either immunodeficiency or excessive

pathological inflammation, while other variables such as other

co-morbidities or Mtb strain virulence may also drive TB

endotypes. Recently, two TB disease endotypes A and B, were

determined based on RNA-sequencing profiles of whole blood

samples from different TB patient cohorts (191). Endotype A

displayed expression of genes related to inflammation and

immunity but decreased metabolism and proliferation, while

endotype B showed increased metabolic and proliferative

activity (191). Precise disease phenotyping, combined with in-

depth immunologic or molecular profiling and multimodal

omics integration including machine learning models, can

identify TB endotypes and guide endotype-specific therapies

similar to advances in cancer medicine.
Conclusions

TB is clearly a multifaceted disease involving a spectrum of

unique GME in the infected tissues where bacteria can either persist,

thrive, or be killed. While there may be differences in GME

structure and composition depending on the stage of Mtb

infection and disease progression, a complex mix of diverse

GMEs apparently co-exist in the infected host. Recent in situ

findings suggest a significant and underappreciated role for

cytotoxic T cells and/or NK cells in the GME, while

immunosuppressive myeloid and Treg subsets likely pose a threat

to bacterial elimination. Tissue remodeling involving collagen and

other ECM components produced and processed by fibroblasts and

anti-inflammatory macrophages likely reduce the antimicrobial

capacity of the GME and should be further explored. These

studies highlight the need for more knowledge of how to unleash

Mtb-specific immunity while limiting inflammatory responses and

immunosuppressive subsets aiming to tailor host-directed therapies

in patients with different TB endotypes.

The local microenvironment in the TB granuloma resembles

solid tumors in multiple ways and therefore we should learn

from tumor immune evasion mechanisms to understand loss of

immune control and bacterial persistence in granulomas.

Defining the factors that influence the TB infection-immune

set point at different stages of the infection-immunity cycle or

branch, will likely bring us closer to the design of effective

immunotherapies that are based on inhibition or occasionally

stimulation of checkpoint molecules. Current technological and

scientific advances related to in situ studies of the TB granuloma
Frontiers in Immunology 14
tissue offers high-dimensional quantification of both

transcriptional and protein data, which follows the expression

and distribution of a vast number of molecules at the single-cell

level with high resolution. Even though these analyses mostly

provide an unbiased snapshot of the cells and immune pathways

in a small area of the infected tissues obtained from patients or

experimental animals, these data are highly valuable to

understand the complexity of the GME and the local factors

that may affect altered immune cell morphology and function,

tissue remodeling and immune cell migration. Analyses of the

GME and Mtb-infected tissues is also an important complement

to more easily accessible samples from peripheral blood or body

fluids. While blood samples allow for longitudinal as well as

functional analyses of diverse immune cell populations, these

findings may not always represent the response of immune cells

kept in the physiological microenvironment of the infected

tissue. Continued research in this area will advance our

understanding of regulatory immune cell subsets in different

clinical forms or disease-specific endotypes of TB that is

necessary to define if modulation of checkpoint molecules

would be a beneficial therapeutic approach for difficult-to-treat

TB patients.
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