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Multi-component prime-boost
Chlamydia trachomatis
vaccination regimes induce
antibody and T cell responses
and accelerate clearance of
infection in a non-human
primate model
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It is of international priority to develop a vaccine against sexually transmitted

Chlamydia trachomatis infections to combat the continued global spread of

the infection. The optimal immunization strategy still remains to be fully

elucidated. The aim of this study was to evaluate immunization strategies in a

nonhuman primate (NHP) model. Cynomolgus macaques (Macaqua

fascicularis) were immunized following different multi-component prime-

boost immunization-schedules and subsequently challenged with C.

trachomatis SvD in the lower genital tract. The immunization antigens

included the recombinant protein antigen CTH522 adjuvanted with CAF01 or

aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5

MOMP and MVA MOMP). All antigen constructs were highly immunogenic

raising significant systemic C. trachomatis-specific IgG responses. In

particularly the CTH522 protein vaccinated groups raised a fast and strong

pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP
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showed that all vaccinated groups, recognized epitopes near or within the

variable domains (VD) of MOMP, with a consistent VD4 response in all animals.

Furthermore, serum from all vaccinated groups were able to in vitro neutralize

both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and

ocular mucosa, which showed detectable levels of IgG. Vaccines also induced

C. trachomatis-specific cell mediated responses, as shown by in vitro

stimulation and intracellular cytokine staining of peripheral blood

mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated

groups established a multifunctional CD4 T cell response, whereas the DNA

and Vector vaccinated groups also established a CD8 T cells response.

Following vaginal challenge with C. trachomatis SvD, several of the

vaccinated groups showed accelerated clearance of the infection, but

especially the DNA group, boosted with CAF01 adjuvanted CTH522 to

achieve a balanced CD4/CD8 T cell response combined with an IgG

response, showed accelerated clearance of the infection.
KEYWORDS
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Introduction

Genital Chlamydia trachomatis infections annually cause an

estimated 131 million new cases worldwide (1) and constitutes a

major global health issue by potentially inducing severe

complications such as pelvic inflammatory disease, ectopic

pregnancies and infertility (2, 3). Antibiotics still offer an

effective treatment of C. trachomatis infections. However, since

the infection is asymptomatic in up to 75% of the cases, the

majority of infections are left untreated, and transmission is not

interrupted (3). It is generally agreed that the most effective

weapon against the continued spread of Chlamydia infections, is

a prophylactic vaccine (4).

Despite several years of research, a vaccine is not yet on the

market. This is partly due to the complex bi-phasic lifestyle of C.

trachomatis. The unique biphasic life cycle of C. trachomatis,

with both an intracellular and extracellular stage, challenges the

immune system. It is believed that protective immunity should

consist of cell-mediated immune (CMI) responses, in addition to

serotype specific antibodies (5–13). Moreover, generating

mucosal immunity in the genital tract poses an additional

challenge for a vaccine.

In the present study, we tested different vaccine strategies in

an NHP chlamydia infection model. The strategies aimed to

induce antibodies, CD4 T cells and/or a CD8 T cell response. In

addition, some of the vaccines aimed at generating a mucosal

response. The antigens chosen for this study were based on the

Major Outer Membrane Protein. Firstly, a consensus MOMP

Antigen (Con E) based on approximately 1500 serovar E ompA
02
sequences generated to provide high epitope coverage against

the most prevalent C. trachomatis strains (14). Secondly, a

synthetic fusion protein, CTH522, was used. CTH522 is a

recombinant, engineered version of the MOMP, comprising

heterologous immunorepeats of VD4 regions from four genital

C.t. serovars (D, E, F, and G) (11). The strategy behind the

recombinant fusion protein is to induce amplified responses to

the protective epitopes and induce cross-serovar protection (11).

Another key feature of the current experiment was a parallel

assessment of CTH522 in two markedly different adjuvant

systems (AlOH and CAF01), combined with an intranasal

booster. This combination has been tested in mice and mini-

pigs where it was shown to be highly immunogenic by inducing

high titers of neutralizing antibodies, IFN-g producing CD4+ T

cells and accelerated clearance of a genital C. trachomatis

infection (11–13, 15). Furthermore, this comparison mirrored

a recent first-in-human clinical trial were both formulations

proved to be immunogenic, and where CAF01 was superior in

inducing neutralizing serum antibodies and Th1 cell-mediated

immune responses (16). To induce strong cellular immune

responses, and specifically CD8 T cell responses combined

with CD4 T cell responses, part of the animals were boosted

with the CT522/CAF01 immunogen after priming with an

Adeno vector pAL1112 (HuAd5-MOMP), an MVA pox

vector, or a plasmid DNA pcDNA3.1 delivering the MOMP

Con E antigen (14, 17). All three vectors have proven

immunogenic in NHPs, and it was recently shown that an

immunization strategy combining these three vaccines and a

final booster vaccination with adjuvanted protein antigen
frontiersin.org
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induced superior immune responses and consistently enhanced

the clearance of intravaginal C. trachomatis in a mouse C.

trachomatis infection model (14).

In the present study we demonstrate that different

combinations of multi-component immunization strategies

with both protein vaccines, DNA vaccines and recombinant

viral vector vaccines in a nonhuman primate (NHP) model,

result in distinct immune responses. Furthermore, we observe

that a regimen using DNA priming and protein (CTH522/

CAF01) boosting accelerated bacterial clearance following a

genital challenge with Chlamydia trachomatis.
Results

All vaccination regimes proved safe and
induced significant systemic
antibody responses

A total of 30 cynomolgus macaques were vaccinated

following different prime-boost vaccination regimes including

both protein, DNA and vector vaccines and different

adminis trat ion routes , as shown in Figure 1 and

Supplementary Figures 6-10). All animals remained healthy

during the study and did not develop measurable adverse

effects to the immunizations. In addition, we observed no

significant fluctuations in the weight or temperature of the

animals (Supplementary Figures 1, 2).

At fixed time points after the immunizations, serum was

collected and the levels of CTH522 specific IgG in serum were

evaluated by ELISA. All 5 vaccinated groups established a

significant serum CTH522 IgG response (Figure 2). However,

the kinetics were slightly different in the 5 vaccinated groups. All

animals in the CTH522/AlOH+IN, CTH522/CAF01 and

CTH522/CAF01+IN groups raised a significant IgG titer after

only 1 intramuscular (IM) immunization, and the IgG titer

remained significant to the last sampling point (Figures 2A-C).
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The serum IgG levels increased slightly slower in the DNA+

CTH522 and vectors+CTH522 groups, where all animals were

seroconverted at week 8 and week 4, respectively (Figures 2D, E).

The CTH522/AlOH+IN, CTH522/CAF01+IN, and

CTH522/CAF01 groups significantly increased serum IgG

following the 3rd IM booster vaccine in week 16 (Figures 2A-

C). The DNA+CTH522 and vectors+CTH522 groups increased

serum IgG levels significantly following the protein/CTH522/

CAF01 IM booster in week 20 (Figures 2D, E). No significant

differences were seen in the serum antibody responses following

three times IM vaccinations with CTH522 formulated with

either CAF01 or AlOH adjuvant (Figures 2A, B), and the

intranasal (IN) non-adjuvanted booster immunizations in the

CTH522/AlOH+IN and CTH522/CAF01+IN groups did not

induce any significant increase in serum IgG antibody titers

(Figures 2A, B).

The kinetics of the serum IgG response reflected the kinetics/

levels in the vaginal fluids, indicating that the antibodies detected

on vaginal surface were likely to be derived from the circulation.

Similarly, the ocular IgG levels also followed the serum IgG

levels and, as observed in the serum, showed that the IM booster

in the DNA/vector groups increased the ocular IgG titer

(Supplementary Figure 3).
Serum antibody responses are directed
against variable domains 1, 3 and 4 in the
MOMP sequence

Further elucidation of the specific epitope recognition by the

serum antibodies, following the different vaccination regimes,

was next evaluated. Serum was analyzed at week 24, i.e. after the

intranasal booster vaccines in group 1 and 2, and after the IM

booster vaccines in the DNA and vector groups (group 4 and 5).

These analyses were performed with a peptide array covering

CTH522, consisting of 15 mer peptides with 14 amino

acid overlap.
FIGURE 1

Study design. The figure shows the groups, the vaccines and the administration routes (intramuscular, IM, or intranasal, IN) used.
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Generally, the recognized peptides were located near and

within the variable domains (VDs 1,3,4) of the MOMP. The

CTH522/AlOH group even showed some recognition of the

VD2 region. All animals established a strong response against

the VD4 region that contains the conserved neutralizing VD4

epitope (11). The DNA group showed the narrowest recognition

within the VDs (Figure 3), while the vector group showed a

slightly broader recognition pattern. The CTH522/CAF01 and

CTH522/AlOH groups showed the broadest recognition,

especially against SvF and SvG.
Serum antibodies were able to neutralize
SvD, SvE, SvF in vitro

To evaluate the capacity of the vaccine induced antibodies to

inhibit infection by C. trachomatis of its target cells, an in vitro

neutralization assay was performed. Using this assay, we

examined the neutralization of both SvD, SvE and SvF. Serum

from week 24 was used for the assay, and serum from the naïve

group was used as control. All five vaccinated groups showed a

capacity to neutralize all three serovars (Figure 4). Against SvD

the CTH522/AlOH+IN group showed the highest 50%

neutralization titer, whereas against SvE the DNA/CTH522

group, closely followed by the CTH522/AlOH+IN group,

showed the highest neutralizing titers. Even though all groups

were able to neutralize SvF, the 50% neutralization titers were
Frontiers in Immunology 04
slightly lower for all groups against this serovar, compared to

SvD and SvE. The vectors+CTH522 group showed the lowest

50% neutralization titers of all the vaccinated groups.
Different vaccination regimes induced
distinct T cell profiles

To evaluate the vaccination induced T cell responses,

PBMCs were collected during the study period and

cryopreserved. PBMCs from week 0/baseline and week 22

were re-stimulated with peptide pools (MOMP) and evaluated

for intracellular cytokines by intracellular cytokine staining

(ICS) and flow cytometry. The PBMCs were stained for the

following cell markers: CD3, CD4, CD8, CD154, CD137 and

cytokines: IFN-g, IL-2, TNF-a, IL-22, IL-17A. The gating

strategy is shown in Supplementary Figures 4, 5.

Stimulation of PBMCs with the MOMP peptide pool

induced a significant response. The percentage of antigen

specific CD154 + CD4+ T cells expressing combinations of IL2,

IFN-g, and TNF-a were increased 2 weeks after the last

immunization (W22) in all vaccinated groups (Figure 5). The

majority of these T cells were multifunctional in the sense that

they expressed several cytokines. The percentage of antigen

specific CD137+ CD8 T cells producing cytokines were only

increased in the DNA and Vector group (W22), (Figure 6,

showing multifunctionality of CD137+ CD8+ T cells). In
frontiersin.org
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FIGURE 2

(A–F) Serum CTH522 IgG antibody responses. Cynomolgus macaques were immunized following different prime-boost regimes (n = 5 per
group) and serum was collected every second week. The specific CTH522 IgG antibodies in serum were evaluated by ELISA and expressed here
as titer on a log10 scale. Grey arrowheads indicate vaccinations. Each line represents one animal. Statistical significance is indicated with
asterisks *p < 0.05 and **p < 0.01.
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FIGURE 4

In Vitro serum neutralization of C. trachomatis SvD, SvE and SvF. Cynomolgus macaques were immunized following different prime-boost
regimes (n = 5 per group) and serum was collected after finishing the immunization schedule (week 24). C. trachomatis SvD, SvE and SvF was
incubated with serum from each animal and the capacity of the serum antibodies to inhibit infection were evaluated by incubating the
antibody-bacteria mixture on to HaK cells and staining for inclusions. The black line shows SvD, the grey line shows SvE and the dark grey
dotted line shows SvF. The dotted red line indicates the reciprocal 50% neutralization titer for each serovar.
FIGURE 3

Serum epitope mapping at week 24. Cynomolgus macaques were immunized following different prime-boost regimes (n = 5 per group) and
serum was collected at week 24. Peptide array IgG responses to CTH522 15mer overlapping peptides are presented as the median signal for
each group with VD1 peptides (orange), VD2 (green), VD3 (blue) and VD4 from SvD, E, F and G (red) highlighted in colours.
Frontiers in Immunology frontiersin.org05
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contrast to CD4+ T cells, which could be divided into 6 or more

subsets based on their cytokine expression (Figure 5), the

induced CD8 T cells were dominated by only three subsets. A

larger proportion of the CD8 T cells produced only IFN-g. The
other dominant CD8 T cell subset produced both IFN-g and

TNF-a, whereas CD8 T cells producing all three cytokines (also

the only CD8 T cell subset that expressed IL-2), represented the

minor subset (Figure 6). No significant IL-17 or IL-22 responses

were detected in the re-stimulated PBMCs (data not shown).
Frontiers in Immunology 06
Vaccination induced accelerated
clearance of a vaginal C. trachomatis
SvD infection

To evaluate protective efficacy of the vaccine-induced immune

responses, the animals were challenged with a vaginal infection

with 5x107 IFUs C. trachomatis SvD. Following inoculation, the

vaginal chlamydial load was determined by PCR detection of

chlamydial DNA in vaginal swabs (Figure 7). The infection was
FIGURE 6

CD8 T cells responses. Multifunctional analyses week 22. Cytokine production by CD8+ T cells assayed by ICS. Multifunctional responses after
stimulation with pools of overlapping peptides from MOMP are represented. The size of each pie is proportional to the percentage of
CD137+CD8+ T cells expressing at least one cytokine, including IFN-g, TNF-a, and IL-2, and the proportions of cells expressing IFN-g and/or
TNF-a and/or IL-2 cytokines are displayed in each pie.
FIGURE 5

CD4 T cell responses. Multifunctional analyses week 22. Cytokine production by CD4+ T cells assayed by ICS. Multifunctional responses after
stimulation with pools of overlapping peptides from MOMP are represented. The size of each pie is proportional to the percentage of
CD154+CD4+ T cells expressing at least one cytokine, including IFN-g, TNF-a, and IL-2, and the proportions of cells expressing IFN-g and/or
TNF-a and/or IL-2 cytokines are displayed in each pie.
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cleared in all animals by week 5 in the DNA+CTH522/CAF01

group and the Vector+CTH522 group, by week 6 in the CAF01/

CTH522 group and by week 8 in the CTH522/Alum+IN group

(Figure 7). In the control group, at week 8, 80% of the animals had

cleared the infection and 1 animal remained PCR positive at week

9. The IN booster in the CTH522/CAF01+IN group did not

increase the protection (Figure 7). A Log-rank (Mantel-Cox) test,

comparing all groups showed a P value of 0,0994, and by

comparing each of the groups individually against the control

groups, only the DNA-CTH522 group showed a P value below

0.05 (P value=0.0257).
Discussion

The present study was designed to induce cellular immunity

(CD4 and CD8) combined with humoral immunity and to tailor

the phenotype of adaptive immunity with MOMP based

Chlamydia vaccines. We evaluate immunogenicity and

protec t ive e fficacy of combined mul t i -component

immunization strategies with both protein vaccines (CTH522,

Con E), DNA vaccine and recombinant viral vector (MVA-

MOMP), and adeno vector based vaccines, in a non-human

primate (NHP) model.

The data showed that all immunization regimes were

immunogenic and induced both a cellular and a humoral

response consisting of neutralizing antibodies (Figures 2-4).

The protein vaccine CTH522 formulated with either CAF01 or

AlOH showed a fast induction of systemic antigen-specific IgG

(Figure 2). We did not observe any significant differences

between the responses induced by AlOH and CAF01
Frontiers in Immunology 07
adjuvanted vaccines, which is in agreement with the responses

observed in humans with these adjuvants (16). The DNA and

vector vaccination regimes also induced significant titers of

antigen-specific systemic antibodies, which markedly increased

following the protein booster immunization (Figure 2). In

agreement with our results, a previous study in mice also

showed that protein vaccination regimes induced higher

antigen-specific antibody levels compared to DNA and vector

vaccine antigens and also efficiently boosted titers for these

groups (15).

MOMP contains four VD’s that are exposed on the surface

of the infectious form of C.t. These regions are main target of

antibody-dependent immunity, both through neutralizing

antibodies and Fc receptor mediated immunity (18). Previous

studies have shown that adoptive transfer of vaccine-induced

neutralizing serum markedly reduced early bacterial shedding

following a C. trachomatis infection (6, 11, 19–21). Thus,

antibodies seem to play a role in neutralizing/controlling the

initial inoculum, probably in cooperation with cellular

immunity. By detailed B cell epitope mapping we found

recognition of VD regions 1, 3, 4 in all vaccine groups. The

DNA and vector groups also recognized the VD1, 3 and 4

regions, although these groups showed a slightly narrower

recognition within these VDs compared to the CAF01 and

AlOH groups, probably reflecting that the Con E antigen in

the vector groups does not contain the VD4 region of SvF and G

(Figure 3). Recognition of the VD4 region correlated with the

ability of all vaccine strategies to induce neutralizing antibodies

against SvD, SvE and SvF.

Parenteral immunization with CTH522 in CAF01 and AlOH

induced significant levels of mucosal antibodies (IgG) in the
FIGURE 7

Clearance of vaginal C. trachomatis challenge infection Cynomolgus macaques were immunized following different prime-boost regimes (n = 5
per group) and subsequently given a vagino-cervical challenge infection with 5*107 IFUs C. trachomatis SvD. After the inoculation, vaginal swabs
were collected for the following nine weeks. The vaginal chlamydial load was determined by qualitative PCR on swab material.
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genital tract and the eye and levels correlated with serum titers

(Supplementary Figure 3, week 18). DNA and vector vaccines

alone did not induce mucosal IgG, which reflects the lower

serum titers compared to protein alone. However, following the

CTH522/CAF01 IM booster, these groups significant increase in

serum Ab. levels and of both vaginal and ocular IgG, at par with

the protein alone (Supplementary Figure 3, week 18). The

parallel assessment of CTH522 in the different priming

adjuvant systems (AlOH and CAF01) followed by two times

intranasal boosting with antigen had no boosting effect on

mucosal antibody levels (Supplementary Figure 3, week 22).

Thus overall serum IgG levels are reflected on the mucosa for all

groups. A recent human phase-I trial also evaluated the parallel

assessment of CTH522 in AlOH and CAF01, followed by two

times intranasal boosting. Here mucosal IgG titers also

correlated well with serum IgG concentrations (16). However,

in contrast to the findings in the NHP model, the human trial

showed effect of IN boosting in the CAF01 group, resulting in

elevated levels of both IgG and IgA. Unfortunately, IgA

evaluation was not possible in the current study, due to

limited material and false positive signals resulting from a

cross reacting secondary antibody used in the assay. Both

studies used the VaxINator device, which is designed to

atomize nasal medications for mucosal adsorption. However,

the nasal cavity of humans is much more spacious than in NHP’s

and it could be speculated that this could influence the evenly

antigen distribution and uptake.

Several studies in both humans and rodents have

demonstrated the importance of Th1 T cell immunity and the

effector cytokine IFN-g (8, 22–27). In contrast, less is known

about the protective role for CD8 T cells (28–33). All the vaccine

groups induced CD4 T cells, but only the DNA and Vector

group showed a CD8 T cell response (Figures 6 and 7). Based on

the cytokines measured, the CD8 T cells were composed of a

limited number of subsets compared the CD4 T cells, which

could be divided into 6 or more subsets, most of which produced

several cytokines (Figure 7). CD4 T cells showed more IL-2

expressing subsets than CD8 T cells, which primarily included

only one IL-2 expressing subset, the one that expressed IL-2

together with IFN-g and TNF-a (Figure 6). CD8 T cells were

dominated by a large population producing only IFN-g, whereas
the other dominant CD8 T cell subset produced both IFN-g and
TNF-a. This cytokine pattern among CD4 T cells and CD8 T

cells is not unlike what has been observed in mice, when testing

vaccine strategies able to induce both CD4 and CD8 T cells (34).

To evaluate protective efficacy of the vaccine-induced

immune responses, the animals were challenged with a vaginal

infection with 5*107 IFUs C. trachomatis SvD. Following

inoculation, protection, measured by the percentage of animals

able to clear the infection, was observed in the CAF01/CTH522,

DNA prime CTH522/CAF01 boost and in the vector group. In

particular, in the DNA group (boosted with CAF01/CTH522) all
Frontiers in Immunology 08
animals had cleared the infection by week 5, in contrast to

control animals where only 40% had cleared the infection. The

DNA prime/CTH522/CAF01 boost group had the overall most

multifaceted immune response with high level of neutralizing

Abs combined with strong CD4 and CD8 T cell responses

(Figures 4-6). One question, which will be important to

address in future studies is if the added effect of CD8 T cells

could also be achieved by a CD4 T cell inducing vaccine strategy

with the ability to induce even higher levels of IFNg/TNFa in

CD4 T cells, or if the added effect in the DNA group is due to

unique CD8 T cell effector functions.

A similar strategy involving DNA vaccination followed by

boosting with immune-stimulating complexes (ISCOM) of

MOMP protein (35) induced strong protection against

Chlamydia muridarum lung infection. In that study DNA-

MOMP (or MOMP/ISCOMS) induced significantly less

protection (35). Another study showed that vaccination of

mice with DNA MOMP plasmids, without a subunit vaccine,

failed to protect against a genital C. trachomatis challenge (36),

indicating that the DNA strategy benefits from being

supplemented with a subunit vaccine inducing CD4 T cells

and antibodies. It should be noted that DNA vaccines have

shown relatively low immunogenicity profiles in human clinical

trials, which may have to be addressed in future studies (37).

Although the C.t. infection dose used in this study is higher

than the dose experienced by a natural infection in humans, it

was selected to ensure that all animals were infected, which is

important considering the small number of animals in each

group. The dose is in line with the dose used in previous studies,

which ranged from 106 to 108 (38, 39). Lowering the dose in our

model led to increased variation regarding infection take (data

not shown). Lower doses given repeatedly has also been used (40,

41). However, this is not an optimal protocol when the objective

is to test the protective efficacy of vaccines, especially if natural

immunity is mediating protection before the infection protocol

has been completed. It can be speculated that using a high dose

may require an immune response that contains all the arms of

the immune system, such as antigen specific CD4 T cells, CD8 T

cells as well as neutralizing antibodies, in order to be able reduce

the bacterial levels. That would also explain why the neutralizing

antibodies induced in all the groups did not lead to significant

protection in all the groups [although we did notice a trend to

early protection in most groups, where antibodies are thought to

play a role (Figure 7)]. We are presently trying to develop a more

physically relevant model.

Taken together, our data showed that the CTH522 antigen

formulated in the adjuvant CAF01 or AlOH can induce both

multifunctional T cells and neutralizing antibodies in NHPs.

Moreover, our results suggested that a heterologous vaccine

strategy consisting of a DNA vaccine and a CTH522/CAF01

subunit vaccine, represents a promising vaccine strategy for

induction of a multifaceted immune response with high level
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of neutralizing Abs combined with strong CD4 and CD8 T cell

responses that can significantly accelerate clearance of a C.

trachomatis infection.
Materials and methods

Vaccine antigens and adjuvants

Different vaccine antigens and adjuvants were used in this

study: CTH522 vaccine antigen, based on MOMP (11) was

administered through the intramuscular route (IM) with

CAF01 adjuvant (42) or Aluminium hydroxide (AlOH)

adjuvant, or through the intranasal route (IN) without

adjuvant. Plasmid DNA vaccine, pcDNA3.1-MOMP, was

made by cloning consensus MOMP into the plasmid vector

pcDNA3.1 (14) and administrated by intra-dermal (ID) route

with electroporation (EP) in the back. Recombinant Human

Adenovirus serotype 5 (rHuAd5) vaccine expressing MOMP

(HuAd5-MOMP) was made by homologously recombining

consensus MOMP (AAC45154.1) into an E1 and E2 deleted

HuAd5 plasmid pAL1112 vector and administered through

intramuscular route (14). Modified vaccinia Ankara-MOMP

vacc ine made by recombin ing consensus MOMP

(AAC45154.1) into the p3186 plasmid and attenuated MVA

vector (14), and administered through intramuscular route.
C. trachomatis serovar D stock

Chlamydia trachomatis serovar D (Ct SvD; UW-3/Cx,

ATCC® VR-885™) was obtained from American Type

Culture Collection (ATCC, Masassas, VA) and propagated in

HeLa-229 cells, harvested, and purified as described by Caldwell

et al. (43). The C. trachomatis SvD stock was stored at -80°C in

0.2 M sucrose, 20 mM sodium phosphate (pH 7.4), and 5 mM

glutamic acid (SPG) and the concentration of inclusions forming

units (IFUs) were determined in HeLa-229 cells and

McCoy cells.
Non-human primates

Thirty cynomolgus macaques (Macaca fascicularis) weighing

3 to 5 kg were included in the study handled in biosafety level 3

(ABSL3) NHP facilities of IDMIT (“Infectious Disease Models

and Innovative Therapies” at the CEA “Commissariat à l’Energie

Atomique,” Fontenay-aux-Roses, France; accreditation no. #D92-

032-02). The protocols were approved by the institutional ethical
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committee “Comité d’Ethique en Expérimentation Animale du

Commissariat à l’Energie Atomique et aux Energies Alternatives”

(CEtEA #44) under statement number A14-026. The study was

authorized by the “Research, Innovation and Education Ministry”

under registration number APAFIS#720-201505281237660. All

animals were tested negative for SIV, SHIV, STLV (simian T-

lymphotropic virus), herpes B virus, filovirus, SRV-1, SRV-2

before the study and confirmed to be seronegative for

Chlamydia infection. All experimental procedures were

conducted according to European guidelines for animal care

(“Journal Officiel de l’Union Européenne”, directive 2010/63/

UE, September 22, 2010).
Vaccination protocols

The 30 macaques were randomly divided into 6 groups with 5

animals in each. The different vaccination prime-boost regimes for

the 6 groups are illustrated in detail in Figure 1. During all

vaccinations the macaques were sedated with ketamine

chlorhydrate (10 mg/kg body weight inramuscularly). CTH522

(85 µg per animal) was administered by the intramuscular (IM)

route with either CAF01 adjuvant (625 µg/125 µg) or AlOH

adjuvant (0.425 mg), as shown in Figure 1. IM immunizations

were performed in 0.6 ml volume in the right thigh (M. quadriceps)

of the animal. CTH522 Intranasal (IN) immunizations (30 µg per

animal) were performed with a Vaxinator device connected to a 1

ml syringe with two successive administrations of 0.25 ml, one in

each nostril. The DNA-MOMP vaccine was administered by

intradermal (ID) route with electroporation (EP) in the skin of

the back. 6 repeated volumes of 0.1 ml were injected ID (in total 1

mg) followed by EP using the Nepagen™ system (settings: 6

square-ware pulses of 10 ms with 90 ms intervals at 110V, (300-

700mA)). The hAd5-MOMP vaccine was administered IM with a

dose of 1011 viral particles in 1 ml per animal. The MVA-MOMP

vaccine was administered IM with a dose of 4*108 PFU per animal

in 0.5 ml volume **. The naïve group was not given any vaccination,

and was considered to be the control group.
Sample collection

During all sampling procedures the macaques were sedated

with ketamine chlorhydrate (10 mg/kg body weight IM). Blood

was collected via femoral venipuncture at week 0, 2, 4, 6, 8, 10,

16, 18, 20, 22, 24. Cervico-vaginal fluid for antibody detection,

was collected with Weck-Cel®spears (Medtronic Ophtalmics,

Jacksonville, FL, USA) at week 4, 8, 16, 18, 20, 22 and 24.

Cervico-vaginal samples for chlamydial load detection were
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collected with regular flock swabs (Mast Diagnostic - ref.: 552C/

10). Following contact with the vagino-cervical mucosa, the

swab was placed in a vial containing UTM-RT medium (Mast

Diagnostic – ref.: 330C/6) and kept on ice.
Vaginal challenge infection with 5*107

IFUs of C. trachomatis SvD

The animals were sedated with ketamine chlorhydrate (10

mg/kg IM), placed in ventral recumbency with their hips

elevated and 1 ml of the inoculum was atraumatically applied

directly to the vaginal mucosa at the vagino-cervical transition

using a 1 ml syringe. A dose of 5*107 IFUs were given to each

animal. The animal was allowed to stay in ventral recumbency

with their hips elevated for a short time after the inoculation.
Enzyme-linked immunosorbent assay

CTH522 specific antibodies in serum and swab samples were

detected with an indirect ELISA. Maxisorp® plates (NUNC A/S,

Roskilde, Denmark) were coated with CTH522 (0.5 µg/ml) over

night at 4°C. The isotypes IgG and IgA were detected with HRP-

conjugated antibodies specific against non-human primate IgG

(43R-IG020HRP, Fitzgerald, Acton, MA, USA, 1:75.000) and

IgA (43C-CB1631, Fitzgerald, USA, 1:50.000). The reactions

were visualized with TMB PLUS substrate (KemEnTec,

Taastrup, Denmark) and stopped with 0.5 M sulphuric acid.

The plates were read on an ELISA reader at 450 nm with

correction at 650 nm. A positive control (serum from a

previous study) was used as an internal standard to correct for

plate-to-plate variation. Two wells were run without substrate as

a negative control on each plate. The antibody titers were

calculated as the reciprocal of the highest dilution with an

optical density (OD) value higher than the cut-off. The cut-off

was determined from the day 0 sample mean + 2*SD.
Peptide array and analysis

The CTH522 peptide array was designed with triplicates of

immobilized 15mer peptides overlapping by 14 amino acids which

were printed on functionalized glass slides and incubated with

serum samples by JPT Peptide Technologies, Berlin. Briefly, the

array was incubated with serum samples collected at week 24 and

IgG peptide complexes were visualized using biotinylated goat

anti–monkey IgG and Alexa Fluor® 647 Streptavidin. Slides were

scanned with a high-resolution scanner at 635 nm and data

reported as arbitrary fluorescence units. The mean of triplicate
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values was determined, if the coefficient of variation was larger

than 0.5, only the 2 closest values were used. 10% of the maximum

intensity signal (65,535) was used as cut-off for a positive response,

and mean signals below this threshold were assigned a value

corresponding to half the threshold value (3277).
In vitro neutralization assay

The in vitro neutralization assay was performed to test the

vaccine-induced serum antibodies’ capacity to neutralize

Chlamydia infection of HaK cells in vitro. The assay

principally followed the protocol previously described (44).

First, serum samples from individual animals were incubated

at 56°C for 30 minutes to inactivate complement. Chlamydia

stock (SvD, SvE and SvF) was mixed and incubated with serial

dilutions of inactivated serum from each of the vaccinated

animals for 30 minutes and then inoculated onto a monolayer

of HaK cells in 96-well flat-bottom plates in duplicates.

Following 30 hours of incubation, cells and inclusions were

fixated and visualized with polyclonal rabbit anti-Ct043 serum

and fluorescence labeled secondary antibody (Alexa Flour 488,

goat-anti-rabbit IgG, A11008, Life Technologies) in the dilution

1:500. Counting of inclusions was performed manually in 20

fields of view at 40x magnification (Olympus IX71 inverted

fluorescence microscope). Neutralization was calculated as the

percentage reduction in the mean number of IFUs compared to a

pool of sera from control group animals (naïve).
Intracellular PBMC cytokine staining and
flow cytometry

PBMCs were isolated and (1-2 x 106) were resuspended in

150 µl of complete medium containing 0.2 µg of each

costimulatory antibody CD28 and CD49b. Stimulation was

performed in 96 well/plates using 2 µM of each peptide pool

or SEB (as positive control) or medium alone (as negative

control). Brefeldin A was added to each well at a final

concentration of 10 µg/ml and the plate was incubated at 37°

C, 5% CO2 overnight. The cells were then washed, stained with a

viability dye (violet, fluorescent reactive dye, Invitrogen), fixed

and permeabilized with the BD Cytofix/Cytoperm reagent.

Permeabilized cell samples were then stored at -80°C before

the staining procedure. Antibody staining was performed in a

single step following permeabilization. All the used antibodies

are listed in Table 1. After 30 min of incubation on ice in the

dark, cells were washed in BD Perm/Wash buffer. Cells were

counted with an LSR II (BD) immediately after the staining

procedure and FlowJo software was used for data analysis.
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Detection of vaginal chlamydial DNA by
qualitative PCR

The Abbott RealTime CT/NG assay (ABBOTT, Rungis,

France) is an in vitro polymerase chain reaction (PCR) assay

for the direct, qualitative detection of the plasmid DNA for CT

(C.trachomatis) and NG (N. gonorrhoeae) genomes. Nucleic acid

were extracted from UTM (universal transport media) samples

on M2000SP and amplification were performed on M2000SP,

according to the manufacturer’s instructions. Results were

expressed as cycle threshold (Ct).
Statistical analysis

All statistics were performed with GraphPad Prism software

(version 8.1.2). The not-normally distributed data were analyzed

with non-parametric tests; Kruskal–Wallis test and Dunn’s

multiple comparison test to determine the significance of the

difference between groups. Curves showing percent PCR

negative animals were compared with a Log-rank (Mantel-

Cox) statistical test. The comparisons were considered

statistical significant if the P value was < 0.05 (P < 0.05).

Further levels of significance are indicated with asterisks *P <

0.05, **P < 0.01, ***P < 0.001.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
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TABLE 1 Antibodies used for staining of immune cell markers and intracellular cytokines.

FLUOCHROME CLONE FUNCTION

BLUEVID Blue fluorescent dye n.a. Dead/live cells

CD3 APC-Cy7 SP34-2 T cells

CD4 V500 L200 CD4 T cells

CD8 PE-Cy7 RPA-T8 CD8 T cells

CD154 FITC TRAP-1 Ag specific marker for CD4 T cells

CD137 APC 4B4-1 Ag specific marker for CD8 T cells

IFN-g V450 B27 Cytokines Th1

IL-2 PerCP-Cy5.5 MQ1-17H12 Cytokines Th1

TFN-a BV605 Mab11 Cytokines Th1/Th17

IL-22 PE 2G12A41 Cytokines Th1

IL-17A AF700 N49-653 Cytokines Th17
n.a., Not applicable.
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