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Human basophils, first identified over 140 years ago, account for just 0.5-1% of

circulating leukocytes. While this scarcity long hampered basophil studies,

innovations during the past 30 years, beginning with their isolation and more

recently in the development of mouse models, have markedly advanced our

understanding of these cells. Although dissimilarities between human and

mouse basophils persist, the overall findings highlight the growing

importance of these cells in health and disease. Indeed, studies continue to

support basophils as key participants in IgE-mediated reactions, where they

infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine,

leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the

pathogenesis of allergic diseases. Studies now report basophils infiltrating

various human cancers where they play diverse roles, either promoting or

hampering tumorigenesis. Likewise, this activity bears remarkable similarity to

the mounting evidence that basophils facilitate wound healing. In fact, both

activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with

these cytokines polarizing macrophages toward the M2 phenotype. Basophils

also secrete several angiogenic factors (vascular endothelial growth factor:

VEGF-A, amphiregulin) consistent with these activities. In this review, we

feature these newfound properties with the goal of unraveling the increasing

importance of basophils in these diverse pathobiological processes.
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Introduction

Paul Ehrlich discovered, over 140 years ago, peripheral blood

basophils and tissue mast cells using novel hematological

techniques that combined the use of alkaline dyes and

conventional light microscopy (1, 2). Unlike mast cells, which

are only found as mature cells in tissues, basophils represent just

0.5-1% of all leukocytes in the bone marrow and peripheral

blood (3, 4). Basophils and mast cells are long recognized as

being morphologically similar in appearance and for sharing

several unique features (5, 6). For example, they are the only two

cells that express the full tetrameric (abg2) form of the high-

affinity receptor for IgE (FcϵRI). They both also uniquely store

histamine in cytoplasmic granules (7), releasing it and other

proinflammatory mediators (e.g., cysteinyl leukotrienes) when

appropriately activated (5, 8). In fact, these shared characteristics

continue to cause misperceptions, leading some to believe that

basophils and mast cells are one and the same. However,

compelling evidence over the last decades now supports that

human basophils possess morphological, immunological,

biochemical, and pharmacological characteristics quite

different from those of human mast cells (5–7, 9).

Until recently, there was some dispute as to whether mice

have basophils. However, the work of Ann M. Dvorak using

electron microscopy, clearly identified basophils in mice as a rare

population of bone marrow cells, with some ultrastructural

characteristics like those observed in human basophils (7, 10,

11). As discussed below, there remains considerable debate as to

whether mouse basophils are truly representative of human cells,

particularly with regard to function (11–17). Of course, much of

this debate often defaults to issues pertaining to the disparities
Abbreviations: ANGPT, angiopoietin; AREG: amphiregulin; BCG, bacillus

Calmette-Guérin; BEC, blood endothelial cells; BET, basophil extracellular

traps; CAF, cancer-associated fibroblast; CML, chronic myeloid leukemia;

CRC, colon carcinoma; CSF1, colony-stimulating factor 1; CSU, chronic

spontaneous urticaria; cys-LT, cysteinyl leukotriene; cys-LTR, cysteinyl

leukotriene receptor; CyTOF, cytometry by Time-Of-Flight; DC, dendritic

cell; DMBA, 7,12- dimethylbenz[a] amthracene; ET, extracellular trap; Flt3L,

l, FMS-like tyrosine kinase 3 ligand; HGF, hepatocyte growth factor; ILC2,

group-2 innate lymphoid cell; JAK2, janus kinase 2; LTC4, leukotriene C4; MI,

myocardial infarction; NET, neutrophil extracellular trap; NGF, nerve growth

factor; nLung, non-involved lung tissue; NSCLC, non-small cell lung cancer;

PC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; PV,

polycythemia vera; PGD2, prostaglandin D2; PGE2, prostaglandin E2; SCC,

squamous-cell carcinoma; TAM, tumor-associated macrophage; TDLN,

tumor-draining lymph nodes; Tfh, T follicular helper cell; TME, tumor

microenvironment; TPA, 12-0-tetradecanoylphorbol-13-acetate; Treg cell, T

regulatory cell; TrkA, tropomyosin receptor kinase A; TSLP, thymic stromal

lymphopoietin; TSLPR, TSLP receptor; VEGF, vascular endothelial growth

factor; VISTA, V-domain immunoglobulin suppressor of T-cell activation;

WT, wild type.
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expected with in vitro vs. in vivo experiments (18). Nonetheless,

the one newest function perhaps most shared by basophils from

both species is their capacity to secrete large quantities of IL-4,

even though debate persists about the stimuli most responsible

for this response.

Many fundamentals of basophil biology have been

extensively reviewed elsewhere, especially regarding their role

in allergic diseases (5, 19–24). In this review, we briefly touch on

this research field but will additionally focus on the concept of

basophils participating in tumorigenesis and wound-healing and

how these processes are seemingly linked and driven by the

capacity of these cells to secrete IL-4, IL-13, angiogenic factors

and pro-fibrotic cytokines.
Basophil development

Basophils originate from stem cell progenitors in the bone

marrow (25–27). Both in humans and mice, IL-3 is the most

important growth factor for basophil development (12, 17, 28,

29). In fact, basophils from both species can be developed in

vitro by simply culturing bone marrow cells (or CD34+

precursors in humans) in the presence of IL-3 for 10-14 days

(12, 30–32).

While IL-3 is clearly most important for basophil

development from precursors, other growth factors are

reported to facilitate expansion/function. For example, the

FMS-like tyrosine kinase 3 ligand (Flt3L) has been combined

with IL-3 to expand the number of culture-derived basophils

(33). Siracusa and co-workers reported that mouse basophils can

be generated by thymic stromal lymphopoietin (TSLP) through

the engagement of the heterodimeric TSLP receptor (TSLPR/IL-

7Ra) (34). These authors demonstrated that IL-3 and TSLP

induced the differentiation of two types of murine basophils

displaying different gene expression and functions (35). In

humans, it has been suggested that about 10% of basophils

from asthmatics express the TSLP receptor and release

histamine and cytokines in response to TSLP (15). In contrast,

more recent studies have shown that human basophils do not

express the IL-7Ra subunit of the heterodimeric TSLP receptor

(14) and do not respond to in vitro TSLP stimulation (12, 14,

16). By contrast, TSLP induces the release of IL-4, IL-13, CXCL1,

and CXCL2 from mouse basophils (12).
Heterogeneity of basophils: In species
and tissue versus peripheral blood

Human and mouse basophils express FceRI (36, 37) and will

up-regulate the degranulation markers, CD63 (38–40) and

CD203c when activated appropriately (9, 39, 41–43). Basophils

from humans and mice express the IL-3 (IL-3Ra/CD123) (34,
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44), GM-CSF (CD116) (45, 46), and IL-33 (ST2/IL1RL1)

receptors (47–50). The heterodimeric TSLP receptor, TSLPR/

IL-7Ra, is expressed by mouse basophils (12, 34), but the

presence of this receptor on basophils from allergic donors

and healthy subjects remains controversial (12, 14–16).

Human basophils reportedly express receptors for IL-5

(CD125) (51) and for Nerve Growth Factor (NGF)

(tropomyosin receptor kinase A: TrkA) (52–54). Both human

and mouse basophils display a variety of chemokine receptors (5,

55–60). The IgG receptors FcgRIIA, FcgRIIB, and small amounts

of FcgRIIIB are expressed by human basophils, whereas mouse

basophils express FcgRIIB and FcgRIIIA (61, 62).

Preformed mediators, such as histamine (≃ 1 pg/cell),

basogranulin (63, 64) and very low concentrations of tryptase

(65) are present in human basophils. Human (66) and mouse

basophils release granzyme B (67), that reportedly exerts

cytotoxic effects on tumor cells (68, 69). Basophils from both

species can synthesize cysteinyl leukotriene C4 (LTC4) through

the 5-lipoxygenase pathway (70). Mouse basophils additionally

produce prostaglandin D2 (PGD2) and prostaglandin E2 (PGE2)

through the cyclooxygenase pathway (71, 72). Human basophils

do not synthesize detectable levels of PGD2 or other mediators

requiring cyclooxygenase activity (12, 73).

Substantial evidence now shows that human (12, 24, 74–82)

and mouse (12, 47, 80) basophils secrete IL-4. Both human (12,

75, 76, 78, 81–85) and mouse basophils (12, 47) also generate

and release IL-13, yet the evidence for this response is far more

prevalent in the former species. Mouse basophils can release IL-6

(47, 86, 87) and TNF-a (47, 86). Two reports indicate that these

cytokines are secreted from human basophils (88, 89), even

though they do not appear to be products commonly released by

these cells. Human and mouse basophils release granzyme B (66,

67) that exerts a cytotoxic effect on tumor cells.

Human basophils secrete several angiogenic factors such as

vascular endothelial growth factor-A (VEGF-A) (64),

angiopoietin-1 (ANGPT1) (90), hepatocyte growth factor

(HGF) (47, 91), and amphiregulin (AREG) (92–94). Mouse

(47) and human basophils (91) express Hgf and release, under

certain conditions, AREG (94) and VEGF-A (Gambardella

et al., unpublished).

The life-span of circulating basophils is relatively short (≃
2.5 days in mice) (95) and therefore newly generated basophils

are constantly supplied from the bone marrow to the blood (25).

Basophils physiologically circulate in peripheral blood and

migrate within tissues mainly during certain types of

inflammation in mice (86, 95–98) and humans (99–104).

Basophils, present during mouse lung development, exhibit a

phenotype different from circulating blood basophils (47). In the

lung, specific gene signature of lung-resident basophils is

modulated by IL-33 and GM-CSF (47). These cells play a
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prominent role in the development and polarization toward

the M2 state of alveolar macrophages, raising the possibility that

in tumors associated with M2macrophages (105–107), basophils

contribute the polarization of tumor-associated macrophages.

Basophils derived from murine bone marrow cells are often

used as a model system for studies of the immunological

functions of these cells (86, 97, 108–111). It should be pointed

out that these cells, developed by murine bone marrow cells in

the presence of IL-3, have an activated phenotype (82, 112).

Recently, Pellefigues et al. carefully demonstrated functional

heterogeneity between naïve murine basophils obtained from

spleen and bone marrow-derived basophils (108). In humans,

functional heterogeneity of peripheral blood basophils has been

demonstrated by applying mass cytometry (CyTOF) to

simultaneously assess several proteins and functions of

basophils (113).
Angiogenic factors released by basophils

Angiogenesis occurs physiologically during embryonic

development, pathologically in inflammation and cancer (114,

115). Both cancer and immune cells (116, 117) produce several

proangiogenic factors (118, 119). The vascular endothelial

growth factor (VEGF) family includes VEGF-A, VEGF-B,

VEGF-C, and VEGF-D. VEGFs activate specific receptors

(VEGFR1, VEGFR2, and VEGFR3) on blood endothelial cells

(BECs). VEGF/VEGFR axis plays pivotal roles in tumor and

inflammatory angiogenesis (118). VEGF-A is released by human

basophils (64). All members of the VEGF family are chemotactic

for human basophils through the engagement of VEGFR2 on

their surface (64, 120). Therefore, VEGFs released by cancer cells

and immune cells in the tumor microenvironment (TME) (118,

120–123) can favor basophil infiltration in TME.

Angiopoietins (ANGPTs) are other players of inflammatory

and tumor angiogenesis (124, 125). ANGPT1, released by

perivascular mural cells, binds to the Tie2 receptor on

endothelial cells and promotes endothelial stabilization (126).

ANGPT2, secreted by activated endothelial cells, induces

vascular permeability (127). ANGPT1 and ANGPT2 mRNAs

are expressed by human basophils (90), and their activation

induces ANGPT1 release. Mouse lung-resident basophils

express mRNA for HGF, a potent angiogenic factor (47, 91, 128).

Cysteinyl leukotrienes (cys-LTs) are powerful proinflammatory

mediators (129). The cys-LTs include leukotriene C4 (LTC4), the

main lipid mediator synthesized by human and mouse basophils

(54, 70). ɤ-glutamyl transpeptidases metabolize LTC4 to LTD4 and

to LTE4 by the membrane-bound enzymes (129). Cys-LTs are

potent agonists of three different receptors (CysLTRs) CysLT1R,
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CysLT2R, and CysLT3R (130–132). LTC4 and LTD4 induced the

formation of angiogenesis (133). The angiogenic properties of LTC4

and LTD4 were mediated in vivo by the activation of CysLT2R on

BECs. In mouse models, pharmacologic antagonism of CysLT2R

inhibited tumor growth and metastasis formation (133). These

results illustrate the relevance of cys-LTs as non-canonical

angiogenic factors in cancer. Moreover, these findings suggest

that CysLT2R might be a target in cancer (133). LTC4 is released

by activated human (70, 134) and mouse (54) basophils and future

studies should investigate whether basophil-derived LTC4 might

contribute to angiogenesis in human cancer.
Formation of extracellular DNA traps
by basophils

Activated neutrophils (135–137), eosinophils (138, 139),

mast cells (140–143), macrophages (144–148), and basophils

(149, 150) can release extracellular traps (ETs), which are DNA

structures decorated with a variety of proteins [e.g.,

myeloperoxidase and elastase) (151), lactoferrin and pentraxin

3) (151, 152), and matrix metalloproteinase 9) (151)]. ETs

released by human neutrophils (neutrophils extracellular traps:

NETs) were initially characterized by their antibacterial activity

(138, 151, 153, 154). Increasing evidences demonstrate that ETs,

particularly NETs, play a role in asthma (137) and in

fundamental aspects of tumorigenesis (155). NETs favor the

formation of metastasis in mice and in humans (156–159) and

awaken dormant cancer cells (160). An increase of NET release

occurs when neutrophils from myeloproliferative neoplasms are

associated with JAK2V617F mutations and mice with knock-in of

JAK2V617F (161). We have provided evidence that anaplastic

thyroid cancer cells can induce NET formation (162).

Collectively, these findings demonstrate that NETs can

promote tumor growth and metastasis formation. Basophils

from humans and mouse can release extracellular DNA traps

(BETs) in vitro and in vivo (149, 150, 163). The translational

relevance of these findings should be explored in experimental

models and human cancers.
Basophils in allergic disorders

Basophils play a major role in a variety of allergic disorders

(8, 164–166). Anaphylaxis is a rapid-onset, potentially life-

threatening allergic reaction caused by the release of vasoactive

mediators from mast cells and basophils after allergen exposure

(167). Mouse models of anaphylaxis suggest that basophils play a

major role in the IgG-, but not IgE-mediated anaphylaxis (168).
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In these studies, the depletion of basophils by anti-CD200R3

mAb inhibited IgG-mediated anaphylaxis, whereas it had minor

effect on IgE-mediated anaphylaxis. By contrast, mast cells are

central for IgE-mediated mouse models of anaphylaxis

(168, 169).

Several lines of indirect evidence suggest that basophils

participate in human anaphylaxis (24). For example, the

number of circulating basophils was significantly lower in

subjects undergoing anaphylactic reactions compared to

healthy controls (170). Peanut-induced allergic reactions also

resulted in a significant decrease in circulating basophil counts

and an increase in CCL2 levels compared with those in pre-

challenge samples.

While there is a plethora of information from murine

models regarding the role of basophils in allergic/asthma-like

inflammation, the involvement of basophils in human asthma

again derives mainly from indirect evidence (164). Most

compelling, basophils have been found in the airways of

asthmatics (171, 172), in post-mortem cases of fatal asthma

(173) and after antigen challenge of airway mucosa (174).

Basophil releasability (i.e., the ability of a basophil to release a

given percentage of histamine in response to a given

immunological stimulus) is long reported to be increased in

asthma and more recently subject to circadian changes (175).

Moreover, allergen-induced asthmatic responses are

accompanied by infiltration of basophils expressing IL-4

mRNA (103). The in vitro secretion of both IL-4 and IL-13

has been shown to track with the basophil-enriched fractions of

cells recovered after infiltrating the lung following segmental

allergen challenge (176, 177). Moreover, these so-called basophil

cytokine responses also correlated with the frequency of

eosinophils recovered from the lung. Thus, basophils might

represent an important source of Th2-like cytokines (IL-4 and

IL-13) in the lung microenvironment, particularly that

associated with human allergic disease.

Brooks and collaborators reported that basophils are

increased in the sputum of patients with eosinophilic asthma

compared to those with non-eosinophilic asthma (178). In

asthmatics, basophils were positively correlated with sputum

eosinophils and inversely with sputum neutrophils, but not with

FEV1, FEV1/FVC or bronchodilator reversibility. Sputum

basophils positively correlated with sputum eosinophils (179).

In comparison with blood basophils, sputum basophils have a

higher expression of activation markers (e.g., CD203c) (179).

These findings indicate that basophils may be involved in

eosinophilic asthma and that sputum basophil assessment

could be a useful additional indicator of “Th2-high” asthma.

Basophil counts in peripheral blood during childhood asthma

are associated with exacerbations (180). The proportion of

degranulated basophils can also be associated with

recurrent exacerbations.
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Hill et al. reported that omalizumab, a mAb that targets IgE

and neutralizes it from binding to FceRIa on basophils, reduces

blood basophil frequencies in asthmatic children (181).

Furthermore, treatment of severe asthma patients with

benralizumab, a mAb against IL-5Ra, markedly decreased the

number of both eosinophils and basophils (182–184). These

findings suggest that benralizumab may have a positive effect on

severe asthmatics by reducing not only eosinophils but

also basophils.

A number of mouse studies indicate that basophils are

involved in the development of asthma-like pathology. In an

ovalbumin-induced asthma model, basophils recruited to the

lungs, amplify the Th2 cell differentiation (185). In a papain-

induced asthma model, basophil-derived IL-4 induces the IL-5

and CCL11 expression in ILC2 cells, causing eosinophil

infiltration (68). Indeed, in a model of IgE-dependent

dermatitis, the production of IL-4 from basophils was shown

to directly condition endothelium for increased VCAM-1

expression, which facilitated the in vivo entry of eosinophils

into lesion sites (186). This mechanistic observation may help

elucidate the eosinophil/basophil IL-4 associations commonly

seen in human disease.

Chronic spontaneous urticaria (CSU) is a common skin

disease, characterized by spontaneous appearance of wheals,

angioedema or both, for more than 6 weeks due to known or

unknown causes (187, 188). A role for basophils in the

pathophysiology of CSU is suggested by a number of findings

(189, 190). CSU subjects have been shown to have significant

increases in the numbers of intradermal basophils compared

with non-atopic control subjects (191). Basopenia has long been

reported in patients with CSU (192) and more recently

postulated as the result of basophil migration from the

circulation into the skin (104, 191, 193). The degree of

basopenia often correlates with disease severity (194) and

improves during times of remission (195). CSU subjects

exhibit enhanced expression of the activation markers CD63

and CD69 on basophils compared to non-allergic subjects (196).

Rauber et al. identified three distinct immunologic

phenotypes of CSU (197). One group of patients’ basophils

reacted to FcϵRI stimulation, whereas the others had anti-

FcϵRI nonreactive basophils. Among the latter, it was found a

subgroup with basopenia. This subgroup had augmented serum-

induced basophil activation, increased levels of autoantibodies

against thyroid peroxidase, and worse quality of life. These

phenotypes were associated with different cl inical

characteristics, pointing to basophils as important players in

CSU pathophysiology (197). Oda et al. demonstrated that

basophils from CSU patients had higher FceRI expression

compared to healthy controls. The proportion of CD203chigh

basophils after anti-IgE or anti-FceRI stimulation was lower in
Frontiers in Immunology 05
CSU patients compared to controls and characteristics of more

severe patients (198).

Omalizumab is a mAb anti-IgE often used in treating severe

allergic asthma (199, 200). More recently, it has also proved highly

effective in patients with CSU (201). Surprisingly, this treatment,

regardless of the disease being treated, is associated with increased

expression of Syk, which is often also manifested by basophils

showing greater histamine release in vitro when undergoing IgE/

FceRIa-dependent stimulation. This enhanced responsiveness is

seen even through cell-surface FceRIa/IgE levels are reduced with

this treatment (196, 202). These observations have since prompted

the same group of authors to suggest that Syk expression and IgE-

mediatedhistaminerelease inbasophils could functionasbiomarkers

forpredicting the clinical efficacyof omalizumab inpatients receiving

this therapy (203).

In following CSU subjects treated with omalizumab,

MacGlashan and collaborators have also identified three basophil

phenotypes in CSU patients: 1) subjects with basopenia, 2) normal

basophil numbers with normal IgE-mediated histamine release, and

3) normal basophil numbers with poor histamine release. Basopenia

was associated with the presence of autoantibodies to unoccupied

FcϵRI and basophil numbers did not change during omalizumab

treatment. Omalizumab resulted in similar kinetics for decreases in

surface FcϵRI and IgE in all three groups of CSU patients (204).

Atopic dermatitis is a common inflammatory skin disorder

characterized by chronic eczema and severe itching (205). Th2

cells mediate inflammation in atopic dermatitis with the release

of IL-4 and IL-13, which contribute to clinical manifestations

(206, 207). Keratinocyte-derived alarmins, such as IL-33, TSLP,

and IL-25 (IL-17E) that elicit Th2 cytokines responses by

activating group-2 innate lymphoid cells (ILC2s) play an

upstream pathogenic role in atopic dermatitis (208, 209).

Recent evidence indicates that LTC4 also plays a role in mouse

models of atopic dermatitis (210). IgG autoantibodies against

IgE from atopic dermatitis can induce the release of IL-4/IL-13

and LTC4 from human basophils (134, 211), indicating that

these cells contribute to this allergic disorder.

Early studies reported that up to 80% of food-allergic children

exhibit high spontaneous basophil histamine release (212).

Moreover, food-allergic children release histamine in response to

an IgE-dependent histamine-releasing factor (213). Schroeder and

collaborators demonstrated that basophils from food-allergic

children also spontaneously release IL-4 and overexpress CD203c

(214). Interestingly, spontaneous basophil histamine release and IL-4

secretion decreased in children undergoing sublingual

immunotherapy (215). In vitro studies show that this enhanced

releasability of histamine and IL-4 from basophils of food-allergic

children is transferred to basophils of normal subjects by sensitizing

normal cells with plasma from the former group. However, the

addition of omalizumab during this passive sensitization completely
frontiersin.org
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abated the responses, thus pointing to the involvement of IgE in

transferring hyperresponsiveness (214).

Figure 1 schematically illustrates the versatile contribution of

basophils and their mediators to the development of

allergic disorders.
Peripheral blood basophils in human
hematological tumors

Polycythemia vera (PV) is a clonal proliferation of erythroid,

megakaryocytic, andmyeloid cell lines (232, 233).More than 90% of
Frontiers in Immunology 06
patientswith JAK2-STATactivatingmutations (JAK2V617For exon

12mutations) are characterizedbyanoveractive JAK-STATpathway

(234, 235). Pruritus and increased basophil-derived mediators (e.g.,

histamine) are common in PV patients (233, 236, 237). Peripheral

blood basophils (238) and CD63 expression are increased in PV

patients and are hyperresponsive to IL-3. Increased releasability of

histamine from PV basophils can contribute to pruritus in

these patients.

Basophilia can develop during the advanced phase of chronic

myeloid leukemia (CML) (239) and the transcription factor IKAROS

is reduced in the bone marrow from these patients (240). Basophils

from CML patients express HGF, promoting CML cell expansion
FIGURE 1

Schematic representation of the versatile role of basophils in the pathobiology of allergic disorders. Several immunological (i.e., allergens,
superallergens, viral, bacterial and fungal proteins, cytokines) and non-immunological stimuli (e.g., pollutants, diesel exhaust particles) activate
mucosal (i.e., lung and gut) and skin barriers to release different alarmins (i.e., TSLP, IL-33, IL-25) (130, 216, 217). Alarmins activate group 2 innate
lymphoid cells (ILC2s) through the engagement of specific receptors (TSLPR, ST2, IL-25R, respectively) (218, 219) to release IL-5 and CCL11 that
promote eosinophil infiltration into inflamed tissue (220, 221). Human and mouse basophils express the high-affinity receptor for IgE (FceRI) (36,
37) and the receptors for IL-3 (IL-3Ra/CD123) (34, 44), GM-CSF (CD116) (45, 46), IL-33 (ST2/IL1RL1) (47–50), IL-5 (CD125) (51) and a variety of
chemokine receptors (5, 55–60). The TSLP receptor (TSLPR/IL-7Ra) is expressed by mouse basophils (12, 34), but its presence on basophils
from allergic and healthy donors remains controversial (12, 14–16). TSLP activates mouse but not human basophils (12, 17). IL-3 plays a key role
in the development, survival and activation of human and mouse basophils (17). IL-3 activates human and mouse basophils to release cytokines
and chemokines (12, 17, 46, 222). IgE-FceRI crosslinking by antigens, superallergens and functional anti-IgE autoantibodies activates basophils to
release a wide spectrum of inflammatory and immunomodulatory factors (24, 70, 75, 76, 78, 79, 134, 211, 223). IL-33 activates human and
mouse basophils to release several cytokines and chemokines (12). Activated human (12, 24, 74–82) and mouse (12, 47, 80) basophils secrete
large amounts of IL-4. Both human (12, 75, 76, 78, 81–85) and mouse basophils (12, 47) also release IL-13. Human basophils secrete several
angiogenic factors such as vascular endothelial growth factor-A (VEGF-A) (64). Basophil-derived IL-4 activates ILC2s to enhance the release of
IL-5 and CCL11, leading to eosinophil infiltration (68). IL-4 promotes Th2 cell differentiation and enhances humoral immune responses (224). IL-
4, together with IL-13, induces T follicular helper cells (Tfh) to promote IgE responses (225, 226). Basophil-derived IL-4 and IL-13 act on
inflammatory monocytes inducing their differentiation into M2 macrophages (227). IL-4 and IL-13 activate fibroblasts to promote the production
of chemokines (CCL5 and CCL11) (228) and collagen (229). IL-4 and IL-13 and vasoactive mediators (histamine, LTC4, VEGF-A) act on blood
endothelial cells (64, 230) to upregulate the expression of vascular cell adhesion molecule-1 (VCAM-1) (231), leading to enhanced trans-
endothelial migration of eosinophils and basophils (186).
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(91). In a mouse model of CML, basophil-derived CCL3 promotes

CML development (241, 242). The presence of basophilia is

considered an independent risk factor for the progression from

myelodysplastic syndrome to acute myeloid leukemia (243, 244).
Basophils in solid cancers

Basophils are physiologically present in low numbers in

peripheral blood. Under certain inflammatory circumstances, the

number of circulating basophils can be altered, activated, or migrate

from the bloodstream to the sites of inflammation (23, 245).

Increased and decreased peripheral blood basophils can be

associated with the progression of certain human solid cancers

(Table 1) (256, 257). Basophilia positively correlates with improved

outcomes in melanoma (246, 247), ovarian cancer (248), non-small

cell lung cancer (NSCLC) (251), and glioblastoma (252), while

basopenia is associated with a poor prognosis for colorectal cancer

(245, 249, 250). Basophilia is also linked to improved outcomes in

melanoma patients receiving immunotherapy (247). By contrast, in

other solid tumors, such as prostate (253) and gastric cancers (250), a

detrimental role of circulating or tissue-infiltrating basophils has

beenreported.Moreover, baselinebasophil countpredicts recurrence

in bladder cancer patients receiving bacillus Calmette-Guérin (BCG)

following resection (254). Interestingly, in a mouse model of breast

cancer, basopenia correlatedwithan increasednumberofpulmonary

metastasis (258). However, basophils are not associated with

prognosis in breast cancer patients (259). Basophils may support

humoral immunity by secreting several B-cellmodulatingmolecules.

Once activated, basophils may express CD40L, IL-4, and IL-6 to

sustain B-cell proliferation and empower the production of IgM and
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IgG1. Gomez and colleagues demonstrated that, in vitro and in vivo,

basophils sustain plasma cell survival (245, 260). Histamine is

released from basophils and it has been suggested that it can be

involved in colon carcinoma (CRC) (245).

Bax and coworkers have investigated the presence and functions

of basophils from peripheral blood and in ovarian cancer (248). The

same group reported that basophilia and basophils who possess

greater ability for ex vivo stimulation are associated with improved

outcomes (261). Additionally, a positive correlation between

improved progression-free survival of patients and activated

basophil markers (CD63+, CD203c+, CD123, CCR3, FceRI) was
observed in the TME of ovarian cancer (Bax, Chauhan et al., 2020).

These results indicate that activated peripheral blood and

intratumoral basophils correlate with a survival benefit in ovarian

cancer patients (261). Nevertheless, these favorable effects that

basophils might mediate in targeting the tumor for destruction can

potentially result in unfavorable outcomes. For example, basophils

have been found in ascitic fluid from ovarian cancer patients and it

has been suggested that their release of vasoactive mediators (e.g.,

histamine) may exacerbate fluid accumulation in the peritoneal

cavity (58).

It has been reported that the expression of cytokines by lung-

resident basophils can be induced by local signals (e.g., IL-33, GM-

CSF) (47, 102), emphasizing the plasticity of these cells. Hence, the

lung microenvironment might influence the transcriptional and

functional development of basophils. Likewise, these resident

basophils seemingly play an important role in lung development

and function by forming cellular networks and facilitating so-called

macrophage imprinting. Low percentages of basophils (0.4%) were

located in the immune infiltrate of humannon-small cell lung cancer

(NSCLC) tumors (262). Basophils have been identified in the
TABLE 1 Role of peripheral blood basophils in human solid cancers.

Tumor
type

Prognostic/
predictive role

Reported observation References

Melanoma Favourable Basophilia is associated with improved outcome in melanoma patients receiving immunotherapy with nivolumab
plus ipilimumab and in newly diagnosed stage I-II melanoma patients

(246, 247)

Ovarian
cancer

Favourable A higher frequency of circulating basophils and the presence of activated basophil signature are associated with
improved overall survival in ovarian cancer patients

(248)

Colorectal
cancer

Favourable Low pretreatment basophil counts are associated with worse prognosis and higher tumor aggressiveness in colorectal
cancer patients

(245, 249,
250)

NSCLC Favourable Higher basophil counts are associated with increased probability of responding to ICI therapy in two cohorts of
stage-IV NSCLC patients

(251)

Glioblastoma Favourable Increased pre-operation circulating basophils predict better progression free survival in patients (252)

Prostate
cancer

Unfavourable Elevated baseline basophils and basophil-to-lymphocyte ratio are associated with worse clinical outcomes in
metastatic hormone sensitive prostate cancer patients

(253)

Bladder
cancer

Unfavourable Baseline basophil count may predict recurrence in BCG-treated primary bladder cancer patients (254)

Gastric
cancer

Unfavourable Elevated baseline basophil counts are prognostic for unfavorable clinical outcomes in gastric cancer patients treated
with ICI plus chemotherapy,

(255)
fr
BCG, Bacillus Calmette-Guérin; ICI, immune checkpoint inhibitors; NSCLC, non-small cell lung cancer.
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immune landscape in early (stage I) lung adenocarcinoma and in

non-involved lung tissue (nLung) (102). It remains unclear what the

exact function basophils mediate in the TME, yet emerging evidence

points to their capacity to secrete IL-4 and IL-13asplaying apotential

role. For example, mouse and human studies have shown that

basophils, by secreting these cytokines, facilitate the development/

expansion of M2-like monocytes/macrophages (227, 263–265),

which are often a prominent part of the immune cell landscape of

the TME. However, in chronic inflammation, the exposure of

basophils to certain cytokines, such as IL-33, may induce the

polarization of lung macrophages to M2-like phenotype

characterized by the expression of anti-inflammatory genes Clec7a,

Arg1, Itgax. In this context, basophils are participants in the

inflammatory entourage in lung cancer (261). It seems equally

possible that basophil-derived IL-4/IL-13 also favor tumorigenesis

by diminishing Th1-like immunity that is better suited to contest the

cancer (80). Should these hypotheses prove correct, then another

important question that arises pertains to the endogenous stimulus

responsible for inducing these cytokines. In this regard, Schroeder

et al. demonstrated that purified human basophils release histamine,

IL-4 and IL-13 when co-cultured with the lung adenocarcinoma cell

line A549 (16). Unexpectedly, these effects required IgE-expressing

basophils and were suppressed by specific inhibitors of FceRI
signaling. A subsequent study revealed that the IgE-binding lectin,

galectin-3, expressedon theA549cells,was responsible for thismodel

of basophil activation (223). In fact, galectin-3 is a biomarker and/or

factor implicated in many kinds of cancer, chronic inflammation,

cardiovasculardisease, autoimmunity, andalsobeneficially inwound

healing (266). These results thus reveal an innovative mechanism by

whichgalectin-3 expressedbyhuman lungcarcinomacells are able to

activate basophils [and likely other cell types, namely dendritic cells

(DCs) and monocytes] (267) to release cytokines and pro-

inflammatory mediators. Further studies are necessary to

understand the role of galectin-3 in activating basophils, and how

IL-4/IL-13 and other mediators could contribute to human and

experimental lung cancer.

Interestingly, many immune cells and markers that have a

mounting prominence in cancer/tumorigenesis are also

observed in experimental models of wound healing. For

example, scaffolds that promote wound-healing often induce

Th2 immune responses, whereby IL-4 and IL-13 are recognized

as critical cytokines that help initiate the process (268). M2 cells,

whose development is often dependent on the actions of IL-4/IL-

13, are also widely implicated in wound healing. Not

surprisingly, much emphasis is placed on the role of Th2 cells

in being the source of IL-4/IL-13. However, in a recent

publication that explored the mechanisms associated with

wound healing following experimental myocardial infarction

(MI), basophils were identified as a critical source of IL-4/IL-

13 required for the healing process. Specifically targeting

basophils using conditional knockouts or by antibody-
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mediated depletion, significantly impaired this wound healing

(269). Moreover, the administration of IPSE-a1, an IgE-binding

glycoprotein isolated from helminth eggs and well known for

activating basophils for IL-4/IL-13, greatly augmented healing

following the MI. While the endogenous ligand for stimulating

IL-4/IL-13 from basophils in this model was not reported, it is

intriguing to speculate that galectin-3 is involved. Indeed,

galectin-3 is often a prominent marker in wound healing, both

at the transcriptional and protein levels (266).

Investigation on the role of basophils in models of

melanoma has provided interesting results in Foxp3DTR mice,

in which these cells caused melanoma rejection (270). CCL3 and

CCL4 produced by intratumoral basophils induced CD8+

lymphocyte recruitment in TME. The administration of FcϵRI
(MAR-1) mAb in Foxp3DTR melanoma-bearing mice depleted

basophils and abrogated the recruitment of CD8+ T cells thus

preventing the rejection of melanoma. Furthermore, the IL-3/

anti-IL-3 antibody complexes combined with adoptive T cell

transfer induced basophilia and consequent T cell infiltration,

which positively correlated with melanoma rejection.

Unfortunately, the MAR-1 antibody can also deplete/activate

other immune cells (e.g., mast cells, DCs, monocytes) which

express FcϵRI (271, 272). Thus, studies in newer genetically

engineered basophil-deficient mouse models (80, 97) appear

necessary to establish the role of basophils in melanoma.

IL-33 is a cytokine that induces tumoricidal functions in

eosinophils (273, 274) and upregulates granzyme B mRNA and

the surface expression of CD63 (67), suggesting phenotypic and

functional activation. Moreover, IL-33-activated basophils co-

cultured with B16.F10 melanoma cells, inhibited tumor cell-

growth compared to melanoma cells co-cultured with

unstimulated basophils (67).

In a pioneering observation, Ann M. Dvorak first

demonstrated piecemeal degranulation of basophils in human

pancreatic cancer (PC) (7). Elegant studies evaluated the role of

basophils in experimental and human ductal adenocarcinoma

(PDAC) (80). In PDAC patients, they identified IL4 expressing

basophils in tumor-draining lymph nodes (TDLNs). Basophils

in TDLNs were an independent negative prognostic biomarker

of patient survival. They also evaluated basophil role in PC using

the Mcpt8-Cre basophil deficient (275) and wild-type (WT)

mice. After PC implant, cancer was detected in 80% WT, but

not in basophil-deficient mice. Basophils were found in TDLNs

and cancer-associated fibroblasts (CAFs) released TSLP, which

activated DCs to produce IL-3 from CD4+ T cells. CCL7,

produced by DCs and CD14+ monocytes, induced basophil

migration into TDLNs. Basophils activated by IL-3 played a

pro-tumorigenic role through the production of IL-4, which

favored Th2 and M2 polarization. These findings are consistent

with our results indicating that basophil-derived IL-4 (and IL-

13) promote M2-like cells (263).
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Topical exposure of the skin ofmice to an environmental DNA-

damaging xenobiotic [i.e., 7,12-dimethylbenz [a] anthracene

(DMBA)] caused the development of squamous-cell carcinomas

(SCCs),highserumlevelsof IgEandtumor infiltrationof IgE-bearing

basophils (276). In this model, FcϵRI+ basophils mediated the

DMBA-induced IgE protection against carcinogenesis. In contrast,

topical exposure of the skinofmice to theproinflammatory agent 12-

0-tetradecanoylphorbol-13-acetate (TPA) increased serum IgE and

IgE-bearing basophils in the skin that promoted carcinogenesis (97).

In a two-stage model of epithelial carcinogenesis (DMBA and

subsequent exposure to TPA), Hayes and coworkers also

discovered that mice lacking IgE (lgh7-/-) were less responsive to

tumor development compared to WT mice (97). IgE-signaling was

crucial for mediator release from basophils and infiltrating tissue

basophils showed expression of Cxcr2, Cxcr4, and Ptgdr2 (CRTH2,

the PGD2 receptor). Basophil infiltration into the inflamed skin was

mediated by TSLP/IL-3-mediated upregulation of CXCR4 on

basophils. The Mcpt8Cre/+ mice, presenting normal mast cell

numbers but strongly reduced basophils (275), were less responsive

to tumor growth. Table 2 summarizes the role of basophils in the

TME of different solid cancers.

Colony-stimulating factor 1 (CSF1) is a primary regulator of

monocytes/macrophage that sustains macrophage polarization

towards an M2-like phenotype (278). Mouse basophils resident in

the lung express high levels ofCsf1 and contribute toM2polarization

of lung macrophage (47). The functional relevance of basophil-

derived CSF1 was also underlined in vivo in a murine model of

atopic dermatitis, where it promoted M2-like macrophage
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polarization (279). Interestingly, an inhibitor of CSF1/CSF1

receptor signaling reduced tumor-associated macrophage (TAM)

infiltration in theTMEof sarcomamodels (278). These experimental

findings may have translational relevance in cancer: there is the

possibility that CSF1, in conjunction with basophil-derived IL-4/IL-

13, might enhance theM2-like/TAM polarization of macrophage in

TME (280).

A synopsis of the above findings signifies some conflicting views

of the role that basophils potentially mediate in tumorigenesis. A

more classical interpretation (from the ovarian, lung, colorectal, and

melanoma data) suggests basophils mediate anti-tumor effects (248,

261, 270, 276). While the mechanisms underlying the beneficial

outcomes are poorly defined, it has been proposed that some

basophil-derived mediators (e.g., granzyme B and TNF-a) exert
tumoricidal activity while others (e.g., CCL3 andCCL4) facilitate the

recruitment of cytotoxic CD8+ T cells (Figure 2). In contrast, there is

growing evidence that basophils, under certain circumstances, can

promote tumorigenesis (Figure 3). In this instance, the tumor cell

itself seemingly modulates basophil responses, causing a release of

cytokines that favor the development of protumorigenic TME.

Interestingly, this latter scenario shares many similarities with that

seen in wound healing.
Conclusions

Basophils were initially considered as effector cells of allergic

diseases (166, 230). The discovery that murine (290) and human
TABLE 2 Role of basophils in tumor microenvironment.

Tumor
type

Effect
on

cancer

Observed role Mechanism References

Melanoma Anti-
tumoral

Treg depletion results in infiltration of basophils and CD8+ T cells in the TME that
promote tumor rejection in mice
IL-33-activated mouse basophils induce melanoma cell death in vitro

CCL3/CCL4 secretion by intratumoral
basophils induces CD8+ T cell
recruitment in TME
Release of Granzyme-B

(270)
(67)

Ovarian
cancer

Anti-
tumoral

Activated signature (CD123, CCR3, FcϵRI, CD63, CD203c gene expression) in tumor-
resident basophils is associated with improved outcomes in these patients

NA (248, 261)

Lung
cancer

Anti-
tumoral

Higher expression of basophil markers (CD123, CCR3, and FcϵRI) in tumors is
associated with improved overall survival in lung cancer patients

NA (261)

Pro-
tumoral

Lung inflammatory cytokines trigger basophil-induced M2 polarization Basophil secretion of IL-4/IL-13 (47)

Skin
cancer

Anti-
tumoral

Topic exposure to DNA-damaging carcinogen DMBA promotes tumor-protective IgE
response through skin infiltrating basophils

Possible release of cytotoxic soluble
mediators

(276)

Pro-
tumoral

Skin inflammation by TPA, MC903 or R848 induced IgE/FcϵRI-signalling in basophils
promote epithelial carcinogenesis

TSLP/IL-3-mediated upregulation of
CXCR4 on basophils

(97)

Gastric
cancer

Pro-
tumoral

Increased tumor-infiltrating basophils in tissues from gastric cancer patients are negatively
associated with therapy response

Increased tumor M2 macrophage
infiltration

(255, 277)

Pancreatic
cancer

Pro-
tumoral

IL-4-secreting basophils are significantly increased in TDLNs of PDAC patients, correlate
with predominant Th2 inflammation and represent an independent prognostic factor of
poorer survival after surgery

Recruitment in TDLN mediated by
alternatively activated monocyte-
secreted CCL7/MCP3

(80)
fron
DMBA, 7,12-dimethylbenz [a] anthracene; MC903, vitamin D3 analogue; NA, not assessed; PDAC, pancreatic ductal adenocarcinoma;R848, resiquimod; TPA, 12-O-tetradecanoylphorbol-13-acetate.
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basophils produce immunomodulatory cytokines (e.g., IL-4, IL-

3, and IL-13) (28, 76–78, 81, 85, 291) changed dramatically this

erroneous concept. In addition, human and murine basophils

release several canonical (24, 64, 90, 91) and non-canonical

angiogenic factors (133) that play a pivotal role in inflammatory

and tumor angiogenesis. Further in vitro and in vivo studies are

needed to investigate the contribution of angiogenic factors

released by mouse and human basophils in experimental and

human tumors.

Basophils have been identified in human lung (102), gastric

(99, 100), pancreatic (7, 80) and ovarian cancer (248). Lung-

resident basophils (47) can provoke M2 polarization of lung

macrophages, as occurs in several tumors (105, 106). The

presence of basophils and their activation signatures appear to

be linked with more favorable patient outcomes in certain

tumors (melanoma, lung cancer, ovarian cancer) (248, 261,

270). Otherwise, with particular reference to gastric and

pancreatic cancers, increased tumor-infiltrating basophils are

negatively associated with less favorable overall survival (80,

255, 277).

Basophil functions in vivo have been evaluated through

several models of basophil-deficient mice (275, 292–294). It
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should be remembered that, in some instances, studies using

antibody-depleted basophils have produced erroneous findings

due to lack of antibody specificity (271, 272) and even new

mouse basophil-targeted mutants have some off-target

hematological alterations (295). Therefore, the evaluation of

basophil functions in complex and heterogeneous disorders,

such as cancer and allergic diseases using multiple genetically

engineered models of basophil deficiency, demands caution in

data interpretation.

Collectively, recent findings highlight the critical contributions

of basophils during homeostatic conditions and beyond their

ability to promote allergic inflammation. Further studies are

needed to understand the mechanisms and environmental

factors driving basophils to play a pro- or anti-tumorigenic role

in experimental and human cancers. A better knowledge of the

involvement and functions of basophils in human immunity

appears necessary considering the participation of these cells in

immune and cancer cell crosstalk and in priming of several

immune cell types. Single-cell RNA-seq of the immune

landscape of tumor cells will be of paramount importance to

characterize the role of basophils in different types of human and

experimental cancer. Understanding of the molecular mechanisms
FIGURE 2

Theoretical representation of how basophils can promote tumor suppression. Basophils have been located in the immune infiltrate of several
human (80, 102, 261, 262) and experimental tumors (80, 97, 102, 276). Vascular endothelial growth factors released by cancer cells and immune
cells in tumor microenvironment (TME) (e.g., mast cells, macrophages) (118, 120–123) can favor basophil infiltration in TME through the
engagement of VEGFR2 on these cells (120). IL-3, produced by intratumoral lymphocytes, mast cells and cancer cells (17, 82, 281), is the most
important growth and activating factor for human and mouse basophils, through the engagement of the IL-3 receptor (IL-3Ra/CD123) (17).
CCL3/CCL4 secreted by intratumoral basophils induces CD8+ T cell recruitment in TME, promoting melanoma rejection in mice (270). IL-33, a
pleiotropic cytokine produced by epithelial and tumor cells (282), plays a central role in tumorigenesis (282). IL-33 upregulates granzyme B
mRNA and the surface expression of CD63, suggesting functional and phenotypic basophil activation. IL-33-activated mouse basophils induce
melanoma cell death in vitro (67). Mouse (47, 86) and, under specific circumstances, human basophils (88, 89) release TNF-a. Human and
mouse basophils release granzyme B (66, 67). Both TNF-a and granzyme B exert cytotoxic effects on tumor cells (68, 69). Activated signature
(CD123, CCR3, CD63, CD203c gene expression) in tumor resident basophils is associated with improved outcome in ovarian cancer patients
(248, 261). Topical exposure to a DNA-damaging carcinogen promotes tumor-protective IgE response through skin infiltrating basophils (276).
Taken together, these results suggest that, in certain experimental and clinical conditions, basophils and their mediators may play an anti-
tumorigenic role.
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orchestrated by basophils in the TME of several cancer types could

allow to develop novel pharmacological/immunological strategies

to modulate basophil functions and perhaps to prevent

tumor progression.
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FIGURE 3

Theoretical representation of how basophils can promote tumor progression. Galectin-3 (Gal-3) is a lectin highly expressed by many types of
cancer cells, frequently manifesting as a marker of poor prognosis with capacity to mediate immunosuppression within the tumor
microenvironment (TME) (266). Recent in vitro studies show that Gal-3, expressed by the A549 adenocarcinoma cell line (or EC-Gal-3), has the
capacity to activate basophils to secrete copious amounts of IL-4/IL-13 (16, 223). Both cytokines are known to promote M2-like macrophages,
which are major players in the TME (227, 263–265). IL-4-producing basophils have been identified in the TME of human pancreatic cancer, with
mouse models indicating that this IL-4 promotes a Th2>Th1 response that is more conducive to tumorigenesis (80). Additionally, basophils are
long known to secrete VEGF-A (64) that promotes angiogenesis. Other studies show that basophils can induce IL-6/IL-8 secretion from cell
lines through a mechanism requiring cell-to-cell contact (283) (JTS, unpublished). This tumor cell-derived IL-6/IL-8 is implicated in playing a
critical role in metastasis formation (284). Likewise, dendritic cells and monocytes activated by EC-Gal-3 are shown to produce high levels of
TNF-a/IL-6 in vitro (285). Chronic production of these cytokines, when combined with M2 cell-derived IL-10/TGF-b, are implicated in
promoting T-cell exhaustion by up-regulating checkpoint inhibitors (e.g., PD-1) that interact with tumor cell-associated markers (PD-L1) to
suppress cytotoxic T cell activity (286). V-domain immunoglobulin suppressor of T-cell activation (VISTA) is another immune checkpoint
receptor which plays a role in cancer progression (287, 288) and regulates allergen-specific Th2-mediated immune responses (289). Overall, it is
proposed that the combined actions of these dysregulated innate immune responses synergize to promote tumorigenesis.
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