
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Rongqian Wu,
Xi’an Jiaotong University, China

REVIEWED BY

Hao Li,
Shanghai First People’s Hospital, China
Monowar Aziz,
Feinstein Institute for Medical
Research, United States

*CORRESPONDENCE

Zhongjun Wu
wzjtcy@126.com

SPECIALTY SECTION

This article was submitted to
Alloimmunity and Transplantation,
a section of the journal
Frontiers in Immunology

RECEIVED 27 September 2022
ACCEPTED 26 October 2022

PUBLISHED 17 November 2022

CITATION

Liu Y, Yan P, Bin Y, Qin X and Wu Z
(2022) Neutrophil extracellular
traps and complications of
liver transplantation.
Front. Immunol. 13:1054753.
doi: 10.3389/fimmu.2022.1054753

COPYRIGHT

© 2022 Liu, Yan, Bin, Qin and Wu. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) and the
copyright owner(s) are credited and
that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 17 November 2022

DOI 10.3389/fimmu.2022.1054753
Neutrophil extracellular traps
and complications of liver
transplantation

Yanyao Liu1, Ping Yan1, Yue Bin1, Xiaoyan Qin2,3

and Zhongjun Wu1*

1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Department of General Surgery and Trauma Surgery, Children’s Hospital of
Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and
Disorders, Chongqing, China, 3National Clinical Research Center for Child Health and Disorders,
China International Science and Technology Cooperation Base of Child Development and Critical
Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
Many end-stage liver disease etiologies are attributed to robust inflammatory

cell recruitment. Neutrophils play an important role in inflammatory infiltration

and neutrophil phagocytosis, oxidative burst, and degranulation. It has also

been suggested that neutrophils may release neutrophil extracellular traps

(NETs) to kill pathogens. It has been proven that neutrophil infiltration within

the liver contributes to an inflammatory microenvironment and immune cell

activation. Growing evidence implies that NETs are involved in the progression

of numerous complications of liver transplantation, including ischemia-

reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma

recurrence. NETs are discussed in this comprehensive review, focusing on their

effects on liver transplantation complications. Furthermore, we discuss NETs as

potential targets for liver transplantation therapy.
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Introduction

Neutrophils play a major role in the innate immune response (1), and have a wide

range of immune functions, including phagocytosis, reactive oxygen species (ROS)

production, lytic enzyme activation, and neutrophil extracellular traps (NETs)

production through a process called NETosis (2, 3). NETs comprise chromatin, DNA

fibers, and granule proteins. Additionally, NETs are important in treating non-infectious

diseases, such as cancer, diabetes, thrombosis, and autoimmune illnesses (4–6). Recent

evidence suggests that NETs may contribute to pathological changes after liver

transplantation, including liver ischemia-reperfusion injury (IRI), acute rejection, and

recurrence of hepatocellular carcinoma (7–9). However, there is little knowledge of the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1054753/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1054753/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1054753/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1054753&domain=pdf&date_stamp=2022-11-17
mailto:wzjtcy@126.com
https://doi.org/10.3389/fimmu.2022.1054753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1054753
https://www.frontiersin.org/journals/immunology


Liu et al. 10.3389/fimmu.2022.1054753
relationship between NET formation and complications of liver

transplantation. Herein, we summarize the latest findings that

associate NETs with liver IRI, acute rejection, thrombosis, and

hepatocellular carcinoma recurrence. We also discuss the

potential of NET as a potential therapeutic target in patients

following liver transplantation. NET targeting and degradation

could be novel promising therapeutic interventions in end-stage

liver disease and complications of liver transplantation.
NET formation

A novel immune defense mechanism known as NETs was

discovered in 2004. However, it is difficult to clearly define the

specific function of NETs in immune defense (10, 11). With

regards to neutrophil pathogenic stimulation, the activation of

the signaling pathways, and membrane integrity, the formation

of NETs can be classified into three types, namely, lytic, viable,

and mitochondrial NET formation (12). Lytic NETs are formed

within ten minutes from neutrophil stimulation with phorbol

myristate acetate (PMA), lipopolysaccharide (LPS), or IL-8 (13).

Several pathways lead to the formation of lytic NETs, including

ROS generation in neutrophils that lead to the activation of the

enzyme, peptidylarginine deiminase 4 (PAD4). Subsequently,

PAD4 converts arginine residues on histones into citrulline,

which results in chromatin decondensation (14, 15). In addition,

neutrophil elastase (NE) and myeloperoxidase (MPO) are

activated and translocated to the nucleus. NE and MPO are

also synergistically involved in chromatin decondensation.

Likewise, NE can also degrade actin filaments, and block the

phagocytosis pathway (16). Single-stranded DNAs and histones

are released in the cytoplasm, and form early NETs with

antibacterial proteins (e.g., MPO, citH3, NE, and cathepsin G)

(17). NET formation requires NADPH oxidase activity and

downstream ROS formation (18). Lytic NET formation can be

induced by bacteria, fungi and especially chemical stimuli, such

as LPS, TNF-a and IL-8 (19). Several in vitro studies showed

neutrophils formed NET-like structures in response to PMA,

LPS, TNF-a and IL-8. In these cells, pretreatment with CI-

amidine or use of a PAD4-deficinet line reduced citrullination of

histones and NET formation (20, 21).

In viable NET formation, PAD4 is activated by TLR-2 and

TLR-4 receptors on neutrophils under different stimuli. For

example, bacterial LPS results in the entry of PAD4 into the

nucleus to citrullinate the histones, H3 and H4, and unwind

DNA strands (22, 23). In contrast to the formation of lytic NET,

the PAD4 gene is activated without ROS and does not rupture

the cell or nuclear membrane. During the process, the

neutrophils are not destroyed, and unwound DNA strands

enter the cytoplasm to form early NETs with bacteriostatic

proteins. As fascicles, they are exocytosed and released from

the cell. Despite the absence of nuclear DNA, neutrophils are still

capable of phagocytosing bacteria and killing them (24, 25).
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The third mechanism describes the formation of NETs with

mitochondrial DNA. A previous study demonstrated that

eosinophils release mitochondrial DNA after the initial

priming with IL-5 or INF-g, and subsequent LPS stimulation

(26). DNA release is ROS-dependent and independent of

eosinophil apoptosis. In a subsequent study, mitochondrial

NETs were reported to be damaged after the neutrophils were

primed with GM-CSF for 20 minutes and then stimulated with

LPS for another 15 minutes, which resulted in the release of

DNA into the extracellular matrix (27). Neutrophil granular

proteins, such as MPO and NE, were also detected in the

extracellular matrix with the DNA, but nuclear proteins were

not found. It was later reported that NETs contained

mitochondrial DNA rather than nuclear DNA sequences (28).

Unlike viable NETs, the formation of mitochondrial NETs is

ROS-dependent, because the effects of ROS inhibitors and

neutrophil deficiency inhibit the release of NETs (29). Recent

studies further elucidated the importance of the post-

translational modifications of histones, which has a biphasic

impact on NETs formation (30). Another study found that the

pre-forming protein gasdermin D (GSDMD) plays a key role in

neutrophil membrane lysis, nuclear membrane development,

and NETs formation (31). However, still unclear about the

involvement of PAD4 activation and the presence of

mitochondrial DNA in the formation and structure of NETs.

To conclude, the mechanism behind the generation and release

of NETs requires further investigation (Figure 1).
NETs function

Researchers have demonstrated that NETs have a wide range

of efficacy against bacteria, viruses, fungi, and parasites. Several

components in NETs, including histones, contain bactericidal

and antimicrobial properties (32). NE, a granular protein, can

also degrade certain bacterial virulence factors (33). According

to prior studies, a fibrous NET structure enhances its bactericidal

activity, by either concentrating the antimicrobial molecules into

a small area or even serving as a physical barrier against

microorganisms (34). Despite NETs’ ability to fight infections,

it was soon realized that they were also detrimental to

gastrointestinal, liver, and lung inflammations (35, 36).

Activated neutrophils co-cultured with enterocyte-like Caco-2

cells revealed that NETs might damage epithelial cells by directly

binding to their proteases (37). The researchers also proposed

that NETs could facilitate the attachment of enteropathogenic E.

coli to the mucosa by causeing damage to the intestinal mucosal

barrier (38). Inflammation-associated lung damage and fibrosis

are linked to NETs. A recent study revealed postmortem that the

four patients who died of COVID-19, each had NETs in their

lungs. Airway compartments and neutrophil-rich inflammatory

areas of the interstitium contained NETs, while the arteriolar

microthrombi contained NET-prone primed neutrophils (39).
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Murao A, et al. reported that the extracellular cold inducible

RNA-binding protein (eCIRP)/TREM-1 interaction and Rho

activation are expected to support the development of novel

therapeutic molecules able to mitigate inflammation and sepsis

by comtrolling NET formation (40).

NETs are considered to be double-edged swords in innate

immunity. Because NETs play both an antibacterial and anti-

infective role in the early stages of pathogenic microorganism

invasion. However, excessive deposition and clearance disorder

can lead to inflammation and immune damage to target organs

(4, 16, 18, 41). Surgical stress, including liver resection and liver

resection and liver transplantation that lead to NET formation.

Yazdani et al. found that NET formation was decreased in IL-33

KO mice. IL-33 deficiency protected livers from I/R injury,

whereas rIL-33 administration during I/R exacerbated

hepatotoxicity and systemic inflammation. In vitro, IL-33

mainly released from liver sinusoidal endothelial cells, causes
Frontiers in Immunology 03
excessive sterile inflammation after hepatic I/R by inducing NET

formation (42).

Thrombosis is the formation of a blood clot from the actions

of platelets and coagulation factors in the events of vascular

damage. A thrombus is formed when coagulation is activated,

and fibrinolytic activity is decreased, thereby causing vasculitides

to block and disrupt the blood supply to the tissues (43–45).

Recent studies have reported the presence of neutrophils and

NETs in the thrombus of humans and mice (46). In addition,

NETs have been found to stimulate both internal and external

coagulation pathways that promote thrombosisby providing a

scaffold for the deposition of fibrinogen, platelets, von

Willebrand factors, and erythrocytes (47). NETs also promote

the deposition of thrombogenic substances. As platelets

aggregate and become activated in NETs, the histones interact

with fibrinogen, TLR2, and TLR4, to generate thrombin (48). In

mouse models, DNase I can effectively prevent intravascular
FIGURE 1

Mechanisms of NET formation. Three mechanisms of NET formation have been described: lytic NET formation, viable NET formation, and
mitochondrial NET formation.
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microthrombosis, which suggests a key role of NETs in

thrombosis (49). However, another study argued that NETs

promote thrombosis through their DNA and histone

components instead of the deposition approach (50). That

said, further studies are required to fully understand the

promoter role of NETs in thrombosis.

Over the past few years, NETs have attracted increasing

attention due to their essential role in innate immunology and

thrombosis. However, there is also evidence that NETs play a

pro-tumorigenic role in cancer (51). A growing number of

studies are looking into the potential diagnostic and

prognostic values of circulating NETs (52). The deposition of

NETs promotes tumor cell proliferation, immunosuppression,

and cancer-associated thrombosis. In addition, NETs can

accelerate metastasis by contributing to epithelial-to-

mesenchymal transition. NETs collect and multiply circulating

tumor cells, resulting in tumor cell intravasation and

micrometastases (53). At the same time, post-operative

infections can increase NETs deposition, which exacerbates the

recurrence and progression of post-surgical cancer (54).

Considering their integral role in cancer, NETs could be

potential therapeutic targets to inhibit tumor cell proliferation,

metastasis, and thrombosis.

With deepening research in the field of NETs in liver

transplantation, multiple studies discovered that DAMPs,

including HMGB1 and histones or superoxide released during

liver IRI, related in NETs formation. TLR-4 and/or TLR-9-

myeloid differentiation primary response protein signaling

pathways stimulated by HMGB1 and histones, respectively, are

thought to exacerbate liver IRI (7, 55, 56). Our study founded

that NETs promote kupffer cell M1 polarization and intracellular

translocation of HMGB1 aggravating liver IRI even cause acute

graft rejection following liver transplantation (57).
NETs detection

Whilst the importance of NETs has been highlighted in

innate immunity, it is a challenge to detect NETs due to their

heterogenous and acellular structure (58). Moreover, primary

human neutrophils cannot be transfected for mechanistic

interrelation studies, further complicating NET-related studies

(59). Besides that, NETs must be distinguished from cell-free

DNA (cfDNA), which originates independently of necrosis and

apoptosis (60). Hence, it is crucial to discover NETosis markers

and develop quantitative detection strategies that are sensitive

and specific, particularly towards lytic NETs. Immunoconfocal

microscopes are commonly used to detect NETs via

immunocytochemistry and immunohistochemistry. Several

groups have recommended co-localizing at least three key

NET components (i.e., extracellular DNA, NE, and histones)

for the accurate detection of NETs. This co-localization helps to

differentiate NETs from dead or dying cells that release DNA
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(61). SYTOX Green dye stain is more specific than DAPI for the

detection of NETs in a mixture with extracellular DNA (62, 63).

Despite the simple concept, the methodology is not well-

developed. There are several challenges to this, such as the

need for researchers to manually evaluate the presence of

neutrophil-derived proteins and DNA, difficulty in quantifying

the formation of NETs, and controversial reported analytical

techniques (64). H3cit, MPO and NE are considered as NETs-

specific biomarker. Thus, those markers can be used for the

ELISA-based detection of NETs (65).

To improve the detection of NETs in vitro, two types of flow

cytometry methods (i.e., image-based and cell-appendant) have

been developed using antibodies against major NET

components (66). For example, Zhao et al. used multispectral

imaging flow cytometry to identify the swelling of the nuclei in

NET-neutrophils as a potential marker for NETosis (67).

According to Gavillet et al., NETs simultaneously express both

MPO and citrullinated histones on their surface, and these

molecules can be detected by flow cytometry (68). In another

study, Cichon et al. introduced a novel method to detect NET

formation in vivo via intravital microscopy (69). Recently, it was

reported that CDr15 dye stain was impermeable to cell

membranes and emitted strong fluorescent signals when

bound to the extracellular DNA of NETs. When compared to

SYTOX Green, CDr15 showed lower background fluorescence

and higher specificity towards NETs. This was supported by the

successful detection of NETs stained with CDr15 in

formaldehyde-fixed tumor specimens (70). These novel

approaches highlight the promising future developments of

NET detection technologies. With advancing technology

in NETs detection, accumulating evidence demonstrated that

NETs may be a potential biomarker of inflammation and

autoimmune diseases to reflect the degree of tissue damage

and inflammatory conditions (71). A study reported that the

serum levels of NETs changed dynamically during severe fever

with thrombocytopenia syndrome (SFTS) progression. High

NETs levels were strongly associated with multiple

pathological processes and predicted severe illness in patients

with SFTS (72). Another study found that serum levels of NETs

can provide a picture of systemic inflammatory state and thereby

estimate risk for HCC recurrence after surgery. The research of

NETs detection technology have important clinical implications

for both treatment and biomarker discovery (73).
NETs and end-stage liver disease

NETs can also play a pivotal role in liver diseases such as

acute liver failure, alcohol-associated liver disease, non-alcoholic

steatohepatitis (NASH), liver cirrhosis, and hepatocellular

carcinoma (HCC) (59, 74, 75). Globally, liver cirrhosis ranks

among the top ten leading causes of death (76). A recent study

by Zenlander et al. suggests that the level of plasma markers for
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NET formation correlates to the severity of liver dysfunction in

patients with liver cirrhosis and HCC. A comparison between

patients with liver cirrhosis and HCC showed that there was no

significant increase in the plasma NET markers (77). Another

study demonstrated that a higher rate of complications such as

recurrent infections, may occur in liver cirrhosis patients with

deficient NETs (78). NASH is becoming the most prevalent

chronic liver disease in Western society due to its increasing

prevalence (79). According to findings by Van der Windt et al.,

NETs may be involved in the protumorigenic inflammatory

environment in NASH. The strategies used to eliminate NETs

may also reduce the risk of HCC in NASH (78). Another study

proved that NETs promote regulatory T cell activity through

metabolic reprogramming in NASH. In other words, therapeutic

targeting of NETs and regulatory T cells can prevent the

development of HCC in NASH patients (80).

Acute liver failure (ALF) is a life-threatening condition, that

is caused by a variety of factors, including viral infections and

drug-induced liver damage (81). A clinical study involving 676

patients with ALF reported that patients with ALF had 7.1 folds

higher levels of cfDNA and 2.5 folds higher levels of MPO-DNA

complexes, as compared to healthy controls. The levels of

cfDNA did not correlate with the 21-day transplant-free

survival, but they were higher in more severe cases. This

finding suggests that NET formation is a contributing factor to

disease development (82). Another study of ALF in mice
Frontiers in Immunology 05
reported the pathogenic role of NETs in ALF. The

management of ALF could be improved by regulating the

levels of miR-223/NE and NETs (83).

There is also growing evidence that the presence of NETs in

a cancer inflammatory microenvironment promotes HCC cell

proliferation (53). Researchers found that neutrophils isolated

from patients with HCC produced more NETs in vitro. The

presence of elevated MPO-DNA was associated with increased

mortality after liver surgery in HCC patients (84, 85). The

oncogenic role of NETs in HCC has been preliminary

confirmed. However, the specific mechanisms of NETs in

portal vein tumor thrombus and HCC recurrence after

surgical resection require further investigations (Figure 2).
NETs and IRI

End-stage liver disease patients benefit from liver

transplantation. However, liver IRI is a major cause of liver

failure and graft loss associated with liver transplantation (86,

87). In clinical studies, ischemia-reperfusion-related tissue injury

accounts for approximately 10% of early graft failures and is a

major contributor to both acute and chronic rejection (88).

Ischemia livers produce lesser ATPs due to lower oxygen levels.

As ATP is low, ROS cytokinesis, vasoactive agents, and adhesion

molecules are produced, which can aggravate the damage (89).
FIGURE 2

Neutrophil extracellular traps have been implicated in the pathophysiology of several different end-stage liver diseases.
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As a result of ROS generation, the concentration of intracellular

calcium increases, and the pH changes, leading to apoptosis and

necrosis (90). An important component of liver IRI is

inflammation, and neutrophils play an important role in the

events leading to liver injury after reperfusion. The excessive

activation and recruitment of neutrophils during reperfusion

contribute significantly to the pathogenesis of IRI. A neutrophil

induces liver injury through a multistep process that involves

neutrophil activation, vasculature transport, and migration

across the endothelium (91–93).

As more studies on the functions of NETs emerge, it is

implicated that NETs may contribute to the pathogenesis of

hepatic IRI. Histones and high mobility group box 1 (HMGB1)

proteins, commonly associated with tissue damage, are released

from damaged hepatocytes, and this activates TLR4 and TLR9 to

induce NETs formation. A recent study suggested that NADPH-

mediated superoxide production initiates NETs formation after

IRI. Pretreatment with allopurinol and N-acetylcysteine was

found to decrease NETs formation and liver injury after

ischemia injury in mice (94). Neutrophils and NETs were

found in the liver from ischemia-reperfusion mice models, and

both were negatively correlated with histidine-rich glycoprotein

(HRG) expression. Supplemental HRG treatment inhibited

neutrophil infiltration and NETs formation in livers to

alleviate liver IRI (95). Zhang et al. also correlated the

presence of NETs with hepatic IRI, and hydroxychloroquine

could alleviate hepatic IRI by inhibiting NETs formation in

hepatic ischemia-reperfusion mice models (55). One study

suggested that acrolein can cause the release of NETs in the

liver during IRI and slow the recovery rate of a post-operative
Frontiers in Immunology 06
liver. In patients with chronic hepatic disorders, targeting NOX2

and P38MAPK signaling could inhibit the formation of NETs,

and improve the survival and function of the post-operative liver

(56). In our study, we found that tetramethylpyrazine (TMP), a

compound extracted from Ligusticum wallichii Franchat, has the

potential to improve liver functions and alleviate hepatic IRI.

Furthermore, TMP inhibited NADPH oxidase activity, thus

inhibiting the formation of NETs in rats after liver

transplantation. We provide the first evidence of a synergistic

effect between TMP and diphenyleneiodonium to alleviate

hepatic IRI (96). We further examined the effect of

recombinant human thrombomodulin (rTM) on liver

transplantation in a rat model, focusing on the TLR-4/MAPK

axis. Our data illustrated that NETs independently contribute to

hepatic IRI, and rTM treatment mitigated neutrophil infiltration

and suppressed NETs formation after liver transplantation (97).

Although these results suggest that antioxidant treatment can

protect against liver IRI via the attenuation of NETs formation,

the therapeutic benefits of NETs inhibition should also take into

account the possible complications in immunocompromised

individuals after transplantation (Figure 3).
NETs and acute rejection

Many individuals with end-stage liver disease around the

world benefit from liver transplantation (98). According to a

recent publication, the 5-year survival rate of grafts and patients

after a liver transplant was 72.8 and 76.1%, respectively. Acute

rejection (AR) is a common complication after liver
FIGURE 3

Neutrophil extracellular traps have been implicated in the pathophysiology of liver ischemia-reperfusion injury following liver transplantation.
DAMPs, damage-associated molecular patterns; HCQ, Hydroxychloroquine; TMP; Tetramethylpyrazine, rTM; recombinant human thrombomodulin.
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transplantation, that affects about 25 to 50% of patients (99).

There is evidence that immunosuppressive agents can reduce the

rates of acute rejection, but immunosuppressive treatments can

also decrease the survival rate of patients (100, 101). Total

bi l i rubin, a lanine aminotransferase , and aspartate

aminotransferase are commonly used clinically to monitor the

liver function of liver grafts (102). Furthermore, the levels of

immunosuppressive drugs in the blood can be monitored to

predict the risk of AR (103). However, standard laboratory tests

are inefficient for detecting AR, in terms of time and specificity

(104, 105). Hence, the identification of therapeutic targets and

early diagnostic strategies for AR should be the focus of future

research (106). Recently, donor-derived cell-free DNA (dd-

cfDNA) in AR is attracting increasing attention as a diagnostic

biomarker (107). Allograft injury releases dd-cfDNA into the

patient’s serum, which makes it a good biomarker to evaluate the

condition of allografts and the possibility of rejection (108). A

study was conducted by Schutz et al. that measured the levels of

dd-cfDNA in 107 patients with liver transplantation. Patients

with AR had the highest percentage (29.6%) compared with

those healthy controls (3.3%) (109). A more recent study

suggested that dd-cfDNA is even more sensitive than

conventional transaminases to detect AR (110).

Extracellular DNA is the most important component of

NETs, and neutrophils are generally activated in the AR.

However, there are insufficient studies to assess the correlation

between NETs formation and AR after liver transplantation. As

such, we have conducted some studies in this area (8, 15). Serum

samples obtained from 13 liver transplant individuals were

analyzed, and we found that the levels of NETs were elevated.

During recovery, the levels of NETs decreased gradually and

then stabilized. The levels of NETs increased following AR

diagnosis, and decreased following treatment with oral

rapamycin, in three patients. Next, the serum NETs were
Frontiers in Immunology 07
measured in liver transplant patients with AR. The levels of

NETs in patients undergoing liver transplantation were

positively correlated with liver enzymes and the incidence of

AR. Our findings revealed that AR is influenced independently

by NETs and that NETs subsequently induced kupffer cell M1

polarization and intracellular translocation of HMGB1. On the

other hand, HMGB1 activates the TLR-4/MAPK signaling

pathway, which causes NETs formation. This positive feedback

loop between neutrophils and kupffer cells further amplifies the

inflammatory signals and graft injury. Additionally, NET

inhibitors combined with immunosuppressive agents may offer

a novel treatment option for AR (57). NETs are a potential novel

target for AR diagnosis and treatment (Figure 4).
NETs and arterial thrombosis

Hepatic artery thrombosis is the most common vascular

complication, that may lead to non-functional liver graft

and acute liver failure, following liver transplantation (111,

112). A significant proportion of this is seen in patients with

recurrent biliary tract infection or asymptomatic biliary leakage

with liver dysfunction (113). Thrombosis after liver

transplantation has a high incidence rate and poor prognosis

in children undergoing liver transplantation because it

is difficult to diagnose in the early stages (114). It is well-

recognized that neutrophils and platelets act as first responders

to injuries and infections (115). As part of their host defense

mechanisms, neutrophils promote blood coagulation by

increasing fibrin deposition and limiting the spread of

infections (32). NET-fibrin interactions prevent bacterial

invasion into the surrounding tissues of the l iver

microvasculature, while their disruption promotes bacterial

dissemination throughout the body (116). A dysregulation or
FIGURE 4

Neutrophil extracellular traps have been implicated in the pathophysiology of acute rejection following liver transplantation.
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excessive stimulation of the vasculature may lead to pathological

thrombosis. Therefore, neutrophils play a pivotal role in

regulating thrombosis through several mechanisms (117).

NETs have been recently identified as new DNA-based

components involved in the formation of blood clots and

thrombosis (118). Platelets, red blood cells, and platelet

adhesion molecules adhere to NETs via a scaffold, which

promotes thrombosis (119). Additionally, many of the scaffold

components can also stimulate platelet activation and blood

coagulation (6). In addition, NETs can stimulate both intrinsic

and extrinsic coagulation, primarily through the serine proteases

in neutrophils. Endothelial cells are highly cytotoxic to the

histones, H3 and H4, and that platelets can aggregate because

of these histones (5). In comparison to venous thrombosis,

arterial thrombosis is more common in acute events, as a

result of thrombus shedding in acute myocardial infarction

(AMI), ischemic stroke, and acute arterial embolism (120).

According to Riegger et al., NETs were present in the

thrombus of stroke patients and atherosclerotic plaques of

patients with atrial fibrillation (121). Another study found that

NETs were more prevalent in newly formed coronary thrombi

than in older ones and that both myocardial infarction and ST-

segment elevation were positively associated with the level of

NETs in the coronary thrombi (122). The surgical stress

response from liver resection and transplantation can

aggravate the deposition of NETs in the liver, and platelets

activated with NETs can produce a systemic procoagulant state,

leading to immunothrombosis and remote organ injury (123). A

mouse model with liver IRI was found to significantly increase

both circulating platelet activation and platelet-neutrophil

aggregation. NETs and platelet-rich microthrombi were found

in the microvasculature of injured organs after liver surgery, and

the inhibition of NETs with DNase reduced immune thrombosis

and organ damage (124). Although the key role of NETs in

immune thrombosis and its related mechanisms have been

reported by a large number of studies, the findings on the

regulation of coagulation and immune thrombosis after liver

transplantation are still lacking. Hence, it is necessary to explore

the role and specific mechanisms of NETs in immune

thrombosis after liver transplantation, for better management

of the condition.
NETs and hepatocellular
carcinoma recurrence

Hepatocellular carcinoma (HCC) and end-stage liver

diseases have widely benefited from liver transplantation (125,

126). However, HCC recurrence is one of the main causes of

mortality in HCC patients who undergo liver transplantation

(127, 128). It has been established that certain tumor

characteristics can lead to the recurrence of HCC, including
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the concentration of alpha fetoproteins, tumor diameter,

macrovascular invasion, and extended orthotopic liver

transplantation criteria (129). A recent study found that both

pre-operative serum hepatitis B viral DNA and pre-operative

prognostic nutritional index can potentially be used to predict

HCC recurrence after liver transplantation (130, 131). However,

these studies all had small sample sizes or were conducted

retrospectively and lack of molecular-biological investigations.

Despite these advances, the mechanism behind the high HCC

recurrence rates remains a mystery, and that these biomarkers

have clear limitations.

Recently, NETs have been detected in various cancer

samples (i.e., breast, liver, and gastric cancers) and metastatic

tumors. In tumor development, NETs play an important role in

cancer immunoediting and immune-cell interactions (132–134).

Research suggests that NETs activate dormant cancer cells,

which causes tumor recurrence (135). Furthermore, HMGB1 is

also involved in NETs formation in TME by interacting with

TLR4, and this releases excessive inflammatory cytokines (136).

NETs also promote cancer invasion and migration, which

exacerbates tumor aggressiveness (137). It is well known

that the degradation of matrix proteins inhibits the immune

system of the host, which is one of the mechanisms of tumor

evasion (53). NETs-associated proteinases activate matrix

metalloproteinases to induce tumor-associated macrophages,

which stimulate the release of pro-inflammatory factors (i.e.,

IL-8, IL-1b, and TNF-a), eventually leading to immune escape

and tumor metastasis (138).

Tumor metastasis is the main cause of cancer mortality, and

neutrophils are involved in this process (139). Multiple

studies reported that NETs trap circulating cancer cells and

release proteases, which results in tumor metastasis and

proliferation (35, 140). Najmeh et al. demonstrated that b1-
integrin can induce NET-related entrapment of circulating lung

carcinoma cells, resulting in cancer development and metastasis

(141). These results were supported by Cools-Lartigue et al.,

where circulating lung carcinoma cells were found to be

encapsulated in NET DNA conglomerates in a murine model.

It was also shown that circulating “NETs-cancer cells packages”

seeded in the liver, produced micrometastases within 48 hours

and secondary hepatocellular carcinoma after two weeks (51). A

retrospective analysis found that high level of NETs predicted

shorter recurrence-free survival and overall survival. Serum

levels of NETs as a biomarker pre-surgery can help identify

patients with a higher risk for HCC recurrence (73). Another

study showed that HCC is capable to stimulate NETs enriched in

oxidized mitochondrial-DNA, which are highly pro-

inflammatory and pro-metastatic (142). Cheng Y et al.

demonstrated that combination of NK cell adoptive therapy

and hydrogel-based delivery system can destruct NETs and

prevent post-resection and post liver transplantation HCC

recurrence (143). NETs play an integral role in cancer

invasion, transport, and transendothelial migration according
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to a multilevel model, especially in HCC recurrence should be

further studied.
Potential therapeutic targets
for NETs

In various diseases, NETs play the role of pathogenic drivers,

thus making them attractive therapeutic targets. Studies have

found that the levels of NETs correlated with the survival of

cancer patients (142, 144). However, the risks of using NETs as

therapeutic targets should also be evaluated. Targeting NETs

would increase infection susceptibility, considering the

protective role of NETs against severe infectious diseases (58).

A study reported that mice with deletions of PAD4 were more

vulnerable to bacterial infections (145). According to another

study, PAD4 knockout may protect mice from polymicrobial

sepsis-induced septic shock (146). Therefore, the potential risk

of targeting NET formation may be determined by the type of

disease and immune status of the organism. Another major risk

of NETs degradation is the release of NETs-derived DNA and

histones, which may trigger inflammation. Currently, therapies

targeting NETs can be segmented into two categories:

degradation/destabilization of NETs, and the inhibition of

NETs formation.

The degradation of NETs has already been extensively

studied. Research found that DNase I was capable of partially
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lysing NETs, and that tPA and DNase I could synergistically

initiate thrombolysis (122). The use of DNase I as a treatment in

mice suffering from thrombosis was also effective at preventing

recurrent stroke, myocardial infarction, and deep vein

thrombosis (49). However, further research is required to

determine whether DNase I degradation of NETs would

increase inflammation and risk for thrombosis. It has also

been suggested that treatment with low molecular weight

heparins (LMWH) can reduce NETs formation (5). Some

researchers reported that histones could be dissociated from

the chromatin backbone of NETs via heparin therapy and that

LMWH can inhibit PMA-induced NETs formation (147).

According to a study, the therapeutic use of heparin to treat

NET-associated pathologies reported the opposite effect. Lelliott,

et al. showed that heparin induced NETs formation in vitro, in

the absence of PAD4 (148). Two independent studies reported

that heparin-induced thrombocytopenia-related thrombosis was

caused by NETs (149, 150). These contradictory results, as well

as the potential side effects and risks, suggest the need for

further investigations.

Another strategy to target already formed NETs is to

interfere with their formation. Cloamidine, a pan PAD

inhibitor, was found to inhibit the expression of PAD4, which

subsequently prevents NETosis (151). Another potential

advantage is that PAD4 deficiency in mice does not affect

bacteremia during polymicrobial sepsis. The efficacy of

GSK484 (developed by Glaxo Smith Kline) and BMS-P5
FIGURE 5

Potential therapeutic targets for NETs. (A) Inhibition of NET formation. (B) Degradation and destabilization of already formed NETs.
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(developed by Bristol-Myers Squibb) in inhibiting NET

development and suppressing associated diseases have now

been confirmed by several in vitro and in vivo studies

(152, 153). As a potential therapeutic target, NE inhibitors

have proven effective in inhibiting NETs formation (51).

For example, it was demonstrated that Sivelestat (an inhibitor

of NE) inhibited NETs growth in mice with lung carcinoma

(154). Antibodies are also known to prevent the formation

and release of NETs in several inflammatory conditions,

owing to their action toward citrullinated proteins

(Figure 5) (155).

Conclusion and future perspectives

There is increasing evidence showing that NETs contribute

to ischemia-reperfusion injury, acute rejection, thrombosis, and

the recurrence of hepatocellular carcinoma. There is also

potential for NET-related molecules as biomarkers and as

targets for therapeutic intervention in complications of live

transplantation. With further study, NETs is promising to

provide a vast number of innovative applications in liver

transplantation. There is an urgent need for the development

of new methodologies to accurately detect NETs formation,

considering the limitations of current methods. In addition,

NETs detection should be standardized to ensure consistent

results from comparative studies by different research groups.

Thus far, strong evidence has shown that NETs might induce

inflammation and tumor immune escape in ischemia-

reperfusion injury and recurring hepatocellular carcinoma.

Further research is required to understand the pathogenicity of

NETs in liver transplantation. Neutrophils and NETs play a

pivotal role in immune defense, and their potential as

therapeutic targets warrants further study. A long-term safety

assessment is also needed to assess the benefits and risks of NET-
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inhibition treatment. As an emerging field within liver

transplantation, the relationship between NETs and the

postoperative complication of liver transplantation also

requires further investigation.
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