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NETosis is critical in patients
with severe community-
acquired pneumonia

Yiming Zhang1,2†, Yan Li1†, Na Sun2†, Hanqi Tang1, Jun Ye2,
Yang Liu1, Quan He2, Yangyang Fu1, Huadong Zhu1,
Chengyu Jiang2* and Jun Xu1*

1Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union
Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College,
Beijing, China, 2State Key Laboratory of Medical Molecular Biology, Department of Biochemistry,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical
College, Beijing, China
Pneumonia is the fourth leading cause of death globally, and the reason for the

high mortality rate of patients with severe community-acquired pneumonia

(SCAP) remains elusive. Corticosteroid treatment reduces mortality in adults

with SCAP but can cause numerous adverse events. Therefore, novel

therapeutic targets need to be explored and new adjunctive immune drugs

are urgently required. We analyzed the transcriptome data of peripheral blood

leukocytes from patients with SCAP and healthy controls from three

perspectives: differentially expressed genes, predicted functions of

differentially expressed long non-coding RNAs, and transcriptional read-

through. We discovered that the NETosis pathway was top-ranked in patients

with SCAP caused by diverse kinds of pathogens. This provides a potential

therapeutic strategy for treating patients. Furthermore, we calculated the

correlation between the expression of genes involved in NETosis and the

ratio of arterial oxygen partial pressure to fractional inspired oxygen. We

identified four novel potential therapeutic targets for NETosis in patients with

SCAP, including H4C15, H3-5, DNASE1, and PRKCB. In addition, a higher

occurrence of transcriptional read-through is associated with a worse

outcome in patients with SCAP, which probably can explain the high

mortality rate of patients with SCAP.
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Introduction

According to the report on the global burden of diseases and

injuries, the number of global deaths caused by pneumonia has

decreased by nearly 500,000 compared to data acquired in 2000,

and pneumonia remains the fourth leading cause of death globally

(1). Substantial progress has been made in studying molecular

mechanisms of pneumonia, such as inflammation and immunity,

especially since the start of the Coronavirus Disease 2019

(COVID-19) pandemic. For example, the frequency of Th17

cells and the level of interleukin 17 (IL-17) are increased in the

blood of patients with pneumonia (2, 3) and pneumococcal

carriage (4), thereby enhancing innate immunity against

pathogens by activating neutrophils and strengthening the

inflammatory response. IL-1 can assist in host defense against

lung infection by various pathogens (5–8), but excessive levels of

IL-1 are harmful; therefore, blocking IL -1 is beneficial to patients

with severe pneumonia (9). Despite continuous progress in

characterizing pneumonia mechanisms, the poor prognosis of

patients with severe pneumonia remains significant, and the

reason for the high mortality rate of patients with severe

community-acquired pneumonia (SCAP) remains elusive.

Corticosteroid treatment reduces mortality in adults with SCAP

(10), suggesting that restricting rampant inflammation is critical

for patients with severe pneumonia. However, corticosteroid

therapy can cause many adverse events, and the clinical benefits

of other adjunctive immune therapies remain unclear (11).

Therefore, novel adjunctive immune drugs are urgently required.

Here, we analyzed the transcriptome data of peripheral blood

leukocytes from patients with SCAP and healthy controls to explore

potential therapeutic targets from three perspectives: differentially

expressed genes (DEGs), predicted functions of differentially

expressed long non-coding (lnc)RNAs (DELs), and gene pairs

with transcriptional read-through (TRT). TRT is a phenomenon

in which transcripts extend beyond the transcription termination

site of genes under diverse cellular stresses, such as viral infection,

cancer, heat shock, oxidative stress, and hyperosmotic stress (12–

15). Readthrough transcription can disrupt the 3D structure of a

genome by decompacting chromatin, which can switch local

chromatin from a transcriptionally inactive compartment to a

transcriptionally active compartment (16). TRT can occur in two

modes: upstream and downstream genes on the same DNA strand

(cis-TRT) or different DNA strands (trans-TRT) (17).

Based on our transcriptome analyses, we discovered that

NETosis is critical in patients with SCAP caused by diverse kinds

of pathogens. NETosis is the process by which activated

neutrophils produce and release neutrophil extracellular traps

(NETs) (18). NETs mediate host defense by trapping and killing

bacteria, fungi, and viruses (19). While NETs provide a robust

defense against pathogens, increasing evidence indicates that

they can cause tissue damage (20, 21). Because of its double-

edged sword effect, we believe modulating NETosis is crucial to

balance the immune system disorder in patients with SCAP.
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Therefore, we explored potential therapeutic targets for NETosis

and found that H4C15, H3-5, DNASE1, and PRKCB could be

novel potential therapeutic targets, thereby providing a new

perspective on drug development.
Materials and methods

Participants

We selected 56 patients diagnosed with SCAP according to

the American Thoracic Society and Infectious Disease Society of

America 2007 guidelines (22) from the emergency department of

Peking Union Medical College Hospital, Beijing, China. Clinical

data and blood samples were collected on the first and second

days of admission. Thirty-seven patients (66.1%) had identified

pathogens, and 13 of 37 patients were infected with more than

one pathogen (Supplementary Table 1). The identified

pathogens included influenza A, cytomegalovirus, Epstein-Barr

virus, adenovirus, rhinovirus, Streptococcus pneumoniae,

Klebsiella pneumoniae, Pseudomonas aeruginosa, Nocardia

asteroides, Burkholderia cepacia, Mycoplasma pneumoniae,

Candida albicans, Aspergillus fumigatus, and Pneumocystis

carinii. In this study, the overall mortality rate was 26.8%

(Table 1). Healthy controls (defined as having no diagnosed

disease and no inflammation) were also recruited from the

emergency department of Peking Union Medical College

Hospital (Supplementary Table 2). This study was approved

by the Ethics Committee of the Peking Union Medical College

(S500). Written informed consent was obtained from

all patients.
RNA sample preparation

Whole blood was centrifuged at 2,000 g for 5–10 min at

25°C. The pelleted blood cells were mixed with 10 mL red blood

cell lysis buffer (R1010, Solarbio) for 5min on ice, and the

mixture was centrifuged at 2,000–3,000 ×g for 5min at 4°C.

The supernatant was discarded, and 5ml red blood cell lysis

buffer was added to resuspend the precipitate. The resuspended

solution was centrifuged at 2,000–3,000 ×g for 5 min at 4°C. The

supernatant was discarded. Finally, 1.5 mL RNA later (76544,

Qiagen) was added to the total RNA precipitate for RNA

library preparation.
RNA library preparation and
RNA sequencing

Strand-specific libraries were generated using the NEBNext®

Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA)

following the manufacturer’s recommendations. The library
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was sequenced on a Novaseq 6000 platform (NEB, USA), and

150 bp strand-specific paired-end reads were generated.
Differential expression analysis

Clean reads with adapters and low-quality reads removed

were aligned to the human genome reference sequence hg19

using Tophat2 (version 2.0.13) (23) for RNA-seq and WGCNA

analyses. Clean reads were aligned to the GRCh38 reference

sequence using HISAT2 (version 2.1.0) (24) for lncRNA

analysis. Gene annotation and quantification were performed

using featureCounts (version 2.0.1) (25). The Combat-seq

function in the sva package was used to remove batch effects.

DEGs and DELs were identified using the DESeq2 package

(version 1.34.0) (26) in R (version 4.1.2). Independent

hypothesis weighting (IHW, version 1.22.0) was used to

correct multiple hypothesis testing (27). Genes with adjusted

P-value < 0.05 and FC > 5 or < 0.2 were identified as DEGs.

lncRNAs with adjusted P-value < 0.05 and FC > 10 or < 0.1 were

identified as DELs.
Prediction of novel lncRNA genes

De novo transcript assembly for each sample was performed

using StringTie (version 1.3.6). The assembled transcripts were

merged into a single file using the merge function in StringTie.

Transcripts that met all of the following criteria were considered

to be novel lncRNAs: 1) class code was “i”, “u”, “x”, “j” or “o”

after comparison with reference annotation (Ensemble

GRCh38.104) using GffCompare (version 0.11.2) (28); 2)

transcript length was at least 200 bp; 3) transcript FPKM > 0.5

and transcripts per million (TPM) > 3; and 4) transcripts were

non-coding. The coding potential of transcripts was tested by

CPC2, CPAT, CNCI, and Pfam, and only the transcripts that

were determined as noncoding in all tests were kept

(Supplementary Figure 1A).
DELs target gene prediction

The protein-coding genes adjacent to the DELs (50 kb

upstream and downstream on the same chromosome) were

screened as cis-acting target genes of DELs. Trans-acting

target genes were predicted by 1) co-expression relationship

between DELs and protein-coding genes (Spearman’s |R|>0.9, P-

value<0.05), and 2) the potential of lncRNAs to bind protein-

coding genes. Triplex Domain Finder (Version 0.13.2) was used

to predict whether lncRNAs could bind protein-coding

genes (29).
TABLE 1 Baseline characteristics of patients with SCAP.

SCAP

Basic information

Sex:

Female 18 (32.1%)

Male 38 (67.9%)

Age 45.5 [33.2;65.0]

Prognosis:

Death 15 (26.8%)

Remission 41 (73.2%)

Pathogen:

Non-virus 34 (60.7%)

Virus 22 (39.3%)

AKI:

No 38 (67.9%)

Yes 18 (32.1%)

Fever duration (days) 7.00 [4.00;11.2]

FiO2 (percent) 50.0 [37.0;80.0]

PaO2/FiO2 157 [95.6;236]

Complete blood count

WBC (109 cells/L) 10.0 [7.10;14.1]

RBC (1012 cells/L) 4.00 [3.35;4.35]

NEUT% 87.2 [81.7;92.0]

LY% 8.05 [4.32;15.4]

PLT (109 cells/L) 162 [107;248]

HGB (g/L) 118 [104;132]

HCT 0.34 [0.30;0.39]

Laboratory examination

ALT (U/L) 26.0 [16.5;45.5]

Alb (g/L) 28.0 [25.0;31.0]

Tbil (umol/L) 10.1 [8.00;14.6]

Dbil (umol/L) 4.65 [2.88;7.23]

Cr (umol/L) 69.5 [53.0;98.0]

BUN (mmol/L) 6.19 [4.83;9.66]

Na (mmol/L) 137 [134;139]

K (mmol/L) 3.75 [3.50;4.20]

Glucose (mmol/L) 8.00 [6.45;11.7]

Arterial Blood Gas

pH 7.43 [7.38;7.45]

PaCO2 (mmHg) 36.2 [31.7;39.9]

PaO2 (mmHg) 76.3 [64.9;90.0]

HCO3
- (mmol/L) 22.2 [19.8;24.9]

ABE (mmol/L) -0.95 [-4.05;0.92]

Lac (mmol/L) 1.45 [1.10;1.90]
Categorical data are displayed as n (%), and continuous variables are shown as median
[interquartile range]. AKI, acute kidney injury; FiO2, fraction of inspired oxygen; PaO2,
partial pressure of oxygen; WBC, white blood cell count; RBC, red blood cell count;
NEUT%, percentage of neutrophils; LY%, percentage of lymphocytes; PLT, platelet; HGB,
hemoglobin; HCT, hematocrit; ALT, alanine aminotransferase; Alb, albumin; Tbil, total
Bilirubin; Dbil, direct Bilirubin; Cr, creatinine; BUN, blood urea nitrogen (urea); Na,
sodium; K, potassium; PaCO2, partial pressure of carbon dioxide; HCO3

-, bicarbonate;
ABE, actual base excess; Lac, lactic acid. Detailed information about the patients is
provided in Supplementary Table 1. There is a missing value in ALT data.
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Transcriptional read-through

The four-step screening was used to determine the

occurrence of TRT. First, 11,784 adjacent gene pairs on the

same strand (cis-TRT) and 5051 adjacent gene pairs on different

strands (trans-TRT) were selected. The coverage tool in bedtools

(version 2.23.0) was used to quantify the coverage of gene pairs

and corresponding intergenic regions. Second, gene pairs with

upstream-gene FPKM above the 25th percentile were screened

for further analysis and visualization because TRT tends to occur

at the end of actively expressed genes (16). Third, the FC of

intergenic FPKM > 5 was set as the threshold to ensure that the

transcript of the upstream gene was beyond the transcription

termination site (TTS) in patients with SCAP. Fourth, gene pairs

with patient-specific TRT were determined if the downstream-

gene FPKM of patients was greater than 1.5 when the mean

downstream-gene FPKM was 0 in control or the FC was greater

than 1.5 when the mean downstream-gene FPKMwas not 0. The

purpose of the last step was to keep gene pairs in which TRT

affected the transcription of the downstream gene.
Weighted gene co-expression
network analysis

TheWGCNA package (version 1.70-3) on the R platform was

used to perform a weighted gene co-expression network analysis.
Enrichment and protein-protein
interaction network analyses

Pathway and gene ontology (GO) enrichment analyses were

performed using the MetaCore database (Clarivate Analytics,

https://portal.genego.com/). Cytoscape (version 3.8.0) and

Enrichment map (version 3.3.0) were used for biological process

network visualization. A protein-protein interaction network of

DEGs was built using the STRING website (https://string-db.org/)

with a confidence score threshold of 0.9 and plotted with Cytoscape.
Statistics

All statistical analyses were performed using R (version

4.1.2). Correlations were evaluated using Spearman ’s

correlation coefficient, except for WGCNA, for which

Pearson’s correlation coefficient was used by default. The

Wilcoxon rank-sum test was used to compare the number of

gene pairs with TRT and principal component 1 of NETosis

genes between different groups. The comparison between the

pathogen groups and prognosis groups was performed using

chi-square test. Statistical significance was set at P-value< 0.05.
Frontiers in Immunology 04
Results

RNA-seq analysis reveals that NETosis is
involved in SCAP

To explore potential therapeutic targets of SCAP, we

analyzed RNA-seq data from peripheral blood leukocytes of

patients with SCAP and healthy controls. We identified 798

significant DEGs (Figure 1A), of which 679 were upregulated

(fold-change (FC) > 5, adjusted P-value < 0.05) and 119 were

downregulated (FC < 0.2, adjusted P-value < 0.05).

We clustered DEGs using the MetaCore website to identify the

biological processes and pathways in which they were involved. Of

the top ten DEGs enriched pathways with a false discovery rate

(FDR) < 0.05, most were related to immune or inflammatory

responses, and the most significant pathway was IL-1 related

signaling pathway (Figure 1B). The role of IL-1 is relatively well

studied in infectious lung diseases (5–9), and numerous IL-1-

targeting agents have been developed, some of which are

approved for use (30–32). Therefore, we focused on the second

most enriched pathway, NETosis in SLE, which is the only

NETosis-related pathway in the MetaCore database. The

NETosis-related cluster of biological processes included responses

to biotic stimuli, inflammatory responses, neutrophil activation, and

the positive regulation of kinase activity (Figure 1C). Responses to

biotic stimuli, inflammatory responses, and neutrophil activation

are prerequisites for NETosis, and the positive regulation of kinase

activity may be related to kinase activation in NETosis (33).

We then sought to identify the genes crucial for NETosis in

SCAP. We then performed a protein-protein interaction

network analysis using the list of DEGs. Of the genes in the

NETosis pathway, the histone-related genes (circled in blue,

Figure 1D) and MAPK14 were highly connected in the protein-

protein interaction network (Figure 1D), suggesting that these

genes are crucial for NETosis in SCAP.
Weighted gene co-expression
network analysis indicates that
NETosis is correlated with the
percentage of neutrophils

To explore the relationship between NETosis and clinical

traits, we used weighted gene co-expression network analysis

(WGCNA) to cluster genes and calculated the Pearson

correlation coefficient between gene clusters and clinical traits

(Figure 2A). We used the MetaCore database to enrich gene

clusters, which are also called gene modules. The NETosis

pathway was most significantly enriched (FDR = 0.003) in the

MEyellow gene modules (Figure 2B). Therefore, we considered

this gene module the most relevant to NETosis. We then

examined the correlation between the MEyellow gene module
frontiersin.org
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and clinical traits. The MEyellow gene module showed the

strongest correlation with the percentage of neutrophils

(Pearson’s R = 0.34, P-value = 0.01; Figure 2A). This

correlation suggests that NETosis is more likely to occur in

patients with SCAP who have a higher percentage of neutrophils,

which is consistent with the cellular mechanism of NETosis (33).
NETosis may relate to viral infection,
acute kidney injury, and higher partial
pressure of carbon dioxide

To explore the relationship between NETosis and clinical

traits, we performed a principal component analysis on the
Frontiers in Immunology 05
expression levels of NETosis genes expressed in more than 50%

of patients and extracted its principal component 1 (PC1). The

correlations between the PC1 and original data were computed,

and 107 out of 115 selected NETosis genes negatively

correlated with PC1 (Supplementary Table 3). This indicates

that PC1 can approximately represent how active the process

NETosis is. The smaller the value of PC1, the more active

NETosis is likely to be. We then explored the relationship

between PC1 and clinical traits (Supplementary Table 4). PC1

was lower in patients with viral infections and acute kidney

injury (Figures 3A, B). Furthermore, PC1 negatively correlated

with partial pressure of carbon dioxide (Figure 3C), suggesting

more a c t i v e NETos i s wa s a s so c i a t ed w i th poo r

ventilation function.
A

B

DC

FIGURE 1

DEG identification and analyses. (A) Volcano plot of RNA-seq. The horizontal dashed line represents the P-value cutoff (0.05) for the
differentially expressed genes (DEGs). The vertical dashed line represents the fold change (FC) cutoff of DEGs in patients with SCAP
relative to healthy controls of DEGs (5 and 0.2). (B) Pathway enrichment of DEGs. The ratio indicates the proportion of the number of
enriched network objects in a pathway to the total number of network objects in the pathway. (C) Gene Ontology Biological Processes
enrichment map. The connection between biological processes is based on shared objects. (D) Protein-protein interaction (PPI) network
of DEGs. Edge thickness indicates the strength of data support. Disconnected node is hidden in the network.
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DELs may regulate NETosis-related
genes in patients with SCAP

To understand the role of lncRNAs in patients with SCAP, we

analyzed known and novel lncRNAs in our RNA-seq data and

identified 152 significant DELs (FC > 10 for upregulated DELs or

FC < 0.1 for down-regulated DELs, adjusted P-value < 0.05),

including 124 upregulated known DELs, 19 upregulated novel

DELs, four downregulated known DELS, and two downregulated

novel DELs (Figure 4A). Patients with SCAP and healthy controls

displayed different DEL expression patterns (Figure 4B).

Based on the two regulatory modes of lncRNAs (34), we

predicted the target genes of the DELs in two ways. We clustered

cis-acting and trans-acting target genes using the MetaCore

website to determine the functions of the DELs. The NETosis

pathway ranked first and sixth in the pathway enrichment

analysis results for the trans-acting and cis-acting target genes,

respectively (Figure 4C; Supplementary Figure 1B). This

indicates that DELs may participate in NETosis by regulating

NETosis-related protein-coding genes.
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GO enrichment analysis revealed that both cis- and trans-

acting target genes were involved in the biological processes of

immunoregulation, neutrophil activation, and Th17 cell

differentiation (Figure 4D; Supplementary Figure 1C). Only cis-

acting target genes were involved in neutrophil-mediated killing

(Supplementary Figure 1B). During NETosis, neutrophils release

cathelicidin (35), a host defense peptide that promotes Th17 cell

differentiation (36). This may be one explanation for the increased

frequency of Th17 cells in the blood of patients with pneumonia

(2, 3). Additionally, immunoregulation may be present in patients

with SCAP as it can restrict excessive NETosis (37).
Downstream genes of gene pairs with
TRT are highly enriched in the
NETosis pathway

Mounting evidence has shown that viral infections can

induce TRT, especially influenza (13, 15, 16, 38). We

wondered whether TRT could occur in patients with SCAP.
A

B

FIGURE 2

WGCNA of the RNA-seq. (A) Correlation heatmap of gene modules and clinical traits. Numbers in each cell represent Pearson’s correlation
coefficients and the corresponding P-value (in brackets). (B) Pathway enrichment in the MEyellow gene module. The ratio indicates the
proportion of the number of enriched network objects in a pathway to the total number of network objects in the pathway.
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To verify this, we selected all adjacent gene pairs in the genome,

either on the same strand (cis-TRT) or different strands (trans-

TRT), and determined whether these gene pairs underwent

read-through transcription only in patients with SCAP by

three-step screening (Figures 5A, B). Heatmaps and

corresponding bar plots were used to illustrate the occurrence

of patient-specific cis- and trans-TRT (Figures 5C, D).

For further analysis, we selected gene pairs with TRT in >

30% of patients with SCAP. First, we calculated the correlation

coefficient between intergenic and downstream gene FC for each

selected gene pair. Spearman’s correlation coefficients for cis-,

trans-, and their combined total-TRT were positive and mainly

within the 0.7−0.9 range (Figure 6A; Supplementary Figures 2A,

3A), suggesting that the occurrence of TRT may increase

downstream gene transcription in patients with SCAP. We

then performed pathway enrichment analysis for downstream

genes of the selected gene pairs in cis-, trans-, and total-TRT.

The NETosis pathway was significantly enriched (Figure 6B;

Supplementary Figures 2B, 3B), especially in cis- and total-TRT.

This indicates that the downstream genes affected by TRT are

involved in NETosis.

We also analyzed the relationship between clinical traits and

the number of gene pairs with cis-, trans-, or total-TRT. There

was a significant difference in the number of gene pairs with TRT

(P-value = 0.028 in cis-TRT, P-value = 0.0001 in trans-TRT, P-

value = 0.0008 in total-TRT) between patients who died and

those who went into remission (Figure 6C; Supplementary

Figure 2C, 3C). In addition, the patients were divided into two

groups based on whether they were infected by viruses (Table 1).

The number of gene pairs with TRT in patients with viral

infections was significantly higher than in those without viral

infections for trans- and total-TRT, but not cis-TRT (P-value =

0.02 in trans-TRT, P-value = 0.03 in total-TRT, P-value = 0.067

in cis-TRT; Figure 6D; Supplementary Figures 2D, 3D).

Additionally, there was no significant difference in prognosis

between patients with or without viral infections (chi-square

test: P-value = 0.073).
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We then examined the correlation between the number of

gene pairs with TRT and clinical traits. The only clinical trait

significantly correlated with the number of gene pairs with cis-,

trans-, and total-TRT was the percentage of neutrophils.

(Supplementary Figure 2E, Spearman’s R = 0.31, P-value =

0.019 in cis-TRT; Supplementary Figure 3E, Spearman’s R =

0.46, P-value = 0.00032 in trans-TRT; Figure 6E, Spearman’s R =

0.36, P-value = 0.0058 in total-TRT).
Potential therapeutic targets are
identified in the NETosis pathway for
patients with SCAP

To identify potential therapeutic targets in patients with

SCAP, we calculated Spearman’s correlation coefficient between

the fragments per kilobase of exon per million mapped

fragments (FPKM) of genes in the NETosis pathway and

PaO2/FiO2. The expression levels of H4C15 and H3-5 were

significantly negatively correlated with PaO2/FiO2 (Spearman’s

R = −0.375, P-value = 0.0044; Spearman’s R = −0.398, P-value =

0.0024; Figures 7A, B), whereas the expression level of DNASE1

and PRKCB were significantly positively correlated with PaO2/

FiO2. (Spearman’s R = 0.291, P-value = 0.0293; Spearman’s R =

0.266, P-value = 0.0477; Figures 7C, D). These correlations

suggest that patients with higher expression of H4C15 and H3-

5, and lower expression of DNASE1 and PRKCB, are likely to

suffer more severe lung injury.
Discussion

In this study, we discovered that NETosis was top-ranked in

pathway enrichment of differentially expressed genes, predicted

target genes of differentially expressed long non-coding RNAs, and

downstream genes of gene pairs with readthrough transcription in

patients with SCAP caused by diverse kinds of pathogens. We
A B C

FIGURE 3

Relationships between principle component 1 of NETosis genes and clinical traits. (A) The principle component 1(PC1) of NETosis genes in
patients with or without viral infection. The lines in the box-and-whisker plots represent the median Spearman’s correlation coefficient and the
0.25 and 0.75 quantiles. (B) The PC1 of NETosis genes in patients with or without acute kidney injury. (C) Spearman’s correlation between the
PC1 of NETosis genes and partial pressure of carbon dioxide. The light-colored area indicates the confidence interval.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1051140
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.1051140
identified DEGs andDELs between patients with SCAP and healthy

controls. Pathway enrichment analyses of DEGs and the target

genes of DLEs indicated a critical role for NETosis in SCAP. GO

Biological Processes term enrichment analyses revealed that some

biological processes involving both DEGs and the target genes of

DELs overlap with known cellular mechanisms of NETosis (33, 35–

37). We also identified gene pairs with patient-specific TRT in more

than 30% of the patients with SCAP and found that the NETosis

pathway was the most enriched pathway in the clustered

downstream genes of the identified gene pairs. Previous studies in

mouse models have shown that NETosis is implicated in

pneumonia caused by influenza, Klebsiella pneumoniae,

aspergillosis, and Pseudomonas aeruginosa (39–42). However,

relevant researches in patients with severe pneumonia and studies

about several pneumonia-causing pathogens are absent, such as

adenovirus, Pneumocystis carinii , Mycoplasma, and
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cytomegalovirus. Sometimes, pathogens in severe pneumonia are

difficult to identify and can be multiple, which limits the transfer of

basic research on NETosis into the clinic. Our work goes beyond

previous studies, suggesting that NETosis play a critical role in

diverse kinds of severe pneumonia and viral infection may induce

more active NETosis (Figure 3A). This provides a potential

therapeutic strategy to treat patients by targeting NETosis even

though pathogens are unknown or multiple.

Like all processes, excessive NETosis can be detrimental to

host. Several studies have shown elevated circulating NET

components in sepsis are associated with multi-organ failure

and poor prognosis (43–45). As the released components in NET

is non-specific, NET can cause cell damage and organ injury

directly (46, 47). In addition, NETs can recruit inflammatory

cells and substances, serve as a platform for complement

activation, induce the production of autoantibody, promote
A B

D

C

FIGURE 4

DELs identification and function prediction. (A) Volcano plot of lncRNAs. The horizontal dashed line represents the P-value cutoff (0.05) for
differentially expressed lncRNAs (DELs). The vertical dashed line represents the fold change (FC) cutoff for DELs in patients relative to healthy
controls (10 and 0.1). (B) Heatmap of DELs. (C) Pathway enrichment of trans target genes. The ratio indicates the proportion of the number of
enriched network objects in a pathway to the total number of network objects in the pathway. (D) Gene Ontology Biological Processes
enrichment map of trans target genes. The connection between biological processes is based on shared objects.
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the formation of immune complexes, and promote vascular

occlusion (48–50), thus leading to tissue damage. Our results

also suggested that patients with more active NETosis were more

prone to acute kidney injury and more severe lung injury.

Furthermore, we used the PaO2/FiO2 ratio to represent the

severity of lung injury and explored potential therapeutic targets for

NETosis. There was a significant negative correlation between

H4C15 and H3-5 expression and PaO2/FiO2 and a significant

positive correlation between DNASE1 and PRKCB expression and

PaO2/FiO2. In NETosis, histone posttranslational modifications,

such as citrullination by peptidyl arginine deiminase 4 (PAD4) and

acetylation, mediate chromatin decondensation that characterizes

NETosis compared with other cell death processes (33). Moreover,

histone is an essential component of NET. Higher expression levels
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of histone suggest more active NETosis, resulting in severer lung

injury and lower PaO2/FiO2. The differences in the role of different

histones in the NETosis process remain unclear. The differences

may relate to post-transcriptional modifications of histones, such

that H3 possesses more sites that can be modified by PAD4 (33).

Protein kinase C (PKC) is a crucial mediator in NETosis. The PKC

inhibitor Gö6976 can block the NET formation in NETosis induced

by phorbol 12-myristate 13-acetate, Candida albicans, and Group B

Streptococcus (51). However, a study showed PKCa and PKCb
could repress histone citrullination, whereas PKCz could activate

PAD4 and then facilitate NETosis. The correlation between PRKCB

expression and PaO2/FiO2 is challenging to interpret due to the

previous inconsistent findings. More research on the mechanism of

NETosis is needed. DNase I mediate the clearance of NETs (52).
A

B

D

C

FIGURE 5

Overview of cis- and trans-TRT. (A) The cis-transcriptional read-through (cis-TRT) screening scheme with an arrow representing the direction
of transcription. Patient gene expression is shown as fragments per kilobase of exon per million mapped fragments (FPKM). FPKM* represents
the mean gene expression in healthy controls. (B) trans-TRT screening scheme. (C) A cis-TRT heatmap illustrating gene pairs with (blue) and
without (grey) TRT. The top bar plot depicts the number of gene pairs with TRT per patient sample. The right bar plot indicates the percentage
of samples in which TRT was observed for each gene pair. (D) trans-TRT heatmap.
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Higher expression levels of DNase I suggest more NET degradation,

leading to slighter lung injury and higher PaO2/FiO2. In venom-

induced NETosis, DNase 1 treatment can prevent or reverse NET

formation, thus protecting the tissue from NET-mediated

destruction (53). Likewise, long-acting nanoparticulate DNase 1

inhibits NETosis in the plasma of patients with COVID-19 and a

septic mouse model (54). These studies suggest that DNASE1

possesses more potential to become a therapeutic target

for NETosis.

Another important finding of our study concerns TRT. We

analyzed the relationship between the number of gene pairs with

patient-specific TRT and clinical traits. TRT is more likely to

occur in patients with viral infections, consistent with previous

studies, which demonstrated that TRT could be induced by HSV-
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1 (13) and influenza (15, 16, 38). Our results also suggest that

other viral infections (such as cytomegalovirus, adenovirus, and

Epstein–Barr virus) and even bacteria and fungi may induce TRT.

The exact function of read-through transcripts remains unclear.

Our study found that patients with more gene pairs undergoing

TRT tended to have a worse prognosis, suggesting that read-

through transcripts may be a by-product of transcription under

diverse cellular stresses. TRT may represent an imbalance in

cellular homeostasis. This provides a novel perspective for

explaining the high mortality rate of patients with SCAP.

In this study, some limitations need to be considered. Patients

were significantly older than healthy controls (P < 0.001;

Supplementary Table 5). Some studies have shown that Aging in

humans and mice impairs the formation of NETs (55, 56).
A

B

D EC

FIGURE 6

Further analysis of TRT. (A) Histogram and box-and-whisker plots depicting Spearman’s correlation between intergenic region fold change (FC)
and downstream gene FC. Gene pairs with cis- or trans-TRT in more than 30% of patients with SCAP were selected for visualization. The lines in
the box-and-whisker plots represent the median Spearman’s correlation coefficient and the 0.25 and 0.75 quantiles. (B) Pathway enrichment
analysis of the downstream genes of gene pairs with cis- or trans-TRT. The ratio indicates the proportion of the number of enriched network
objects in a pathway to the total number of network objects in the pathway. (C) The number of gene pairs with cis- or trans-TRT in patients
with different prognoses. The lines in the box-and-whisker plots represent the median of the number of gene pairs with TRT and the 0.25 and
0.75 quantiles. Significance was determined using Wilcoxon rank-sum tests. (D) The number of gene pairs with cis- or trans-TRT in patients with
or without viral infection. (E) Spearman’s correlation between the numbers of gene pairs with cis- or trans-TRT and the percentage of
neutrophils. The light-colored area indicates the confidence interval.
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However, all genes enriched in the NETosis pathway were

upregulated in our study (Supplementary Table 6, 7), indicating

active NETosis and increased NET formation. And there was no

significant correlation between NETosis and patient age in this

study (Supplementary Table 4). Therefore, our conclusions are not

affected by this limitation. Moreover, using bulk transcriptome data

of peripheral blood leukocytes to study NETosis may introduce

confounding factors because high neutrophil percentages in the

SCAP group may affect the sequence coverage of NETosis-related

genes. We acknowledge that this limitation may cause bias, so we

try to reduce the bias by identifying DEGs and DELs with a large

fold change. In the future, we will conduct further research by using

Single-cell RNA sequencing to investigate the role of neutrophils in

patients with SCAP.
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In conclusion, we discover that NETosis is critical in SCAP and

highlight H4C15, H3-5, DNASE1, and PRKCB as promising

therapeutic targets for severe pneumonia. Our data also

contribute to the current understanding of TRT, as they

demonstrate that 1) viral infection is more likely to induce TRT

(although other pathogens may also induce TRT) and 2) a higher

occurrence of TRT is associated with a worse outcome in patients

with SCAP.
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