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Case report: Mafb promoter
activity may define the alveolar
macrophage dichotomy

Thao Vo and Yogesh Saini*

Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State
University, Baton Rouge, LA, United States
Cre-LoxP system has been widely used to induce recombination of floxed

genes of interest. Currently available macrophage promoter-specific Cre

recombinase mice strains have various limitations that warrants the testing of

additional Cre strains. V-maf musculoaponeurotic fibrosarcoma oncogene

family, protein b -Cre (Mafb-Cre) mice label macrophages in most organs

such as spleen, small intestine, lung, bone marrow, and peritoneal cavity.

However, whether Mafb-Cre recombinase targets the gene recombination in

alveolar macrophage remains untested. Here, we utilized MafbCre/WTR26mTmG/

WT strain that expresses mTOM protein in all the cells of mouse body except for

those that express Mafb-Cre-regulated mEGFP. We performed fluorescent

microscopy and flow cytometry to analyze mTOM and mEGFP expression in

alveolar macrophages from MafbCre/WTR26mTmG/WT mice. Our analyses

revealed that the Mafb-Cre is active in only ~40% of the alveolar

macrophages in an age-independent manner. While Mafb- (mTOM

+/mEGFP-) and Mafb+ (mEGFP+) alveolar macrophages exhibit comparable

expression of CD11b and CD11c surface markers, the surface expression of

MHCII is elevated in the Mafb+ (mEGFP+) macrophages. The bone marrow-

derived macrophages from MafbCre/WTR26mTmG/WT mice are highly amenable

to Cre-LoxP recombination in vitro. The bone marrow depletion and

reconstitution experiment revealed that ~98% of alveolar macrophages from

MafbCre/WTR26mTmG/WT → WT chimera are amenable to the Mafb-Cre-

mediated recombination. Finally, the Th2 stimulation and ozone exposure to

the MafbCre/WTR26mTmG/WT mice promote the Mafb-Cre-mediated

recombination in alveolar macrophages. In conclusion, while the Mafb-/Mafb

+ dichotomy thwarts the use of Mafb-Cre for the induction of floxed alleles in

the entire alveolar macrophage population, this strain provides a unique tool to

induce gene deletion in alveolar macrophages that encounter Th2

microenvironment in the lung airspaces.
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Introduction

Cre-LoxP system has been widely used to induce

recombination of floxed genes of interest (1, 2). In this system,

the Cre recombinase enzyme recognizes two target 34bp LoxP

(locus of x-over, P1) unidirectional sequences in genomic DNA

and catalyzes a recombination reaction where floxed allelic

region, i.e., a sequence that is flanked by two LoxP sequences,

is excised (3). The gene recombination can be restricted to a

particular cell type by employing a cell type-specific promoter to

induce Cre recombinase transgene expression in a cell type-

specific manner. Numerous mouse strains with Cre recombinase

expression in single cell type including hepatocytes (4), alveolar

type II cells (5, 6), club cells (7), myocardium (8) are available.

Due to the relatively higher degree of plasticity in immune cells

(9), including macrophages (10), widely acceptable immune cell-

specific Cre recombinase mouse strains are very limited.

Several Cre recombinase mouse strains utilizing myeloid-

associated promoters such as Lysozyme M (11–14), Colony

Stimulating Factor 1 Receptor (Csf1r) (15), CD11b (16–18),

CD11c (19–22), C-X3-C Motif Chemokine receptor 1 (Cx3cr1)

(23), and F4/80 (24) have been used to explore macrophage-

specific roles. These strains, however, are known to target non-

macrophage cell types as well (14, 23–32). Therefore, mouse

strains that restrict Cre recombinase specifically to the

macrophages are still awaited. V-maf musculoaponeurotic

fibrosarcoma oncogene family, protein b (Mafb) promoter has

been reported to express in macrophages (33). In that report,

Mafb-Cre mouse strain was employed to demonstrate that there

was a clear separation of macrophage and dendritic cell (DC)

populations based on the expression of MAFB and ZBTB46,

respectively (33). Moreover, Mafb-Cre mice appeared to be a

reliable alternative to trace and distinguish macrophages from

other cell types, especially DCs, in most organs such as spleen,

small intestine, lung, bone marrow, and peritoneal cavity (33).

However, the capability of Mafb-cre recombinase in inducing

floxed gene recombination in alveolar macrophage

remains untested.

In the current study, we sought to determine the effectiveness of

Mafb-regulated Cre recombinase in the induction of recombination

within a floxedmTOM/mEGFP (mTmG) reporter allele. Therefore,

we utilized R26mTmG/mTmG reporter strain that expresses mTOM

protein in all the cells of mouse body except for those that express

Cre recombinase enzyme (34). The Cre recombinase-expressing

cells in R26mTmG/mTmG reporter mice translate mEGFP protein

instead of mTOM, a readout for a successful recombination event.

We hypothesized that all the alveolar macrophages from the

MafbCre/WTR26mTmG/WT mice express mEGFP protein. To address

this hypothesis, we harvested alveolar macrophages from MafbCre/

WTR26mTmG/WT mice and analyzed their mTOM and mEGFP

expression status using fluorescent microscopy and flow

cytometry. Our data suggest that Mafb gene determines the
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alveolar macrophage dichotomy, which is independent of the

recruitment of bone marrow-derived macrophages.
Materials and methods

Generation of MafbCre/WTR26mTmG/WT

mice and animal husbandry

Mafb-regulated Cre recombinase expressing line (B6N

(129S4)-Mafbtm1.1(cre)Kmm/J), Rosa promoter (R26) regulated

mTOM/mEGFP (mTmG) dual fluorescent reporter line

(B6.129(Cg)-Gt26Sortm4(ACTB-tdTomato,-EGFP)Luo/J) were procured

from Jackson Laboratory (Bar Harbor, ME). MafbCre/WT mice

had mixed C57BL/6J and C57BL/6N background while mTOM/

mEGFP reporter mice were from C57BL/6J background. These

two strains were crossed to generate MafbCre/WTR26mTmG/WT

mice. All mice used in this study were maintained in hot-

washed, individual ventilated cages, strictly followed 12-hour

dark/light cycle and were fed regular diet with water ad libitum.

All animal procedures were performed under animal protocol

approved by the Institutional Animal Care and Use Committee

(IACUC) of the Louisiana State University.
Bronchoalveolar lavage fluid collection

MafbCre/WTR26mTmG/WT neonates (PND 3) and adults (PND

42) were anesthetized via intraperitoneal injection (11) of 2,2,2-

tribromoethanol (Millipore Sigma, Burlington, MA). After

midline laparotomy, lung and trachea were exposed via

thoracotomy. Whole lung was lavaged with phosphate buffered

saline (PBS) and processed, as previously described (35). BAL

cells were processed for flow cytometry and fluorescent

microscopic analyses.
Flow cytometry

BAL cells were Fc-blocked with CD16/32 (Thermo Fisher

Scientific, Waltham, MA) and stained with leukocyte panel,

including AF700 CD45 (BioLegend, San Diego, CA), BV510

CD11c (Thermo Fisher Scientific, Waltham, MA), BV785

CD11b (BioLegend, San Diego, CA), BV605 Ly6G (BioLegend,

San Diego, CA), BV421 CD64 (BioLegend, San Diego, CA), APC

CD24 (BioLegend, San Diego, CA), and PeCP-Cy5.5 MHCII

(BioLegend, San Diego, CA) to characterize the alveolar

macrophage population, which was further analyzed for

mTOM+ and mEGFP+ subpopulations using Cytoflex

(Beckman Coulter, Inc., CA). Flow cytometry data was

analyzed by CytExpert Software (Beckman Coulter, Inc., CA).
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Oropharyngeal M1/M2 challenge

MafbCre/WTR26mTmG/WT mice were anesthetized with

isoflurane and oropharyngeal challenged with a cocktail of Th1

stimulants LPS [10 ml (10 mg) LPS + 40 ml saline] and IFN-g, or
Th2 stimulant IL-33 (1.25 mg IL-33 in 50 ml saline) for alternative
(M2) activation. For M1 activation, mice were challenged with

10 mg of LPS on day 1 and the IFN-g was instilled on day 7,

followed by BALF collection of day 8. For M2 activation, mice

were oropharyngeal challenged with 1.25 mg of IL-33 on days 1,

3, 5, 7 and BALF was collected on day 8.
Ozone exposure

Ozone exposure procedure has been previously established

(36). Ozone was generated from the Ozone Generator (TSE,

Chesterfield, MO) and was supplied to 1.3m3 glass chambers.

Briefly, mice were transferred into cages with perforated lids and

were placed inside the dark chambers without feed and water

before the start of DLAM night cycle. Ozone concentration was

maintained at ~ 800 ppb throughout the 4-hour duration of the

exposure. Ozone concentration along with chamber

temperature, pressure and humidity were monitored and

recorded at hourly interval during exposures. The timing of

exposures was maintained strictly throughout the 14-

day exposure.
Bone marrow transplantation

8-10-week-oldWTmice on C57BL/6J background were lethally

irradiated with 6 Megavolt X-rays from a Linear Accelerator

(Varian Clinac 21EX) with two (dorsal and ventral) 525-rad (525

cGy) doses (37). Femur and tibia bones of donor MafbCre/

WTR26mTmG/WT mice were collected to prepare single suspension

of bone marrow cells for transplantation. A total of 8 × 106 cells

were injected into the tail vein of lethally irradiated recipient mice.

After receiving bone marrow cells via tail vein injection, the

recipient mice were given 0.2% neomycin sulfate dissolved in

acidified water for the first 2 weeks post-transplantation to reduce

the bacterial growth in water bottles due to regurgitated food.

Necropsies were performed 5 weeks post-bone marrow injections.
Statistics

Student’s t test was used for two-group comparisons. One-

way ANOVA was used for three-group comparisons. The p

values <0.05 were considered statistically significant. All data

represented at least three different experiments. GraphPad Prism
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were represented as mean ± SEM.
Results

Steady-state alveolar macrophages exist
as Mafb+ and Mafb- mixed populations

We crossedMafbCre/WT and R26mTmG/mTmG reporter mice to

generate MafbCre/WTR26mTmG/WT strain (Figure 1A). First, we

analyzed alveolar macrophages in 3-day-old MafbCre/

WTR26mTmG/WT neonates. To our surprise, only ~40% (34 ±

2.4%) of the harvested alveolar macrophages expressed mEGFP

green fluorescent protein, indicatingMafb promoter activity and

associated Cre-LoxP recombination. The remaining ~60% (64 ±

2.1%) of alveolar macrophages exclusively exhibited mTOM

expression suggesting the absence of Mafb activity and

therefore the lack of Cre recombinase expression and

recombination in the floxed reporter allele (Figures 1B–D).

Because macrophages from different origins colonize the lung

in three successive waves throughout the embryonic

developmental stages and spatially distribute during the first

week of postnatal life (38), we hypothesized that, as compared to

the neonatal alveolar macrophage population, the alveolar

macrophage population collected from adult MafbCre/

WTR26mTmG/WT mice possesses different composition of

mTOM+ and mEGFP+ macrophages. Therefore, we analyzed

alveolar macrophages from 6-week-old MafbCre/WTR26mTmG/WT

mice. Again, to our surprise, the adult mice also had ~40% (36.6

± 2%) and ~60% (62.9 ± 2.1%) alveolar macrophages that

exhibited mEGFP and exclusive mTOM expression,

respectively (Figures 1E–G). These data suggest that the

effectiveness of Mafb-regulated Cre recombination is

comparable in the neonatal and matured stage of the lung, and

that Mafb promoter is not expressed in all the steady-state

alveolar macrophages.

Next, to test the hypothesis that the mTOM+ alveolar

macrophages reflect immature macrophages and have the

potential to express Mafb-regulated Cre and mEGFP

expression at maturity, we harvested alveolar macrophages and

plated them in a cell culture dish. During the observation period,

we did not observe mEGFP positivity in the mTOM+ cells

(Supplemental Figure 1). Consistent with this finding, the flow

cytometry analyses did not reveal double positive cells

(Figure 1G), i.e., transitional population that reflect the read

out from pre-recombination (mTOM expression) as well as

post-recombination (mEGFP expression) events. These data

suggest a coexistence of exclusively mEGFP- and mTOM-

expressing macrophage populations in the lung airspace

at homeostasis.

Further, we analyzed mTOM+ and mEGFP+ macrophages

for the expression of selected myeloid cell surface markers such
frontiersin.org
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FIGURE 1

MafbCre/WTR26mTmG/WT mice at various stages of postnatal development exhibit comparable Cre-LoxP efficiency. (A) Generation of transgenic
MafbCre/WTR26mTmG/WT mice. Mafb-regulated Cre recombinase expressing strain (B6N(129S4)-Mafbtm1.1(cre)Kmm/J) was crossed with Rosa
promoter (R26)-regulated dual fluorescent mTOM/mEGFP reporter strain (B6.129(Cg)-Gt26Sortm4(ACTB-tdTomato,-EGFP)Luo/J) to generate MafbCre/
WTR26mTmG/WT mice. In cells with active Mafb promoter in MafbCre/WTR26mTmG/WT mice, Cre recombinase excises the mTOM and PolyA Stop
sequences, which are flanked by the LoxP sites, and allows the translation of mEGFP protein. Representative fluorescent photomicrographs of
(B) PND 3 (n=4) and (E) PND 42 (6-week-old) (n=5) BALF cells from MafbCre/WTR26mTmG/WT mice depicting the fluorescent cell composition and
respective percentage of exclusively mTOM+ and mEGFP+ cells in (C) PND 3 and (F) PND 42 MafbCre/WTR26mTmG/WT mice. Error bars represent
SEM ****p<0.0001 using Student’s t test. Representative flow cytometry graphs depicting exclusively mTOM+ (UL) and mEGFP+ (UR+LR) cells,
respectively in BALF from (D) PND 3 and (G) PND 42 MafbCre/WTR26mTmG/WT mice.
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as CD11b, CD11c, and MHCII (Figure 2). Interestingly, the

expression of these surface markers, except for MHCII, were

comparable between the analyzed mTOM+ and mEGFP+

macrophages (Figure 2). mEGFP+ macrophages exhibited

higher MHCII expression as compared to mTOM+

counterparts (Figure 2J). These data indicate a coexistence of

alveolar macrophage subpopulations that display distinct

MHCII expression, indicating their different antigen

presentation potential.
Bone marrow-derived macrophages are
amenable to Mafb-regulated Cre
recombinase expression and
recombination in floxed alleles

Previous report suggests that macrophages under

homeostasis are seeded from three separate lineages: yolk sac,

fetal liver and bone marrow (38). Therefore, to test whether the

concurrent existence of these two alveolar macrophage

subpopulations in the lung is dictated by the lung tissue

microenvironment or by their differential origins, we analyzed

bone marrow-derived macrophages (BMDMs), both in vitro as

well as in vivo, for Mafb-regulated induction of mEGFP
Frontiers in Immunology 05
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(BMDMs) using bone marrow progenitors that were harvested

from MafbCre/WTR26mTmG/WT. Our analyses for the composition

of mTOM+ and mEGFP+ BMDMs revealed that ~95% (94 ±

0.4%) of BMDMs were amenable to Cre-LoxP recombination, as

indicated by the upregulated mEGFP expression (Figures 3A–C).

These data suggest that the bone marrow-derived macrophages

possess robust Mafb expression and Mafb-mediated Cre-

LoxP recombination.

Since in vitro-differentiated BMDMs do not recapitulate the

lung tissue microenvironment, further in vivo experiments were

planned to test whether the bone marrow cells can populate the

lung airspaces predominantly with mEGFP+ cells. We

hypothesized that bone marrow cells possess robust Mafb

expression that cause reconstitution of alveolar macrophage

population with mEGFP+ cells. Accordingly, 8-week-old

C57BL/6 mice were lethally irradiated to deplete cells of

hematopoie t ic l ineage , fo l lowed by bone marrow

transplantation from MafbCre/WTR26mTmG/WT age- and sex-

matched donor mice. After reconstitution phase, BALF

harvested from the chimeric mice were examined (Figure 3D).

Consistent with the in vitro BMDM experiment, ~98% (97.8 ±

0.6%) of the alveolar macrophages were amenable to Cre-LoxP

recombination, as indicated by the robust mEGFP expression

(Figures 3E–G). This data suggest that the majority of alveolar
A B D E

F G IH J

C

FIGURE 2

mTOM+ and mEGFP+ subpopulations share comparable myeloid surface markers, except for MHCII, in naïve MafbCre/WTR26mTmG/WT. (A)
Applied Side Scatter (SSC) and Forward Scatter (FSC) to eliminate dead cells and debris. (B) Leukocyte CD45+ cells were identified. (C) mTOM+
and mEGFP+ subpopulations were isolated. Myeloid markers such as CD11c, CD11b, MHCII, were assessed in (D, E) mTOM+ and (F, G) mEGFP+
subpopulations. (H) Overlapping mTOM+ and mEGFP+ cells revealed comparable expression of CD11c and CD11b between these
subpopulations. (I) mEGFP+ cells exhibited higher MHCII expression as compared to mTOM+ cells. (J) Histogram depicting mean fluorescence
intensity (MFI) of MHCII expression in mTOM+ and mEGFP+ populations. Error bars represent SEM ****p<0.0001 using Student’s t test. Data
shown are from PND 42 naïve MafbCre/WTR26mTmG/WT mice (n=5).
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macrophages originated from the bone marrow express Mafb

gene as compared to fetal liver-derived macrophages.
Type-2 environment enhances the
activity of Mafb promoter and promote
the Mafb-Cre-driven Cre-LoxP
recombination

Mafb gene is known to be upregulated in Th2 inflammation-

associated alternatively-activated (M2) macrophages (39). We

further speculated that M2 polarization also promotes Mafb

promoter upregulation in vivo, we challenged adult MafbCre/

WTR26mTmG/WT mice with LPS [10 ml (10 mg) LPS +40 ml saline]/
IFN-g (40) or IL-33 (1.25 mg IL-33 in 50 ml saline) to induce M1
Frontiers in Immunology 06
and M2 activation, respectively. The BALF immune cells

collected from these mice were subjected to flow cytometry

and fluorescent microscopy analyses to determine the

composition of mTOM+ and mEGFP+ macrophages. The

Cre-LoxP recombination efficiency, as indicated by the

composition of mTOM+ and mEGFP+ macrophages, in LPS/

IFN-g-treated mice (Figures 4A–C) was comparable to the naïve

MafbCre/WTR26mTmG/WT (59.88 ± 1.69% mTOM+ vs 39.63 ±

1.48% mEGFP+). As expected, ~90% (89.4 ± 2.1%) of cells were

mEGFP+ in the BALF of IL-33-treated mice (Figures 4D–F).

These data suggest that M2 polarization promotes Cre-LoxP

recombination in macrophages regardless of their origins.

Ozone is known to promote M2 activation in alveolar

macrophages (36, 41). Therefore, we hypothesized that ozone

exposure will activate Mafb promoter in mTOM+ alveolar
A

B

D E

F

GC

FIGURE 3

MafbCre/WTR26mTmG/WT bone marrow-derived macrophages (BMDMs) are highly amenable to Cre-LoxP recombination in vitro and in vivo. (A)
Representative fluorescent photomicrograph depicting the fluorescent cell composition, (B) respective percentage of exclusively mTOM+ and
mEGFP+ cells. The experiment was repeated three times. Error bars represent SEM ****p<0.0001 using Student’s t test. (C) Representative flow
cytometry graph depicting exclusively mTOM+ (UL) and mEGFP+ (UR+LR) in bone marrow-derived macrophages (BMDMs) cultured from
MafbCre/WTR26mTmG/WT bone marrow progenitors. (D) Generation of chimeric mice via transplantation of bone marrow cells from sex- and age-
matched MafbCre/WTR26mTmG/WT donors to lethally irradiated C57BL/6J recipients. Lung macrophages of chimeric mice were repopulated
before subjected to flow cytometry and fluorescent microscopy analyses. (E) Representative fluorescent photomicrograph depicting the
fluorescent cell composition and (F) respective percentage of exclusively mTOM+ and mEGFP+ cells in BALF of chimeric mice. Error bars
represent SEM ****p<0.0001 using Student’s t test. (G) Representative flow cytometry graph depicting exclusively mTOM+ (UL) and mEGFP+
(UR+LR) cells, respectively in alveolar macrophages of chimeric mice (n=5).
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macrophages of MafbCre/WTR26mTmG/WT mice that will facilitate

Cre-LoxP-mediated recombination. Therefore, MafbCre/

WTR26mTmG/WT were repetitively exposed to 800ppb of ozone

at 4 hours/day for 14 days and the alveolar macrophages were

harvested within 16-24h after the last exposure. BALF cells from

these mice were subjected to flow cytometry and fluorescent

microscopy analyses. Approximately 85% (84.8 ± 2.1%) of

alveolar macrophages collected from ozone-exposed mice

lungs expressed mEGFP protein, suggesting that ozone

exposure activates Mafb promoter in mTOM+ cells that

subsequently induces Cre-LoxP-mediated recombination in the

reporter allele and thus translates mEGFP protein (Figures 4G–I;

Supplemental Figure 2). Approximately 29% of the alveolar

macrophages were double positive suggesting continuous
Frontiers in Immunology 07
transit ion of mTOM+ into mEGFP+ macrophages

(Figure 4G–I; Supplemental Figure 2).
Discussion

Alveolar macrophages exhibit remarkable plasticity in their

response to the extracellular milieu that enables them to perform

a variety of functions including maintenance of homoeostasis,

immune surveillance, microbial clearance, removal of inhaled

biotic/abiotic materials and cellular debris, and resolution of

inflammation (42). To elucidate the role of various genes in

alveolar macrophage functions, various promoters such as

Lysozyme, Cd11c, Cd11b, Csf1r, Cx3cr1, and F4/80, are
A B

D E F

G IH

C

FIGURE 4

Alternative activation promotes while Classical activation doesn’t affect Mafb-Cre-mediated recombination in vivo. Representative fluorescent
photomicrographs of (A) LPS/INF-g, (D) IL-33 and (G) ozone-exposed MafbCre/WTR26mTmG/WT mice depicting the fluorescent cell composition.
Respective percentage of exclusively mTOM+ and mEGFP+ cells in (B) LPS/INF-g, (E) IL-33 and (H) ozone-exposed MafbCre/WTR26mTmG/WT

mice. Error bars represent SEM ****p<0.0001 using Student’s t test. Representative flow cytometry graphs depicting exclusively mTOM+ (UL)
and mEGFP+ (UR+LR), respectively of (C) LPS/INF-g, (F) IL-33 and (I) ozone-exposed MafbCre/WTR26mTmG/WT mice. LPS/IFN-g-treated mice
(n=4), IL-33-treated (n=3) mice, ozone-treated mice (n=3).
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commonly employed to induce Cre-LoxP-mediated gene

deletion. However, these promoters not only target

macrophage but also induce recombination in non-

macrophage cell populations. For example, Lysozyme-Cre

(LysM-Cre) targets macrophages, granulocytes, dendritic cells

(14), Myeloid-derived suppressor cells (MDSCs) (26), and AT2

cells (23). Similarly, Csf1r-Cre targets all leukocyte population

(23), Cd11c-Cre also targets dendritic cells (29), Cd11b-Cre also

targets granulocytes, Cx3cr1-Cre targets interstitial macrophages

(IMs) but not resident alveolar macrophages (23), and F4/80-Cre

targets only some macrophage subpopulations (24). Therefore,

alveolar macrophage-specific promoter amenable to efficient

Cre-LoxP-mediated recombination is still awaited.

Mafb is a reliable promoter for macrophage lineage tracking

in many major organs, such as spleen, small intestine, lung, bone

marrow and peritoneal cavity (33). However, whether Mafb is

specific to alveolar macrophages is not yet known. In this study,

we examined MafbCre/WTR26mTmG/WT mice where the

expression of mTOM/mEGFP (mTmG), a dual reporter floxed

allele, was used as a readout for Mafb-regulated Cre-LoxP

recombination. We hypothesized that Mafb promoter activity

induces the Cre-LoxP-mediated recombination and the

expression of mEGFP protein in alveolar macrophages. To test

this hypothesis, first, Mafb-regulated recombination efficiency

was examined in alveolar macrophages from neonatal versus

adult mice. Second, we assessed Mafb-regulated recombination

efficiency in BMDMs, in vitro as well as in vivo. Third, the effects

of Th1 versus Th2 stimuli on Mafb-regulated Cre-LoxP-

mediated efficiency were compared. Our findings provide

interesting insight into the previously unknown association

between Mafb expression and possibly differential

macrophage functionality.

The analyses for Mafb-regulated Cre-LoxP-mediated

recombination efficiency in steady-state alveolar macrophages

from neonatal (PND 3) versus adult (PND 42) mice revealed

that ~60% of the harvested alveolar macrophages are not

targeted by Mafb-regulated Cre recombinase. Further, the lack

of double positive (mTOM+ mEGFP+) alveolar macrophages

suggest little to negligible ongoing transition of mTOM+ cells

into mEGFP+ cells. These data suggest a tightly-regulated

distribution of Mafb- and Mafb+ macrophages in steady-state

lung airspaces. Tan et al. reported that the fetal liver-derived

macrophages enter the alveoli within 1 week after birth and

become resident alveolar macrophages (38). Other studies have

demonstrated that the bone marrow-derived monocytes

contribute to the alveolar macrophage populations (43–45).

Our comparison of neonatal and adult BAL macrophages

revealed that the dichotomy in the Mafb promoter activity is

not affected by the early neonatal versus adult age.

Because the Mafb expression was restricted to ~40% of the

alveolar macrophages, we speculated that the Mafb expression

pattern might parallel to the expression of other alveolar

macrophage-relevant surface markers. The flow cytometry data
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revealed that both Mafb- and Mafb+ populations exhibit

comparable surface expression patterns for CD11b and CD11c.

However, mEGFP+ cells exhibited higher MHCII expression,

indicating a more robust antigen presentation potential as

compared to mTOM+/mEGFP-cells. Mafb expression in

macrophages is known to promote their differentiation (46)

and maintenance of their M2 phenotype (47, 48). Moreover,

Mafb gene expression is often accompanied with the

upregulation of MHCII expression (49–51). In human, MAFB

gene was reported to be upregulated in fibrotic lung macrophage

clusters of patients with Th2-associated diseases such as

Idiopathic Pulmonary Fibrosis (IPF) (49), smoking-related

lung cancer (52) and SARS-CoV-2 (53). The MafbCre/

WTR26mTmG/WT mice repetitively exposed to ozone, a known

induced of Th2 inflammation with M2 macrophage

predominance (39), exhibited replacement of Mafb- alveolar

macrophage populations with Mafb+ macrophages.

Interest ingly , a double posi t ive mTOM+/mEGFP+

macrophage population with intermediate MHCII expression

was identified in ozone-exposed MafbCre/WTR26mTmG/WT mice,

suggesting that higher MHCII expression is linked to the robust

expression of Mafb in alveolar macrophages. M2 macrophages

possess enhanced antigen presentation ability, thus also express

MHCII (54). Therefore, the observed high expression of MHCII

in Mafb+ macrophages was expected. These data suggest that

Th2 tissue environment upregulated the Mafb expression and

M2 macrophage activation in mice.

Number of reports suggest that tissue macrophages originate

from the bone marrow-derived circulating monocytes (55–57)

and that the tissue microenvironment, not the lineage,

determine the macrophage morphology and function (58).

Accordingly, we hypothesized that the higher degree of Mafb

expression in steady-state alveolar macrophages will be observed

in mice that are populated with bone marrow-derived

macrophages. Our analyses revealed that the majority of

BMDMs in vitro are amenable to the Mafb-regulated

recombination. Consistent with the in vitro findings, the in

vivo model of alveolar macrophages repopulation with

BMDMs also revealed Mafb-regulated recombination in ~96%

alveolar macrophages. These data suggest that the lineage, not

the tissue microenvironment, determines the differential

expression of Mafb in alveolar macrophages.

Mafb expression is upregulated in M2 macrophages

in vitro (39) and is known to promote anti-inflammatory

properties in M2 macrophages (59). We reasoned that if Th2-

predominated milieu upregulates the Mafb expression in

alveolar macrophages and that, in turn, promotes the Cre-

LoxP recombination, the Mafb-Cre strain might be useful

for Cre-LoxP-mediated recombination in Th2-associated

studies such as allergic asthma or parasitic diseases. Our data

demonstrated that the Th2 cytokines, indeed, promote theMafb-

Cre expression, as indicated by increased number of mEGFP+

macrophages. On the other hand, the Th1 stimulation did not
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increase the proportion of mEGFP+ macrophages. These

outcomes were comparable between the in vitro and in vivo

stimulation experiments.

Ozone is one of the six criteria environmental pollutants

according to the National Ambient Air Quality Standard

(NAAQS) (60). The repetitive exposure to ozone results in

Th2-mediated responses that promote the M2 alveolar

macrophages (35, 36, 61–63). Importantly, ozone exposure

results in the robust upregulation of Mafb transcripts in

alveolar macrophages (36). Based on these reports, we

hypothesized that the ozone exposure will promote the

activation of Mafb promoter that, in turn, will induce the Cre-

LoxP-mediated recombination in mTmG allele of MafbCre/

WTR26mTmG/WT mice. As expected, the proportion of mEGFP+

cells increased remarkably and the presence of mTOM+/mEGFP

+ cells suggest the induction of Mafb-regulated mEGFP

expression in the originally mTOM+ cells. Our findings

indicate that the presence of Th2-predominated responses in

the lung airspaces may assist in the high efficiency of Mafb-

regulated Cre-LoxP-mediated recombination.

The current study has some limitations as well. First, we

were not able to examine alveolar macrophages from aged mice.

However, we anticipate that the BAL macrophages from aged

mice will have greater proportion of mEGFP+ cells. This

speculation is consistent with a previous report that suggest

age-associated progressive replacement of the embryonically-

derived alveolar macrophages with BMDMs (64, 65). Second, we

were not able to demonstrate that the mEGFP+ alveolar

macrophages are indeed embryonically derived macrophages

and were not populated by BMDMs. Although these limitations

will be addressed in future studies, the current findings provide a

robust foundation for these forthcoming investigations.

In conclusion, this study presents interesting findings: 1) Mafb

gene expression in alveolar macrophages is lineage-dependent; 2)

Bone marrow-derived macrophages exhibit robust Mafb

expression, in vitro as well as in vivo; 3) Th2, but not Th1,

environment promotes the activation of Mafb promoter, in vitro

as well as in vivo. Finally, this study provides evidence of the

coexistence of two macrophage subpopulations, i.e., Mafb+ and

Mafb-, in the lung airspaces. While this dichotomy thwarts the use

of Mafb-Cre in the induction of floxed alleles in alveolar

macrophages, this strain provides a unique tool to induce gene

deletion in alternatively-activated alveolar macrophages in various

Th2 disease models.
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SUPPLEMENTARY FIGURE 1

Mafb- alveolar macrophages are not precursors of Mafb+ alveolar
macrophages during steady-state. Representative fluorescent

photomicrographs of the cultured BAL macrophage cluster from adult
naïve MafbCre/WTR26mTmG/WT mice (n=3), recorded at day 1, day 2, day 3,

day 4, and day 5.

SUPPLEMENTARY FIGURE 2

Mafb upregulation induces expression of MHCII in alveolar macrophages
following ozone exposure of MafbCre/WTR26mTmG/WT mice. (A) Applied
Frontiers in Immunology 10
Side Scatter (SSC) and Forward Scatter (FSC) to eliminate dead cells and
debris. (B) Leukocyte CD45+ cells were identified. (C) GR1+ cells are

identified. (D) CD64+ CD24(-) macrophage population is identified (E)
mTOM+ and mEGFP+ subpopulations were isolated. Myeloid markers

such as CD11c, CD11b, MHCII, were assessed in (F, G) mTOM+, (H, I)
mTOM+mEGFP+ (J, K)mEGFP+ subpopulations. (L)Histogram depicting

mean fluorescence intensity (MFI) of MHCII expression in mTOM+,
mTOM+/mEGFP+ and mEGFP+ populations. Error bars represent SEM

****p<0.0001 using One-way ANOVA. Data shown are from ozone-

exposed MafbCre/WTR26mTmG/WT mice (n=3).
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