
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Nan Zhang,
Harbin Medical University, China

REVIEWED BY

Daheng Yang,
Nanjing Medical University, China
Yirui Chen,
Hangzhou Medical College, China

*CORRESPONDENCE

Tianling Ding
dtl_953105@163.com
Yanping Shao
shaoyp2022@163.com

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 09 September 2022
ACCEPTED 31 October 2022

PUBLISHED 16 December 2022

CITATION

Hua J, Ding T and Shao Y (2022) A
transient receptor potential channel-
related model based on machine
learning for evaluating tumor
microenvironment and
immunotherapeutic strategies in acute
myeloid leukemia.
Front. Immunol. 13:1040661.
doi: 10.3389/fimmu.2022.1040661

COPYRIGHT

© 2022 Hua, Ding and Shao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 16 December 2022

DOI 10.3389/fimmu.2022.1040661
A transient receptor potential
channel-related model based
on machine learning for
evaluating tumor
microenvironment and
immunotherapeutic strategies in
acute myeloid leukemia
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1Department of Hematology, Taizhou Municipal Hospital, Taizhou, China, 2Department of
Hematology, Huashan Hospital, Fudan University, Shanghai, China, 3Department of Hematology,
Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
Background: Acute myeloid leukemia (AML) is an aggressive hematopoietic

malignancy. Transient receptor potential (TRP) channels in AML still need to be

further explored. A TRP channel-related model based on machine learning was

established in this study.

Methods: The data were downloaded from TCGA-LAML and Genome-Tissue

Expression (GTEx). TRP-related genes (TRGs) were extracted from previous

literature. With the use of Single-Sample Gene Set Enrichment Analysis

(ssGSEA), TRP enrichment scores (TESs) were calculated. The limma package

was used to identify differentially expressed genes (DEGs), and univariate Cox

regression analysis was performed to identify prognostic DEGs. The above

prognostic DEGs were analyzed by Random Survival Forest and least absolute

shrinkage and selection operator (Lasso) analysis to create the TRP signature. The

Kaplan–Meier and receiver operating characteristic (ROC) curveswere plotted to

investigate the efficiency and accuracy of prognostic prediction. Moreover,

genomic mutation analysis was based on GISTIC analysis. Based on ESTIMATE,

TIMER, MCPcounter, and ssGSEA, the tumor microenvironment and

immunological characteristics were expressly evaluated to explore

immunotherapeutic strategies. Enrichment analysis for TRP signature was

based on the Kyoto Encyclopedia of Genes Genomes (KEGG), Gene Ontology

(GO), over-representation analysis (ORA), and Gene Set Enrichment Analysis

(GSEA). Genomics of Drug Sensitivity in Cancer (GDSC) and pRRophetic were

used to carry out drug sensitivity analysis. Conclusively, SCHIP1 was randomly

selected to perform in vitro cyto-functional experiments.
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Results: The worse clinical outcomes of patients with higher TESs were

observed. There were 107 differentially expressed TRGs identified. Our data

revealed 57 prognostic TRGs. Eight TRGs were obtained to establish the

prognostic TRP signature, and the worse clinical outcomes of patients with

higher TRP scores were found. The efficiency and accuracy of TRP signature in

predicting prognosis were confirmed by ROC curves and five external

validation datasets. Our data revealed that the mutation rates of DNMT3A,

IDH2, MUC16, and TTNwere relatively high. The level of infiltrating immune cell

populations, stromal, immune, and ESTIMATE scores increased as the TRP

scores increased. Nevertheless, AML patients with lower TRP scores exhibited

more tumor purity. The TRP scores were found to be correlated with

immunomodulators and immune checkpoints, thus revealing immune

characteristics and immunotherapeutic strategies. The IC50 values of six

chemotherapeutics were lower in the high TRP score (HTS) group. Finally, it

was found that SCHIP1 may be the oncogenic gene.

Conclusion: The results of this study will help in understanding the role of TRP

and SCHIP1 in the prognosis and development of AML.
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Introduction

Acute myeloid leukemia (AML) is an aggressive hematopoietic

malignancy caused by the malignant transformation of

hematopoietic stem cells or progenitor cells, which is highly

heterogeneous (1). It is the most common acute leukemia in

adults, with an annual incidence of approximately four per

100,000 cases (1). Patients with AML generally have a poor

prognosis (1). Therefore, it is of great significance for clinical

treatment to find molecular markers that can judge the prognosis

and effectively distinguish whether patients can benefit from

treatment. Advances in genomics have greatly improved our

understanding of the pathogenesis of AML, which is one of the

targets in the search for diagnosis and treatment of AML.

The prognosis of the same AML type may be very

heterogeneous. Therefore, it is of great importance to evaluate

the characteristics of each AML patient. In the past 40 years,

many new achievements have been made in pathogenesis, but

there is no innovative progress in the treatment of AML. The

traditional treatment of AML mainly includes three parts:

induction regimen therapy, monitoring after induction

therapy, and treatment after complete remission (CR) (2). In

the post-CR treatment, patients under the age of 60 should

choose the appropriate treatment according to the risk

stratification, indicating the important role of genetic risk

stratification in guiding the treatment of AML. Traditional

cytogenetic classification includes better karyotypes,
02
intermediate karyotypes, and poor karyotypes. With the

deepening of research on leukemia, people can have more

profound knowledge of the pathogenesis of leukemia, and the

risk classification of AML combined with genetic changes is

more recommended by most guidelines (1). However, the risk

classification of AML needs to be further explored.

Bioinformatics is an interdisciplinary subject involving

mathematics, statistics, computer science, biology, and other

disciplines. After decades of development, bioinformatics is still

a subject with great development prospects (3). In recent years, a

large number of databases containing biological information of

various species have been established worldwide. As the largest

database for cancer research, The Cancer Genome Atlas (TCGA)

(4) database stores rich sequencing data and clinical

information, which can be downloaded by researchers all over

the world for free for research so as to improve the cognitive

ability of doctors and researchers on the disease. AML project, as

one of the earliest and most well-developed projects in TCGA,

stores a large amount of sequencing and clinical data, which can

be used to prospectively explore some disease-related

information and provide directions for clinical and

experimental research.

Transient receptor potential (TRP) was first discovered in

Drosophila (5). When Drosophila bearing the mutant gene is

exposed for an extended time to light, its photoreceptor will

show a transient increase of voltage, so it is named transient

receptor potential channel (5). Mammalian TRP channels are
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composed of 28 cation permeation channels (6), each with six

transmembrane peptides, which assemble into tetramers to form

ion channels (6). TRP channels have various types, such as

TRPC, TRPA, TRPM, TRPN, TRPP, and TRPV (7). TRP

channels are involved in various physiological and pathological

processes of the body and respond to physical or chemical

stimuli in the cellular environment by sensing them (8). TRP

channel is closely related to circulatory (9), urinary (10),

digestive (11, 12), nervous (13, 14), and other systems. It is a

cation channel widely existing in the body, mainly permeating

Ca2+, Mg2+, and other cations (15). By affecting the change of

cation concentration, the TRP channel changes the strength of

the corresponding pathway signal in the cell, leading to the

change of cell function (15). As for AML, TRP was seldom

reported in AML. TRP ion channel TRPM2 could enhance the

proliferation of AML cell lines through multiple pathways (16).

TRP Melastatin Subfamily Member 4 may be an alternative

therapeutic approach for AML (17).

Therefore, TRP may be used as a prognostic and therapeutic

target. However, the TRP channel in AML still needs to be

further explored.

In this study, bioinformatics analysis was used to screen out

genes’ expression of AML, including TRP-related genes (TRGs)

from public databases, and to analyze the characteristics of TRP

enrichment in TCGA-LAML. By combining survival

information and gene expression, 57 prognostic TRGs were

preliminarily identified as possible AML target genes. Through

the Random Survival Forest model and least absolute shrinkage

and selection operator (Lasso) analysis, a predictive model

consisting of eight genes was established and validated in five

external datasets, thus proving good predictive ability. The risk

prognosis model score was used to group the high- and low-risk

groups, and it was found that the risk groups differed in immune

profiles and treatment.
Material and methods

Data collection and preprocessing for
acute myeloid leukemia

The transcriptome expression profile and corresponding

clinical information of patients diagnosed with AML were

downloaded from TCGA-LAML dataset in the UCSC Xena

platform (https://xenabrowser.net/) (18). There were a total of

149 AML patients with corresponding data included in our

study (N = 149). In addition, the transcriptome expression

profile of corresponding normal control samples was

downloaded from Genome-Tissue Expression (GTEx) project

(https://www.gtexportal.org) (19). Meanwhile, five AML cohorts

were collected, including GSE12417 (N = 79), GSE12417 (N =

163), GSE37642 (N = 136), GSE37642 (N417), and TARGET (N

= 187), from Gene Expression Omnibus (GEO; https://www.
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ncbi.nlm.nih.gov/geo/) or Therapeutically Applicable Research

to Generate Effective Treatments (TARGET; https://ocg.cancer.

gov/programs/target/data-matrix) (20). The GEO data were

generated from the Affymetrix (21) or Agilent (22) platform.

Background correction and normalization for GEO data were

carried out using Robust Multichip Average (RMA) algorithm

(23). The data forms of TCGA and TARGET were transformed

from fragments per kilobase of transcript per million fragments

mapped (FPKM) to transcripts per kilobase million (TPM), of

which the signal strength was similar to the value processed by

RMA (24).
Establishment of transient receptor
potential enrichment score

The list of TRGs was extracted from the previous literature

(25), which was used for enrichment score calculation. There

were eight TRGs included in our study: TRPM1, TRPM2,

TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, and TRPM8. To

identify TRP-related patterns, TRP enrichment scores (TESs)

were calculated for each AML patient using Single-Sample Gene

Set Enrichment Analysis (ssGSEA) algorithm (26). According to

the optimal cutoff value of TESs calculated by R code (27),

patients with AML were divided into the high-TES group

(≥cutoff value) or low-TES group (<cutoff value).
Establishment of transient receptor
potential signature

The limma package was used to identify differentially

expressed genes (DEGs) between the high-TES and low-TES

groups (logFC > 1, p < 0.05) (28). Thereafter, univariate Cox

regression analysis was performed to identify prognostic DEGs

(p < 0.05) (29), and the Random Survival Forest model was

utilized to screen out prognostic DEGs with higher importance

(variable importance >0.3) based on the randomForestSRC

package (30). To establish the TRP signature, the weight of

regression coefficients of the prognostic genes identified by the

Random Forest Algorithm was calculated using Lasso analysis

(31), thus establishing the signature and computing the

TRP score.
Efficacy of transient receptor
potential signature

The TRP score for 149 patients in TCGA-LAML cohort was

estimated according to the method described above. The optimal

cutoff was considered based on R code (27) as the threshold

value to distinguish subgroups with high TRP scores (HTS) or

low TRP scores (LTS). We compared survival differences
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between the two subgroups to assess the relationship between

TRP score and overall survival (OS) by plotting Kaplan–Meier

survival curves (32). Through the timeROC package, the 1-, 3-,

and 5-year survival receiver operating characteristic (ROC)

curves were plotted to investigate the efficiency and accuracy

of prognostic prediction for the TRP score. To further verify the

independence of the TRP score predicting prognosis for AML,

univariate or multivariate Cox regression analyses of the TRP

score and clinicopathological characteristics [age, gender, and

white blood cell (WBC)] were performed.
Genomic mutation analysis for acute
myeloid leukemia with transient receptor
potential score

Somatic mutation profiles of AML were obtained from

cBioPortal (http://www.cbioportal.org/datasets) (33). Meanwhile,

copy number variation (CNV) analysis was carried out after

extracting data from FireBrowse (http://firebrowse.org/) (34).

The genomic characteristics were assessed using Genomic

Identification of Significant Targets in Cancer (GISTIC)

analysis (35).
Evaluation of immunological
characteristics

We used the ESTIMATE (The Estimation of Stromal and

Immune cells in Malignant Tumor tissues using Expression)

algorithm to assess the abundance of immune cells, stromal cell

infiltration level, and tumor purity and expressed them as

immune score, stromal score, and ESTIMATE score,

respectively (36). In addition, in order to comprehensively

analyze the infiltration of immune cells in AML, we further

analyzed the levels of six kinds of cells by using the TIMER 2.0

(Tumor Immune Estimation Resource 2.0) network server

(http://timer.cistrome.org/) (37). We also used MCPcounter

(38) and ssGSEA (26, 39) to assess the relative proportions of

10 immune cells and the infiltration levels of 28 immune cells,

respectively. We extracted several immunomodulators from

literature reported previously to explore the association

between TRP score and immune processes (40).
Enrichment analysis for transient
receptor potential signature

Downloading from the MSigDB database, we acquired gene

sets using for Kyoto Encyclopedia of Genes Genomes (KEGG) or

Gene Ontology (GO) analyses (41). We implemented over-

representation analysis (ORA) (42) and Gene Set Enrichment

Analysis (GSEA) by using the clusterProfiler package (43).
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Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) website

was utilized to screen a wide range of drugs (44). The prediction

model was constructed based on Ridge’s regression between

drug sensitivity and expression profile of cell lines using the

pRRophetic algorithm (45, 46). Subsequently, the IC50 value of

corresponding chemotherapeutics for patients with AML

was calculated.
Cell culture

We randomly selected one gene, SCHIP1, from the TRP

signature to perform in vitro cyto-functional experiments. We

used one AML cell line, called K562, for in vitro assays. We

incubated the AML cell line K562 in the incubator at an

atmosphere of 37°C and 5% CO2 and cultured it in 90%

Roswell Park Memorial Institute 1640 (RPMI 1640) medium

with 10% fetal bovine serum (FBS).
Cell transfections

To perform cell transfections, Hieff Trans™ in vitro siRNA

Transfection Reagent supplied by Yeasen Biotechnology

(Shanghai, China) was used, and the sequences of siRNA were

as follows: si-NC (control group) sense (5′-UUCUUCGAAC
GUGUCACGUTT-3 ′ ) , s i -NC an t i s en s e ( 5 ′ -ACG

UGACACGUUCGGAGAATT-3′), si-SCHIP1 sense (5′-
GGAGUCUGAAUCCUU GGAUTT-3′), and si-SCHIP1

ant isense (5 ′-AUCCAAGGAUUCAGACUCCTT-3 ′ ) .
According to the kit instructions, the transfection steps were

as follows: cells were collected, plates were spread on a six-well

plate, and the number of cells on the transfection day was 5 × 10

(5) to 2 × 10 (6). OPTI-MEM medium, siRNA, and transfection

reagent were used to prepare siRNA-PEI cationic nucleic acid

transfection reagent complex and added to the cell suspension.

After 4–6 h in a 5% CO2 incubator at 37°C, 2 ml of complete

medium was added and incubated in an incubator for 72 h. The

efficiency of SCHIP1 knockdown in K562 cells was confirmed by

Western blotting assays.
Western blotting assays

Protein was extracted through protein extraction reagents

containing inhibitors. Ten microliters of protease inhibitor

mixture, 10 µl of phenylmethylsulfonyl fluoride (PMSF), and

10 µl phosphatase mixture were added to 1 ml of the extraction

reagent. The bicinchoninic acid (BCA) method was performed

for protein detection: 25 µl of standard and sample to be tested

was added to the microwells, 200 µl of BCA working solution
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was added to each well, the samples were incubated at 37°C for

30 min, and then the absorbance was detected at 562 nm on a

microplate reader. TEMED containing 10% separation glue and

5% concentrate glue for gluing was successively used. After

loading, it was electrophoresed with glycine buffer. After

electrophoresis, a polyvinylidene difluoride (PVDF) membrane

was used for the transmembrane of the gel. After the membrane

transfer, the membrane was blocked with 5% non-fat milk and

then washed three times with TBST. After blocking, the cells

were incubated with primary antibodies at 4°C overnight. Before

and after incubation with a secondary antibody for 1 h at room

temperature, the membrane was washed with TBST three times.

F ina l l y , the co lo r was defined accord ing to the

chemiluminescence kit, photos were taken, and statistics and

analysis were performed on the gel imaging system.
Cell Counting Kit-8 assays

Cells were collected at a concentration of 1 × 10 (4) cells/ml.

Each well of the 96-well plate was inoculated with 100 µl of cell

suspension, and each group had three wells. Ten microliters of

si-SCHIP1 or si-NC was added to the corresponding wells and

then placed into the incubator for routine culture. The next day,

10 µl of Cell Counting Kit-8 (CCK8) solution was added at a

fixed time and incubated in the incubator for 0.5–4 h. Finally, the

absorbance at 450 nm was measured by a microplate reader, and

the cell viability was calculated.
Statistical analysis

Normally distributed variables and non-normally

distributed data between two groups were compared by t-test

and Wilcoxon test, respectively. OS status estimated by Kaplan–

Meier survival curves and Cox regression used for survival

analysis were compared by the survminer package. ROC

curves were plotted by the timeROC package, and heatmaps

were plotted by the pheatmap package. R package ggplot2

(v4.1.2) was used to visualize the data. In vitro assays were

performed for more than three independent experiments or

replicates. p < 0.05 was considered statistically significant.
Results

Characteristics of transient receptor
potential enrichment in TCGA-LAML

We calculated TESs for each AML patient using the ssGSEA

algorithm. The correlations among the TRGs, clinicopathological

characteristics, and TESs are exhibited in Figure 1A. Compared
Frontiers in Immunology 05
with AML patients with lower TESs, the expressions of TRPM1,

TRPM2, TRPM5, and TRPM5were relatively high; on the contrary,

the expressions of TRPM6 and TRPM7 were relatively low

(Figure 1A). We distinguished AML patients into the HTS group

and LTS group. From Figure 1B, we can observe the significantly

worse clinical outcomes of patients with higher TESs, while the

prognosis of patients with lower TESs was better. Therefore, TES

may be a driving factor for the malignant progression of AML.

There were 107 differentially expressed TRGs identified by

differential analysis (logFC > 1, p < 0.05), which could be

reflected in the volcano map (Figure 1C). We carried out an

enrichment analysis to explore the biological function of these

differentially expressed TRGs. The GO analysis (Figure 1D) showed

that these TRGs were significantly enriched in several immune-

related pathways (neutrophil activation, neutrophil degranulation,

neutrophil activation involved in immune response, neutrophil-

mediated immunity, defense response to bacterium, defense

response to fungus, negative regulation of immune system

process, leukocyte migration, macrophage activation, and

macrophage differentiation). KEGG analysis (Figure 1E) revealed

that these TRGs were significantly enriched in some classical

tumor-related pathways (Transcriptional misregulation in cancer,

IL-17 signaling pathway, Arachidonic acid metabolism, Influenza

A, C-type lectin receptor signaling pathway, Bladder cancer,

Serotonergic synapse, Malaria, Shigellosis, and Melanoma).
Establishment of transient receptor
potential signature

The univariate Cox regression analysis was performed on the

differentially expressed TRGs obtained above. The results revealed

57 prognostic TRGs (Figure 2A), including 24 potential tumor-

protective factors (hazard ratio (HR) < 1) and 33 potential tumor-

promoting factors (HR > 1). Thereafter, the distribution of error

rates generated by the Random Survival Forest model is shown in

Figure 2B, thus identifying the variable importance (variable

importance >0.3, Figure 2B) of 12 TRGs (ZNF608, NAPSB,

CPNE8, ANXA8, LPO, PDCD6IPP1, SLC2A5, SCHIP1,

HOXA4, TRH, LST1, and METTL7B). Lasso analysis was used

to construct the TRP signature, and the TRP score for 149 patients

with AML was calculated. Ultimately, eight TRGs (ANXA8,

CPNE8, HOXA4, LPO, LST1, METTL7B, NAPSB, PDCD6IPP1,

SCHIP1, SLC2A5, TRH, and ZNF608) were obtained to establish

the prognostic signature, and Figure 2C displays the lambda

selection diagram. The heatmap displays the distribution of the

eight TRGs of the signature, clinicopathological characteristics,

and TRP score. It can be clearly observed that high expression of

LPO and TRH may be associated with lower TRP scores, in

contrast to high expression of NAPSB, METTL7B, SLC2A5,

SCHIP1, PDCD6IPP1, and HOXA4, which was associated with

higher TRP scores (Figure 2D).
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A

B D

C E

FIGURE 1

Characteristics of TRP enrichment scores in TCGA-LAML cohort. (A) Correlation between TRP enrichment scores and the expression values of
eight TRP genes in TCGA-LAML cohort. Yellow represents high gene expression; blue represents low gene expression. (B) Kaplan–Meier curve
showing the correlation between TRP enrichment scores and survival status of AML patients. The blue curve represents the group with lower
TRP enrichment scores, and the red curve represents group with higher TRP enrichment scores. (C) Volcano map of differential analysis
between high and low TRP enrichment groups. There were 107 differentially expressed genes between the two groups. Yellow dots indicate
genes whose expression values differ between the two groups, while blue dots indicate genes whose expression values do not differ between
the two groups. (D) GO enrichment map of 107 differentially expressed genes. (E) KEGG enrichment map of 107 differentially expressed genes.
TRP, transient receptor potential; AML, acute myeloid leukemia; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes Genomes. **,<0.01;
*** ,<0.001; and ****,<0.0001.
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Efficacy of transient receptor
potential signature

The optimal cutoff of TRP scores was set as a threshold value

to distinguish AML patients into the HTS or LTS groups. The

details of clinic information are listed in Supplementary Table
Frontiers in Immunology 07
S1. The survival curves showed significantly worse clinical

outcomes of patients with higher TRP scores, while the

prognosis of patients with lower TRP scores was better

(Figure 3A). The area under the curve (AUCs) values of 1-year

(AUC = 0.738), 3-year (AUC = 0.796), and 5-year (AUC =

0.858) survival ROC curves predicted by the TRP signature were
A B

D

C

FIGURE 2

Establishment of TRP signature. (A) Forest plot for univariate Cox regression analysis of 57 prognostic TRP-related genes. (B) The distribution of
error rates in Random Survival Forest model and the variable relative importance of 12 TRP-related genes (variable importance >0.3). (C) Lambda
selection diagram for least absolute shrinkage and selection operator (Lasso) analysis. (D) The heatmap displaying the distribution of the eight
TRP-related genes of the signature, clinicopathological characteristics, and TRP enrichment scores. Yellow represents high gene expression;
blue represents low gene expression. TRP, transient receptor potential. **,<0.01; and ****,<0.0001.
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A B

D

C

E

F

FIGURE 3

Efficacy of TRP signature. (A) Kaplan–Meier survival curve showing survival probability of high TRP score or low TRP score subgroups. The blue
curve represents the group with lower TRP scores, and the red curve represents group with higher TRP scores. (B) The 1-year (0.738), 3-year
(0.796), and 5-year (0.858) survival ROC curves predicted by the TRP signature. (C) The forest figure for univariate Cox regression analysis of
TRP score and clinicopathological features. (D) The forest figure for multivariate Cox regression analysis of TRP score and clinicopathological
features. (E) Univariate Cox regression analysis of the TRP signature in five external validation datasets (GSE12417-GPL570, GSE12417-GPL96,
GSE37642-GPL570, GSE37642-GPL96, and TARGET). (F) GSEA showing cancer-related pathways positively regulated by TRP signature. TRP,
transient receptor potential; ROC, receiver operating characteristic; GSEA, Gene Set Enrichment Analysis.
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all higher than 0.7, suggesting the efficiency of TRP signature in

predicting prognosis for AML (Figure 3B). Furthermore, TRP

signature was an independent prognostic factor for AML

patients as demonstrated by univariate (Figure 3C) and

multivariate (Figure 3D) Cox regression analyses. Finally,

univariate Cox regression analysis was conducted on five

external validation datasets (GSE12417-GPL570, GSE12417-

GPL96, GSE37642-GPL570, GSE37642-GPL96, and TARGET),

and the HRs of the five sets were all greater than 1,

demonstrating the accuracy of the TRP signature that we

constructed in prognost ic predic t ion (F igure 3E ,

Supplementary Figure S1). Based on GSEA, six cancer-related

pathways (MAPK signaling pathway, TOR signaling pathway,

Apoptosis, Wnt signaling pathway, TNF signaling pathway, and

NF-kappa B signaling pathway) were identified, which may be

positively regulated by this signature, which provided insights

for exploring the mechanism of AML (Figure 3F).
Genomic mutation analysis for transient
receptor potential signature

We assessed the genomic characterization landscape of the

HTS group or LTS group by the GISTIC algorithm, as shown in

Figure 4A. Further, we plotted the detailed amplificated or

deleted CNV onco-plots of the HTS and LTS groups

(Figure 4B). From Figure 4B, we can observe that the results

of the two subgroups were similar. DNMT3A, FLT3, RUNX1,

NPM1, TP53, NRAS, CACNA1B, IDH2, MUC16, TTN,

ALOX12B, ASXL1, ATP10B, BBS12, and BRINP3 were the top

15 genes with the highest mutation rate in AML patients with

high TRP scores (Figure 4C). MUC16, IDH2, KIT, TTN,

DNMT3A, PRUNE2, UBR4, WT1, AHNAK, AHNAK2,

CC2D2A, MACF1, NF1, PCLO, and VPS13D were the top 15

genes with the highest mutation rate in AML patients with low

TRP scores (Figure 4C). Thus, the mutation rates of DNMT3A,

IDH2, MUC16, and TTN in the two subgroups were

relatively high.
Evaluation of immunological
characteristics for transient receptor
potential signature

After analysis based on MCPcounter, ssGSEA, and TIMER

algorithms, the abundance of infiltrating immune cell populations

with different TRP scores was displayed in the heatmap

(Figure 5A). From a general view, the level of infiltrating

immune cell populations (Figure 5A), stromal score (Figure 5B),

immune score (Figure 5B), and ESTIMATE score (Figure 5B)

increased as the TRP scores increased. Nevertheless, AML patients

with lower TRP scores exhibited more tumor purity (Figure 5B).

As for gene set variation analysis (GSVA), we focused on
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immune-related pathways positively regulated by TRP signature.

The results showed that the TRP signature may be associated with

adaptive immune response, immune response, innate immune

response, T-cell receptor signaling pathway, interleukin-1-

mediated signaling pathway, interferon-gamma-mediated

signaling pathway, positive regulation of T cell proliferation, and

T-cell activation (Figure 5C).
Immunotherapy and chemotherapy of
transient receptor potential signature

Considering that immunomodulators (IMs) play a critical

role in tumor immunotherapy, we compared the correlation

between immunomodulator levels (Co-stm, Co-ihb, Ligand,

Receptor, Cell adhesion, Antigen presentation, and Other) and

the prognostic TRP signature (Figure 6A). To further evaluate

the relationship between TRP score and immunotherapy, we

calculated the correlation between the TRP scores and the

expression level of four classical immune checkpoints, and we

found that the score was correlated with PDCD1 (R = 0.37, p =

2.5 × e−6), CTLA4 (R = 0.44, p = 1.5 × e−8), CD274 (R = 0.46, p =

2.5 × e−9), and PDCD1LG2 (R = 0.48, p = 7.1 × e−10), which can

provide an important reference for the immunotherapy of AML

(Figure 6B). The IC50 values of six chemotherapeutics (PLX-

4720, 5-Fluorouracil-1073, Dabrafenib-1373, Temozolomide-

1375, LGK974-1598, and Foretinib-2040) were contrasted

using violin figures, and our data revealed that the IC50 values

of the chemotherapeutics mentioned above were lower in the

HTS group than in the LTS group, suggesting that patients with

higher TRP scores were more likely to benefit from these six

chemotherapeutics (Figure 6C).
In vitro assays

To verify the effect of TRP score in vitro, we selected

SCHIP1, as it represents genes of TRP score in further work.

First, our results showed that there was a significant difference in

the expression of SCHIP1 between the tumor and normal, and

the SCHIP1 also had a poor prognosis in TCGA-AML cohort

(Figures 7A, B). Then, after cell transfection, we observed the cell

morphology under the microscope (Figure 7C). As shown in

Figure 7D, 24 h after transfection, the cells in the NC group had

regular shape and uniform size, and there was no significant

difference between the si-NC and NC groups, while the cells in

the si-SCHIP1 group had heterogeneous size and irregular

shape, and some cells showed apoptosis. Forty-eight hours

after transfection, the cell morphology of the NC group and

si-NC group was regular, and there was no significant difference

between the two groups, while the si-SCHIP1 group showed

significant apoptosis. We used Western blotting assays to detect

the knockout efficiency of SCHIP1 gene, and the results showed
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FIGURE 4

Genomic mutation analysis for TRP signature. (A) Genomic characterization landscape of groups with high TRP scores or low TRP scores.
(B) The detailed amplificated or deleted CNV onco-plots of groups with high TRP scores or low TRP scores. (C) Waterfall plot of somatic
mutations in AML between high and low TRP score groups. TRP, transient receptor potential; AML, acute myeloid leukemia; CNV, copy number
variation.
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A B
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FIGURE 5

Evaluation of immunological characteristics for TRP signature. (A) Heatmap displaying the abundance of infiltrating immune cell populations
with different TRP scores. (B) The violin chart comparing the differences between high and low TRP scores on stromal score, immune score,
ESTIMATE score, and tumor purity. (C) GSVA for immune-related pathways positively regulated by TRP signature. TRP, transient receptor
potential; GSVA, gene set variation analysis. *,<0.05; **,<0.01; ***,<0.001; and ****,<0.0001.
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that compared with the control group, SCHIP1 gene in the si-

SCHIP1 group was significantly knocked down after cell

transfection (Figures 7E, F). We used CCK8 assay to test the

cell viability of each group (Figure 7G). We found that after 24 h,

the cell viability of the si-SCHIP1 group was significantly lower
Frontiers in Immunology 12
than that of the control group (p < 0.01). After 48 h, the cell

viability in the si-SCHIP1 group was also significantly decreased

compared with the control group (p < 0.01), while the cell

viability in the si-NC group was significantly increased

compared with the si-SCHIP1 group (p < 0.01).
A B

C

FIGURE 6

Immunotherapy and chemotherapy of TRP signature for AML. (A) Correlation of TRP score with seven immunomodulators in AML. (B)
Correlation between expression of four immune checkpoints and TRP scores. (C) Box plots of estimated IC50 for six chemotherapeutic agents
in the high or low TRP score groups. TRP, transient receptor potential; AML, acute myeloid leukemia.
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Discussion

Since the discovery of AML, a great deal of research has been

carried out on its etiology, development, and treatment. With the

development of technology and in-depth research, many important

prognostic factors have been found, such as age, chromosome typing,

genotyping, and initial and white blood cell count, and patients are

grouped according to these prognostic factors to guide diagnosis and

treatment (47). However, due to the limitation of traditional

clinicopathological features, the clinical prognosis of patients with

AML is still highly heterogeneous. According to the European

LeukemiaNet (ELN) risk classification system, about half of

patients are classified into the intermediate risk group (48). AML is

one of the most common malignant diseases of the circulatory

system. Different types of AM L may have different clinical

manifestations and prognoses. In conjunction with this change,

there is a growing acceptance of early risk stratification for AML to
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guide further treatment. Clear risk stratification of AML is the

prerequisite for subsequent correct diagnosis and treatment. In this

study, we established risk stratification based on TRP scores. The

survival curves showed significantly worse clinical outcomes for

patients with higher TRP scores, while the prognosis of patients

with lower TRP scores was better. The AUC values of 1-year (AUC=

0.738), 3-year (AUC = 0.796), and 5-year (AUC = 0.858) survival

ROC curves predicted by the TRP scores were all higher than 0.7,

suggesting the efficiency of TRP signature in predicting prognosis for

AML. Furthermore, the TRP score was an independent prognostic

factor for AML patients demonstrated by univariate and multivariate

Cox regression analyses. The accuracy of the TRP score we

constructed in prognostic prediction was recognized by five

external validation datasets. In conclusion, the TRP score system

may be a novel and reliable stratification system for AML.

As a rapidly developing interdisciplinary, bioinformatics uses

computer science and mathematics to drive the development of
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FIGURE 7

In vitro cyto-functional experiments for SCHIP1 of AML. (A, B) The expression of SCHIP1 in TCGA between normal and tumor. (B) The prognosis
of SCHIP1 in TCGA. Cell morphology after transfection at 24 h (C or D). NC denotes blank control group, si-SCHIP1 denotes knockdown
SCHIP1 group, and si-NC denotes control group. (E, F) Western blotting assays verifying the transfection efficiency. (G) CCK8 assays comparing
the survival rate of different groups of cells. AML, acute myeloid leukemia; TCGA, The Cancer Genome Atlas; CCK8, Cell Counting Kit-8.
**,<0.01; si-SCHIP1 vs NC for SCHIP1/GAPDH and 24h cell viability; ##, <0.01; si-NC vs si-SCHIP1 for SCHIP1/GAPDH and 48h cell viability;
%%, <0.01; si-NC vs si-SCHIP1 for 48h cell viability.
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biology. Traditional biological studies and clinical studies are often

limited, and the selection of research objectives is often through

theoretical speculation or literature support. However,

bioinformatics research is more macroscopic. Based on the

massive data obtained at the gene level or protein level, high-

throughput sequencing technology and other technologies are

used to screen out some more potential research targets, which

provides possible directions for research. TCGA database is a joint

project of the National Cancer Institute (NCI) and the National

Human Genome Research Institute (NHGRI) so as to help

researchers better understand cancer and promote related

cancer prevention, diagnosis, and treatment progress (4). The

GTEx database stores a large number of human normal tissue

sequencing samples, which can be used to analyze the genetic

differences between tumor samples and normal samples (49). The

GEO database is a project of the National Center for

Biotechnology Information (NCBI), which stores data mainly

from microarray or sequencing data uploaded by various

research institutions and individuals. GPL refers to the type of

sequencing platform used for sequencing data or gene chip data,

and GSE refers to the sequencing data dataset of a series of

samples (50). In this study, we carried out a comprehensive

bioinformatics analysis based on data from TCGA-LAML

dataset in the UCSC Xena platform, GTEx, GEO, and TARGET

datasets. We also used a number of algorithms (KEGG, GO, ORA,

GSEA, GISTIC, ESTIMATE, TIMER, MCPcounter, ssGSEA, and

pRRophetic) to assess functional enrichment pathways, somatic

mutations, immune characteristics, and drug sensitivity in AML.

Bioinformatics analysis contributed to our results.

In addition to using a large number of bioinformatics tools

for analysis, this study also selected a gene, SCHIP1, for the wet

experiment, which is also a highlight of this study. SCHIP1 is

located at chromosome 3q25 and is a relatively unusual protein

initially discovered through interactions with the tumor

inhibitor Merlin/NF2 in the mouse brain, and it is a new

member of the Hippo pathway (51, 52). SCHIP1 plays

different roles in many diseases. SCHIP1 has a variety of

functions and plays an important role in the organization of

Langhock during early brain development and adulthood, and

SCHIP1 is also a cytoplasmic chaperone for cortical cytoskeletal

tonic proteins (53). Studies have shown that SCHIP1 plays an

important role in proteinuria (54). SCHIP1 also promotes the

development and progression of several tumors, including

adrenal tumors, acute lymphoblastic leukemia, renal cell

carcinoma, and colorectal cancer (55–58). Zhang et al.

proposed that IQCJ-Schip1-AS1 could affect the proliferation

of colorectal cancer cells through the pathways of cell cycling,

DNA replication, and p53 (58). In addition, SCHIP1 is an NF2/

Merlin interacting protein in Drosophila, and its coiled-coil

domain interacts with NF2/Merlin to influence the Hippo

pathway (52). After the knockdown of SCHIP1, we found that

the apoptosis of AML cells increased and the cell growth rate
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slowed down, which indicated that SCHIP1 may be a malignant

promoter of AML.

There are limitations to the study. First, we constructed and

validated the risk prognostic model by retrospectively studying

the public database, while more prospective studies are needed

for clinical practicability. Second, due to the older AML project

data in TCGA database, the lack of clinical information is

serious. At the same time, there are few AML data with rich

clinical information, and the lack of clinically relevant data is

inevitable in this study. Finally, different from solid tumors,

which usually detect differential genes by comparing tumor

tissues with adjacent tissues, hematological tumors are

inevitably affected by other external factors due to the lack of

normal bone marrow cells in the samples themselves.
Conclusions

This study determined a risk stratification system based on

TRP score through detailed bioinformatics analysis and initially

confirmed that SCHIP1 is the oncogene of AML.
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AML acute myeloid leukemia

GTEx Genome-Tissue Expression

TRG TRP-related gene

ssGSEA Single-Sample Gene Set Enrichment Analysis

TES TRP enrichment score

DEG differentially expressed gene

Lasso least absolute shrinkage and selection operator

ROC receiver operating characteristic

GISTIC Genomic Identification of Significant Targets in Cancer

KEGG Kyoto Encyclopedia of Genes Genomes

GO Gene Ontology

ORA over-representation analysis

GSEA Gene Set Enrichment Analysis

GDSC Genomics of Drug Sensitivity in Cancer

CR complete remission

TCGA The Cancer Genome Atlas

TRP transient receptor potential

TARGET Therapeutically Applicable Research to Generate Effective
Treatments

RMA Robust Multichip Average

FPKM fragments per kilobase of transcript per million fragments mapped

TPM transcripts per kilobase million

HTS high TRP score

LTS low TRP score

OS overall survival

CNV copy number variation

ESTIMATE Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression

TIMER Tumor Immune Estimation Resource

RPMI Roswell Park Memorial Institute

FBS fetal bovine serum

PMSF phenylmethylsulfonyl fluoride

PVDF olyvinylidene difluoride

SCHIP1, Schwannomin-Interacting Protein 1
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